1
|
Liu Y, Xu J, Lu X, Huang M, Mao Y, Li C, Yu W, Li C. Carbon monoxide is involved in melatonin-enhanced drought resistance in tomato seedlings by enhancing chlorophyll synthesis pathway. BMC PLANT BIOLOGY 2024; 24:97. [PMID: 38331770 PMCID: PMC10854177 DOI: 10.1186/s12870-024-04793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Drought is thought to be a major abiotic stress that dramatically limits tomato growth and production. As signal molecule, melatonin (MT) and carbon monoxide (CO) can enhance plant stress resistance. However, the effect and underlying mechanism of CO involving MT-mediated drought resistance in seedling growth remains unknown. In this study, tomato (Solanum lycopersicum L. 'Micro-Tom') seedlings were used to investigate the interaction and mechanism of MT and CO in response to drought stress. RESULTS The growth of tomato seedlings was inhibited significantly under drought stress. Exogenous MT or CO mitigated the drought-induced impairment in a dose-dependent manner, with the greatest efficiency provided by 100 and 500 µM, respectively. But application of hemoglobin (Hb, a CO scavenger) restrained the positive effects of MT on the growth of tomato seedlings under drought stress. MT and CO treatment promoted chlorophyll a (Chl a) and chlorophyll a (Chl b) accumulations. Under drought stress, the intermediate products of chlorophyll biosynthesis such as protoporphyrin IX (Proto IX), Mg-protoporphyrin IX (Mg-Proto IX), potochlorophyllide (Pchlide) and heme were increased by MT or CO, but uroporphyrinogen III (Uro III) content decreased in MT-treated or CO-treated tomato seedlings. Meanwhile, MT or CO up-regulated the expression of chlorophyll and heme synthetic-related genes SlUROD, SlPPOX, SlMGMT, SlFECH, SlPOR, SlChlS, and SlCAO. However, the effects of MT on chlorophyll biosynthesis were almost reversed by Hb. CONCLUSION The results suggested that MT and CO can alleviate drought stress and facilitate the synthesis of Chl and heme in tomato seedlings. CO played an essential role in MT-enhanced drought resistance via facilitating chlorophyll biosynthesis pathway.
Collapse
Affiliation(s)
- Yunzhi Liu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Junrong Xu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xuefang Lu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Mengxiao Huang
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yuanzhi Mao
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Chuanghao Li
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Changxia Li
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Zhang S, Lin T, Zhang D, Chen X, Ge Y, Gao Q, Fan J. Use of the selected metal-dependent enzymes for exploring applicability of human annexin A1 as a purification tag. J Biosci Bioeng 2023; 136:423-429. [PMID: 37805288 DOI: 10.1016/j.jbiosc.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/09/2023]
Abstract
Several fusion tags have been developed for non-chromatographic fusion protein purification. Previously, we identified that human annexin A1 as a novel N-terminal purification tag was used for purifying the fusion proteins produced in Escherichia coli through precipitation in 10 mM Ca2+ buffer, and redissolution of the precipitate in 15 mM EDTA buffer. In this work, we selected four metal-dependent enzymes including E. coli 5-aminolevulinate dehydratase, yeast 3-hydroxyanthranilate 3,4-dioxygenase, maize serine racemase and copper amine oxidase for investigating the annexin A1 tag applicability. Fusion of the His6-tag or the enzyme changed the behavior of precipitation-redissolution. The relatively high recovery yields of three tagged enzymes with the improved purities were obtained through two rounds of purification, whereas low recovery yield of the annexin A1 tagged maize amine oxidase was prepared. The added EDTA displayed different abilities to redissolve the fusion proteins precipitates in two precipitation-redissolution cycles. It inactivated three enzymes and obviously inhibited the activity of the fused maize serine racemase. Based on current findings, we believe that four enzymes could be applied for evaluating applicability of the proteins or peptides as affinity tags for chromatographic purification in a calcium dependent manner.
Collapse
Affiliation(s)
- Shuncheng Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Tingting Lin
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Di Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Xiaofeng Chen
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Yuanyuan Ge
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Qing Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Jun Fan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
3
|
Hu B, Li Q, Yu H. RNA Interference by Ingested Dsrna-Expressing Bacteria to Study Porphyrin Pigmentation in Crassostrea gigas. Int J Mol Sci 2021; 22:ijms22116120. [PMID: 34204154 PMCID: PMC8201132 DOI: 10.3390/ijms22116120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Porphyrins are a widespread group of pigments in nature which are believed to contribute to shell colors in mollusks. Previous studies have provided candidate genes for porphyrin shell coloration, however, the linkage analysis between functional genes and porphyrin pigmentation remains unclear in mollusks. RNA interference is a powerful molecular tool for analyzing the loss of functions of genes in vivo and alter gene expression. In this study, we used unicellular alga Platymonas subcordiformis and Nitzschia closterium f. minutissima as vectors to feed oysters with Escherichia coli strain HT115 engineered to express double-stranded RNAs targeting specific genes involved in porphyrin synthesis. A strain of Crassostrea gigas with orange shell was used to target key haem pathway genes expression using the aforementioned approach. We show here that feeding the oysters with E. coli, containing dsRNA targeting pigmentation genes, can cause changes in the color of the newly deposited shell. For example, the RNAi knockdown of CgALAS and CgPBGD resulted in the loss of uroporphyrin pigmentation from the shell due to the accumulation of the pigment in the oyster's mantle. The study probed the crucial role of ALAS and PBGD genes potential functions of uroporphyrin production and shell color pigmentation in C. gigas.
Collapse
Affiliation(s)
- Biyang Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (B.H.); (H.Y.)
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (B.H.); (H.Y.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence:
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (B.H.); (H.Y.)
| |
Collapse
|
4
|
Hu B, Li Q, Yu H, Du S. Identification and characterization of key haem pathway genes associated with the synthesis of porphyrin in Pacific oyster (Crassostrea gigas). Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110595. [PMID: 33753220 DOI: 10.1016/j.cbpb.2021.110595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
Molluscs exhibit diverse shell colors. The molecular regulation of shell coloration is however not well understood. To investigate the connection of shell coloration with pigment synthesis, we analyzed the distribution of porphyrins, a widespread group of pigments in nature, in four Pacific oyster strains of different shell colors including black, orange, golden, and white. The porphyrin distribution was analyzed in oyster mantles and shells by fluorescence imaging and UV spectrophotometer. The results showed that red fluorescence emitted by porphyrins under the UV light was detected only on the nacre of the orange-shell strain and mantles of orange, black and white-shell strains. Extracts from newly deposit shell, nacre and mantle tissue from orange-shell specimens showed peaks in UV-vis spectra that are characteristic of porphyrins, but these were not observed for the other shell-color strains. In addition, genes of the haem synthetic pathway were isolated and characterized. Phylogenetic analysis of CgALAS, CgALAD, CgPBGD, CgUROS, and CgUROD provide further evidence for a conserved genetic pathway of haem synthesis during evolution. Differential expression of the haem genes expressed in mantle tissues support these findings and are consistent with porphyrins being produced by the orange strain only. Tissue in situ hybridization demonstrated the expression of these candidate genes at the outer fold of C. gigas mantles where shell is deposited. Our studies provide a better understanding of shell pigmentation in C. gigas and candidate genes for future mechanistic analysis of shell color formation in molluscs.
Collapse
Affiliation(s)
- Biyang Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Wen B, Li C, Fu X, Li D, Li L, Chen X, Wu H, Cui X, Zhang X, Shen H, Zhang W, Xiao W, Gao D. Effects of nitrate deficiency on nitrate assimilation and chlorophyll synthesis of detached apple leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:363-371. [PMID: 31398585 DOI: 10.1016/j.plaphy.2019.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 05/10/2023]
Abstract
Nitrogen is one of the most important nutrients for plant growth and development. Nitrate nitrogen (NO3--N) is the main form of nitrogen taken up by plants. Understanding the effects of exogenous NO3--N on nitrogen metabolism at the gene expression and enzyme activity levels during nitrogen assimilation and chlorophyll synthesis is important for increasing nitrogen utilization efficiency. In this study, cell morphology, NO3--N uptake rates, the expression of key genes related to nitrogen assimilation and chlorophyll synthesis and enzyme activity in apple leaves under NO3--N deficiency were investigated. The results showed that the cell morphology of apple leaves was irreversibly deformed due to NO3--N deficiency. NO3--N was absorbed slightly one day after NO3--N deficiency treatment and effluxed after 3 days. The relative expression of genes encoding nitrogen assimilation enzymes and the activity of such enzymes decreased significantly after 1 day of NO3--N deficiency treatment. After treatment for 14 days, gene expression was upregulated, enzyme activity was increased, and NO3--N content was increased. NO3--N deficiency hindered the transformation of 5-aminobilinic acid (ALA) to porphobilinogen (PBG), suggesting a possible route by which NO3--N levels affect chlorophyll synthesis. Collectively, the results indicate that NO3--N deficiency affects enzyme activity by altering the expression of key genes in the nitrogen assimilation pathway, thereby suppressing NO3--N absorption and assimilation. NO3--N deficiency inhibits the synthesis of the chlorophyll precursor PBG, thereby hindering chlorophyll synthesis.
Collapse
Affiliation(s)
- Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Chen Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Hongyu Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Xiaowen Cui
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Xinhao Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Hongyan Shen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Wenqian Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; Xintai Modern Agriculture Development Service Center, 819 Qingyun Road, Tai'an, 271200, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| | - Dongsheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| |
Collapse
|
6
|
Uchida T, Funamizu T, Chen M, Tanaka Y, Ishimori K. Heme Binding to Porphobilinogen Deaminase from Vibrio cholerae Decelerates the Formation of 1-Hydroxymethylbilane. ACS Chem Biol 2018; 13:750-760. [PMID: 29360345 DOI: 10.1021/acschembio.7b00934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Porphobilinogen deaminase (PBGD) is an enzyme that catalyzes the formation of hydroxymethylbilane, a tetrapyrrole intermediate, during heme biosynthesis through the stepwise polymerization of four molecules of porphobilinogen. PBGD from Vibrio cholerae was expressed in Escherichia coli and characterized in this study. Unexpectedly, spectroscopic measurements revealed that PBGD bound one equivalent of heme with a dissociation constant of 0.33 ± 0.01 μM. The absorption and resonance Raman spectra suggested that heme is a mixture of the 5-coordinate and 6-coordinate hemes. Mutational studies indicated that the 5-coordinate heme possessed Cys105 as a heme axial ligand, and His227 was coordinated to form the 6-coordinate heme. Upon heme binding, the deamination activity decreased by approximately 15%. The crystal structure of PBGD revealed that His227 was located near Cys105, but the side chain of His227 did not point toward Cys105. The addition of the cyanide ion to heme-PBGD abolished the effect of heme binding on the enzymatic activity. Therefore, coordination of His227 to heme appeared to induce reorientation of the domains containing Cys105, leading to a decrease in the enzymatic activity. This is the first report indicating that the PBGD activity is controlled by heme, the final product of heme biosynthesis. This finding improves our understanding of the mechanism by which heme biosynthesis is regulated.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takumi Funamizu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Minghao Chen
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yoshikazu Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- PRESTO, Japan Science and Technology Agency, Sapporo 060-0810, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
7
|
Williams ST, Lockyer AE, Dyal P, Nakano T, Churchill CKC, Speiser DI. Colorful seashells: Identification of haem pathway genes associated with the synthesis of porphyrin shell color in marine snails. Ecol Evol 2017; 7:10379-10397. [PMID: 29238562 PMCID: PMC5723588 DOI: 10.1002/ece3.3552] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/23/2022] Open
Abstract
Very little is known about the evolution of molluskan shell pigments, although Mollusca is a highly diverse, species rich, and ecologically important group of animals comprised of many brightly colored taxa. The marine snail genus Clanculus was chosen as an exceptional model for studying the evolution of shell color, first, because in Clanculus margaritarius and Clanculus pharaonius both shell and foot share similar colors and patterns; and second, because recent studies have identified the pigments, trochopuniceus (pink‐red), and trochoxouthos (yellow‐brown), both comprised of uroporphyrin I and uroporphyrin III, in both shell and colored foot tissue of these species. These unusual characteristics provide a rare opportunity to identify the genes involved in color production because, as the same pigments occur in the shell and colored foot tissue, the same color‐related genes may be simultaneously expressed in both mantle (which produces the shell) and foot tissue. In this study, the transcriptomes of these two Clanculus species along with a third species, Calliostoma zizyphinum, were sequenced to identify genes associated with the synthesis of porphyrins. Calliostoma zizyphinum was selected as a negative control as trochopuniceus and trochoxouthos were not found to occur in this species. As expected, genes necessary for the production of uroporphyrin I and III were found in all three species, but gene expression levels were consistent with synthesis of uroporphyrins in mantle and colored foot tissue only in Clanculus. These results are relevant not only to understanding the evolution of shell pigmentation in Clanculus but also to understanding the evolution of color in other species with uroporphyrin pigmentation, including (mainly marine) mollusks soft tissues and shells, annelid and platyhelminth worms, and some bird feathers.
Collapse
Affiliation(s)
| | - Anne E Lockyer
- Institute of Environment, Health and Societies Brunel University London Uxbridge UK
| | - Patricia Dyal
- Core Research Laboratories Natural History Museum London UK
| | - Tomoyuki Nakano
- Seto Marine Biological Laboratory Kyoto University Nishimuro Wakayama Prefecture Japan
| | | | - Daniel I Speiser
- Department of Biological Sciences University of South Carolina Columbia SC USA
| |
Collapse
|