1
|
Ebihara T, Shibuya M, Yamaguchi A, Hino M, Lee JM, Kusakabe T, Mon H. Efficient and accurate BmNPV bacmid editing system by two-step golden gate assembly. J Virol Methods 2024; 330:115029. [PMID: 39243818 DOI: 10.1016/j.jviromet.2024.115029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The silkworm-baculovirus expression vector system (silkworm-BEVS), using Bombyx mori nucleopolyhedrovirus (BmNPV) and silkworm larvae or pupae, has been used as a cost-effective expression system for the production of various recombinant proteins. Recently, several gene knockouts in baculoviruses have been shown to improve the productivity of recombinant proteins. However, the gene editing of the baculovirus genome (approximately 130 kb) remains challenging and time-consuming. In this study, we sought to further enhance the productivity of the silkworm-BEVS by synthesizing and gene editing the BmNPV bacmid from plasmids containing fragments of BmNPV genomic DNA using a two-step Golden Gate Assembly (GGA). The BmNPV genome, divided into 19 fragments, was amplified by PCR and cloned into the plasmids. From these initial plasmids, four intermediate plasmids containing the BmNPV genomic DNA were constructed by GGA with the type IIS restriction enzyme BsaI. Subsequently, the full-length bacmid was successfully synthesized from the four intermediate plasmids by GGA with another type IIS restriction enzyme PaqCI with a high efficiency of 97.2 %. Furthermore, this methodology enabled the rapid and straightforward generation of the BmNPV bacmid lacking six genes, resulting in the suppression of degradation of recombinant proteins expressed in silkworm pupae. These results indicate that the BmNPV bacmid can be quickly and efficiently edited using only simple cloning techniques and enzymatic reactions, marking a significant advancement in the improvement of the silkworm-BEVS.
Collapse
Affiliation(s)
- Takeru Ebihara
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Misaki Shibuya
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ayaka Yamaguchi
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masato Hino
- Laboratory of Silkworm Genetic Resources, Institute of Genetic Resources, Kyushu University Graduate School of BioResources and Bioenvironmental Science, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Krela R, Poreba E, Lesniewicz K. Variations in the enzymatic activity of S1-type nucleases results from differences in their active site structures. Biochim Biophys Acta Gen Subj 2023; 1867:130424. [PMID: 37463618 DOI: 10.1016/j.bbagen.2023.130424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/27/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND S1-like nucleases are widespread enzymes commonly used in biotechnology and molecular biology. Although it is commonly believed that they are mainly Zn2+-dependent acidic enzymes, we have found that numerous members of this family deviate from this rule. Therefore, in this work, we decided to check how broad is the range of non‑zinc-dependent S1-like nucleases and what is the molecular basis of their activities. METHODS S1-like nucleases chosen for analysis were achieved through heterologous expression in appropriate eukaryotic hosts. To characterize nucleases' active-site properties, point mutations were introduced in selected positions. The enzymatic activities of wild-type and mutant nucleases were tested by in-gel nuclease activity assay. RESULTS We discovered that S1-like nucleases encoded by non-vascular plants and single-celled protozoa, like their higher plant homologues, exhibit a large variety of catalytic properties. We have shown that these individual properties are determined by specific non-conserved active site residues. CONCLUSIONS Our findings demonstrate that mutations that occur during evolution can significantly alter the catalytic properties of S1-like nucleases. As a result, different ions can compete for particular S1-type nucleases' active sites. This phenomenon undermines the existing classification of S1-like nucleases. GENERAL SIGNIFICANCE Our findings have numerous implications for applications and understanding the S1-like nucleases' biological functions. For example, new biotechnological applications should take into account their unexpected catalytic properties. Moreover, these results demonstrate that the trinuclear zinc-based model commonly used to characterize the catalytic activities of S1-like nucleases is insufficient to explain the actions of non‑zinc-dependent members of this family.
Collapse
Affiliation(s)
- Rafal Krela
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Umultowska St. 89, 61-614 Poznan, Poland; Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice 370 05, Czech Republic.
| | - Elzbieta Poreba
- Department of Genetics, Institute of Experimental Biology, Adam Mickiewicz University in Poznan, Umultowska St. 89, 61-614 Poznan, Poland.
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Umultowska St. 89, 61-614 Poznan, Poland.
| |
Collapse
|
3
|
Yu M, Arai N, Ochiai T, Ohyama T. Expression and function of an S1-type nuclease in the digestive fluid of a sundew, Drosera adelae. ANNALS OF BOTANY 2023; 131:335-346. [PMID: 36546767 PMCID: PMC9992940 DOI: 10.1093/aob/mcac150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Carnivorous plants trap and digest insects and similar-sized animals. Many studies have examined enzymes in the digestive fluids of these plants and have gradually unveiled the origins and gene expression of these enzymes. However, only a few attempts have been made at characterization of nucleases. This study aimed to reveal gene expression and the structural, functional and evolutionary characteristics of an S1-type nuclease (DAN1) in the digestive fluid of an Australian sundew, Drosera adelae, whose trap organ shows unique gene expression and related epigenetic regulation. METHODS Organ-specificity in Dan1 expression was examined using glandular tentacles, laminas, roots and inflorescences, and real-time PCR. The methylation status of the Dan1 promoter in each organ was clarified by bisulphite sequencing. The structural characteristics of DAN1 were studied by a comparison of primary structures of S1-type nucleases of three carnivorous and seven non-carnivorous plants. DAN1 was prepared using a cell-free protein synthesis system. Requirements for metal ions, optimum pH and temperature, and substrate preference were examined using conventional methods. KEY RESULTS Dan1 is exclusively expressed in the glandular tentacles and its promoter is almost completely unmethylated in all organs. This is in contrast to the S-like RNase gene da-I of Dr. adelae, which shows similar organ-specific expression, but is controlled by a promoter that is specifically unmethylated in the glandular tentacles. Comparison of amino acid sequences of S1-type nucleases identifies seven and three positions where amino acid residues are conserved only among the carnivorous plants and only among the non-carnivorous plants, respectively. DAN1 prefers a substrate RNA over DNA in the presence of Zn2+, Mn2+ or Ca2+ at an optimum pH of 4.0. CONCLUSIONS Uptake of phosphates from prey is suggested to be the main function of DAN1, which is very different from the known functions of S1-type nucleases. Evolution has modified the structure and expression of Dan1 to specifically function in the digestive fluid.
Collapse
Affiliation(s)
- Meng Yu
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Naoki Arai
- Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686, Japan
| | - Tadahiro Ochiai
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Takashi Ohyama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
4
|
Kawamoto Y, Toda H, Inoue H, Kobayashi K, Yamaoka N, Araki T, Yaeno T. Fast and Inexpensive Phenotyping and Genotyping Methods for Evaluation of Barley Mutant Population. PLANTS 2020; 9:plants9091153. [PMID: 32899989 PMCID: PMC7569886 DOI: 10.3390/plants9091153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 09/04/2020] [Indexed: 01/13/2023]
Abstract
To further develop barley breeding and genetics, more information on gene functions based on the analysis of the mutants of each gene is needed. However, the mutant resources are not as well developed as the model plants, such as Arabidopsis and rice. Although genome editing techniques have been able to generate mutants, it is not yet an effective method as it can only be used to transform a limited number of cultivars. Here, we developed a mutant population using ‘Mannenboshi’, which produces good quality grains with high yields but is susceptible to disease, to establish a Targeting Induced Local Lesions IN Genomes (TILLING) system that can isolate mutants in a high-throughput manner. To evaluate the availability of the prepared 8043 M3 lines, we investigated the frequency of mutant occurrence using a rapid, visually detectable waxy phenotype as an indicator. Four mutants were isolated and single nucleotide polymorphisms (SNPs) were identified in the Waxy gene as novel alleles. It was confirmed that the mutations could be easily detected using the mismatch endonuclease CELI, revealing that a sufficient number of mutants could be rapidly isolated from our TILLING population.
Collapse
|
5
|
Yao XF, Wu S, Guo L, Liu CM. Efficient CELI endonuclease production in Nicotiana benthamiana through transient expression and applications in detections of mutation and gene editing events. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110469. [PMID: 32539999 DOI: 10.1016/j.plantsci.2020.110469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
Rapid and low-cost methods of detecting mutations and polymorphisms are crucial for genotyping applications including mutagenesis and gene editing. S1 family endonucleases such as T7E1, EndoV and CELI can potentially be used in enzymatic mismatch detection. Among them, CELI has been shown to be effective in detecting mutations in Targeting Induced Local Lesions IN Genomes (TILLING). However, current method of CELI purification from celery is laborious, and challenging for many non-biochemical laboratories, and the presence of post-translational modifications hinders efficient production of the enzyme in E. coli. Here, we report an efficient system for bulk production of enzymatically active CELI endonuclease through transient expression in a model plant Nicotiana benthamiana. We also optimized the reaction buffer, by additions of Mn2+ and DTT, with enhanced mismatch cleavage activity. Using the new CELI production and reaction system, we were able to routinely detect mismatches in 1/32 mixed mutant and wildtype DNA samples. We believe the newly established system has many applications in characterization of mutations occurred in natural variations, mutagenized populations and gene editing.
Collapse
Affiliation(s)
- Xue-Feng Yao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengyang Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lei Guo
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Koval T, Dohnálek J. Characteristics and application of S1–P1 nucleases in biotechnology and medicine. Biotechnol Adv 2018; 36:603-612. [DOI: 10.1016/j.biotechadv.2017.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022]
|
7
|
Yamashita M, Xu J, Morokuma D, Hirata K, Hino M, Mon H, Takahashi M, Hamdan SM, Sakashita K, Iiyama K, Banno Y, Kusakabe T, Lee JM. Characterization of Recombinant Thermococcus kodakaraensis (KOD) DNA Polymerases Produced Using Silkworm-Baculovirus Expression Vector System. Mol Biotechnol 2018; 59:221-233. [PMID: 28484957 DOI: 10.1007/s12033-017-0008-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The KOD DNA polymerase from Thermococcus kodakarensis (Tkod-Pol) has been preferred for PCR due to its rapid elongation rate, extreme thermostability and outstanding fidelity. Here in this study, we utilized silkworm-baculovirus expression vector system (silkworm-BEVS) to express the recombinant Tkod-Pol (rKOD) with N-terminal (rKOD-N) or C-terminal (rKOD-C) tandem fusion tags. By using BEVS, we produced functional rKODs with satisfactory yields, about 1.1 mg/larva for rKOD-N and 0.25 mg/larva for rKOD-C, respectively. Interestingly, we found that rKOD-C shows higher thermostability at 95 °C than that of rKOD-N, while that rKOD-N is significantly unstable after exposing to long period of heat-shock. We also assessed the polymerase activity as well as the fidelity of purified rKODs under various conditions. Compared with commercially available rKOD, which is expressed in E. coli expression system, rKOD-C exhibited almost the same PCR performance as the commercial rKOD did, while rKOD-N did lower performance. Taken together, our results suggested that silkworm-BEVS can be used to express and purify efficient rKOD in a commercial way.
Collapse
Affiliation(s)
- Mami Yamashita
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Jian Xu
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan.
| | - Daisuke Morokuma
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Kazuma Hirata
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Masato Hino
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Masateru Takahashi
- Laboratory of DNA Replication and Recombination, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 4700 KAUST Thuwal, Jeddah, 23955, Saudi Arabia
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 4700 KAUST Thuwal, Jeddah, 23955, Saudi Arabia
| | - Kosuke Sakashita
- Bioscience Core Lab, Proteomics, King Abdullah University of Science and Technology, 4700 KAUST Thuwal, Jeddah, 23955, Saudi Arabia
| | - Kazuhiro Iiyama
- Laboratory of Insect Pathology and Microbial Control, Institute of Biological Control, Faculty of Agriculture, Graduate School, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Yutaka Banno
- Laboratory of Silkworm Genetic Resources, Institute of Genetic Resources, Graduate School of Bio Resources and Bioenvironmental Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan.
| |
Collapse
|
8
|
Expression and Characterization of Recombinant Serratia liquefaciens Nucleases Produced with Baculovirus-mediated Silkworm Expression System. Mol Biotechnol 2016; 58:393-403. [PMID: 27059494 DOI: 10.1007/s12033-016-9937-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Baculovirus-Bombyx mori protein expression system has mainly been used for translation of eukaryotic proteins. In contrast, information pertaining to bacterial protein expression using this system is not sufficient. Therefore, recombinant nucleases from Serratia liquefaciens (rSlNucAs) were expressed in a Baculovirus-B. mori protein expression system. rSlNucAs containing the native signal peptide (rSlNucA-NSP) or silkworm 30-K signal peptide (rSlNucA-30K) at the NH2-terminus were constructed to enable secretion into the extracellular fraction. Both rSlNucA-30K and rSlNucA-NSP were successfully secreted into hemolymph of B. mori larvae. Affinity-purified rSlNucAs showed high nuclease activity. Optimum pH was 7.5 and half of maximum activity was maintained between pH 7.0 and 9.5. Optimum temperature was 35 °C. rSlNucAs showed sufficient activity in twofold-diluted radioimmunoprecipitation assay buffer and undiluted, mild lysis buffer. Genomic DNA of Escherichia coli was efficiently digested by rSlNucAs in the bacterial lysate. The results in this study suggest that rSlNucAs expressed by the Baculovirus-B. mori protein expression system will be a useful tool in molecular biology. Functional recombinant protein of bacteria was produced by Baculovirus-B. mori protein expression system. This system may be highly suitable for bacterial extracellular protein secreted via Sec pathway.
Collapse
|
9
|
Mass Production of an Active Peptide-N-Glycosidase F Using Silkworm-Baculovirus Expression System. Mol Biotechnol 2015; 57:735-45. [DOI: 10.1007/s12033-015-9866-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Labuschagne C, Kotzé A, Paul Grobler J, Dalton DL. Endonuclease V digestion for SNP discovery and marker development in South African white rhinoceros (Ceratotherium simum). CONSERV GENET RESOUR 2015. [DOI: 10.1007/s12686-014-0358-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Expression, Purification, and Characterization of Endo-β-N-Acetylglucosaminidase H Using Baculovirus-Mediated Silkworm Protein Expression System. Appl Biochem Biotechnol 2014; 172:3978-88. [DOI: 10.1007/s12010-014-0814-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
|