1
|
Wang J, Singer SD, Chen G. Biotechnological advances in the production of unusual fatty acids in transgenic plants and recombinant microorganisms. Biotechnol Adv 2024; 76:108435. [PMID: 39214484 DOI: 10.1016/j.biotechadv.2024.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/28/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Certain plants and microorganisms can produce high amounts of unusual fatty acids (UFAs) such as hydroxy, conjugated, cyclic, and very long-chain polyunsaturated fatty acids, which have distinct physicochemical properties and significant applications in the food, feed, and oleochemical industries. Since many natural sources of UFAs are not ideal for large-scale agricultural production or fermentation, it is attractive to produce them through synthetic biology. Although several UFAs have been commercially or pre-commercially produced in transgenic plants and microorganisms, their contents in transgenic hosts are generally much lower than in natural sources. Moreover, reproducing this success for a wider spectrum of UFAs has remained challenging. This review discusses recent advancements in our understanding of the biosynthesis, accumulation, and heterologous production of UFAs, and addresses the challenges and potential strategies for achieving high UFA content in engineered plants and microorganisms.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St and 85 Ave, Edmonton, Alberta T6G 2P5, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St and 85 Ave, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
2
|
Wang J, Haddis DZ, Xiao Q, Bressler DC, Chen G. Engineering Rhodosporidium toruloides for sustainable production of value-added punicic acid from glucose and wood residues. BIORESOURCE TECHNOLOGY 2024; 412:131422. [PMID: 39233183 DOI: 10.1016/j.biortech.2024.131422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Rhodosporidium toruloides has emerged as a prominent candidate for producing single-cell oil from cost-effective feedstocks. In this study, the capability of R. toruloides to produce punicic acid (PuA), a representative plant unusual fatty acid, was investigated. The introduction of acyl lipid desaturase and conjugase (PgFADX) allowed R. toruloides to accumulate 3.7 % of total fatty acids as PuA. Delta-12 acyl lipid desaturase (PgFAD2) and diacylglycerol acyltransferase 2 were shown to benefit PuA production. The strain with PgFADX and PgFAD2 coexpression accumulated 12 % of its lipids as PuA from glucose, which translated into a PuA titer of 451.6 mg/L in shake flask condition. Utilizing wood hydrolysate as the feedstock, this strain produced 6.4 % PuA with a titer of 310 mg/L. Taken together, the results demonstrated that R. toruloides could serve as an ideal platform for the production of plant-derived high-value conjugated fatty acid using agricultural and forestry waste as feedstock.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Dagem Z Haddis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Qiong Xiao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - David C Bressler
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
3
|
Park K, Hahn JS. Engineering Yarrowia lipolytica for sustainable ricinoleic acid production: A pathway to free fatty acid synthesis. Metab Eng 2024; 81:197-209. [PMID: 38072356 DOI: 10.1016/j.ymben.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Ricinoleic acid (C18:1-OH, RA) is a valuable hydroxy fatty acid with versatile applications. The current industrial source of RA relies on the hydrolysis of castor bean oil. However, the coexistence of the toxic compound ricin and the unstable supply of this plant have led to an exploration of promising alternatives: generating RA in heterologous plants or microorganisms. In this study, we engineered the oleaginous yeast Yarrowia lipolytica to produce RA in the form of free fatty acids (FFA). First, we overexpressed fungal Δ12 oleate hydroxylase gene (CpFAH12) from Claviceps purpurea while deleting genes related to fatty acid degradation (MEF1 and PEX10) and oleic acid desaturation (FAD2). Since Δ12 oleate hydroxylase converts oleic acid (C18:1) located at the sn-2 position of phosphatidylcholine (PC), we next focused on increasing the PC pool containing oleic acid. This objective was achieved thorough implementing metabolic engineering strategies designed to enhance the biosynthesis of PC and C18 fatty acids. To increase the PC pool, we redirected the flux towards phospholipid biosynthesis by deleting phosphatidic acid phosphatase genes (PAH1 and APP1) and diacylglycerol acyltransferase gene (DGA1), involved in the production of diacylglycerol and triacylglycerol, respectively. Furthermore, the PC biosynthesis via the CDP-DAG pathway was enhanced through the overexpression of CDS1, PSD1, CHO2, and OPI3 genes. Subsequently, to increase the oleic acid content within PC, we overexpressed the heterologous fatty acid elongase gene (MaC16E) involved in the conversion of C16 to C18 fatty acids. As RA production titer escalated, the produced RA was mainly found in the FFA form, leading to cell growth inhibition. The growth inhibition was mitigated by inducing RA secretion via Triton X-100 treatment, a process that simultaneously amplified RA production by redirecting flux towards RA synthesis. The final engineered strain JHYL-R146 produced 2.061 g/L of free RA in a medium treated with 5% Triton X-100, constituting 74% of the total FFAs produced. Generating free RA offers the added benefit of bypassing the hydrolysis stage required when employing castor bean oil as an RA source. This achievement represents the highest level of RA synthesis from glucose reported thus far, underscoring the potential of Y. lipolytica as a host for sustainable RA production.
Collapse
Affiliation(s)
- Kwanghyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Garaiova M, Hua Q, Holic R. Heterologous Production of Calendic Acid Naturally Found in Calendula officinalis by Recombinant Fission Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3842-3851. [PMID: 36795330 DOI: 10.1021/acs.jafc.2c08967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Calendic acid (CA) is a conjugated fatty acid with anti-cancer properties that is widely present in seed oil of Calendula officinalis. Using the co-expression of C. officinalis fatty acid conjugases (CoFADX-1 or CoFADX-2) and Punica granatum fatty acid desaturase (PgFAD2), we metabolically engineered the synthesis of CA in the yeast Schizosaccharomyces pombe without the need for linoleic acid (LA) supplementation. The highest CA titer and achieved accumulation were 4.4 mg/L and 3.7 mg/g of DCW in PgFAD2 + CoFADX-2 recombinant strain cultivated at 16 °C for 72 h, respectively. Further analyses revealed the accumulation of CA in free fatty acids (FFA) and downregulation of the lcf1 gene encoding long-chain fatty acyl-CoA synthetase. The developed recombinant yeast system represents an important tool for the future identification of the essential components of the channeling machinery to produce CA as a high-value conjugated fatty acid at an industrial level.
Collapse
Affiliation(s)
- Martina Garaiova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84005, Slovakia
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84005, Slovakia
| |
Collapse
|
5
|
Chatterjee M, Patel JB, Stober ST, Zhang X. Heterologous Synthesis and Secretion of Ricinoleic Acid in Starmerella bombicola with Sophorolipid as an Intermediate. ACS Synth Biol 2022; 11:1178-1185. [PMID: 35157794 DOI: 10.1021/acssynbio.1c00457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ricinoleic acid (RA) is a long-chain hydroxy fatty acid produced from castor bean that is used in the manufacturing of a variety of industrial products. The demand for RA keeps increasing due to its broad applications. However, due to the presence of a potent toxin ricin, the native oilseed plant is not an ideal source for hydroxy fatty acid production. Although there have been significant efforts on engineering different microorganisms for heterologous production of RA, all had very limited success. The main reason for this is the exhibited toxicity of the intracellularly accumulated RA. To avoid this issue, we genetically modified a Starmerella bombicola strain by engineering its native sophorolipid production pathway to direct the synthesized RA bound with sophorolipid to be secreted out of the cell, followed by acid hydrolysis to recover RA. The engineered S. bombicola strain expressing the heterologous codon-optimized oleate hydroxylase-encoding gene from ergot fungus Claviceps purpurea resulted in a record production titer of RA at about 2.96 g/L. Thus, this work highlights a new strategy to produce a high level of hydroxy fatty acids in engineered yeast through a sophorolipid intermediate, enabling a new biocatalysis platform for the future.
Collapse
Affiliation(s)
- Mohor Chatterjee
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801, United States
| | - Jay B. Patel
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801, United States
| | - Spencer T. Stober
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801, United States
| | - Xiaozhou Zhang
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801, United States
| |
Collapse
|
6
|
Szczepańska P, Hapeta P, Lazar Z. Advances in production of high-value lipids by oleaginous yeasts. Crit Rev Biotechnol 2021; 42:1-22. [PMID: 34000935 DOI: 10.1080/07388551.2021.1922353] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The global market for high-value fatty acids production, mainly omega-3/6, hydroxy fatty-acids, waxes and their derivatives, has seen strong development in the last decade. The reason for this growth was the increasing utilization of these lipids as significant ingredients for cosmetics, food and the oleochemical industries. The large demand for these compounds resulted in a greater scientific interest in research focused on alternative sources of oil production - among which microorganisms attracted the most attention. Microbial oil production offers the possibility to engineer the pathways and store lipids enriched with the desired fatty acids. Moreover, costly chemical steps are avoided and direct commercial use of these fatty acids is available. Among all microorganisms, the oleaginous yeasts have become the most promising hosts for lipid production - their efficient lipogenesis, ability to use various (often highly affordable) carbon sources, feasible large-scale cultivations and wide range of available genetic engineering tools turns them into powerful micro-factories. This review is an in-depth description of the recent developments in the engineering of the lipid biosynthetic pathway with oleaginous yeasts. The different classes of valuable lipid compounds with their derivatives are described and their importance for human health and industry is presented. The emphasis is also placed on the optimization of culture conditions in order to improve the yield and titer of these valuable compounds. Furthermore, the important economic aspects of the current microbial oil production are discussed.
Collapse
Affiliation(s)
- Patrycja Szczepańska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Piotr Hapeta
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
7
|
Hapala I, Griac P, Holic R. Metabolism of Storage Lipids and the Role of Lipid Droplets in the Yeast Schizosaccharomyces pombe. Lipids 2020; 55:513-535. [PMID: 32930427 DOI: 10.1002/lipd.12275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Storage lipids, triacylglycerols (TAG), and steryl esters (SE), are predominant constituents of lipid droplets (LD) in fungi. In several yeast species, metabolism of TAG and SE is linked to various cellular processes, including cell division, sporulation, apoptosis, response to stress, and lipotoxicity. In addition, TAG are an important source for the generation of value-added lipids for industrial and biomedical applications. The fission yeast Schizosaccharomyces pombe is a widely used unicellular eukaryotic model organism. It is a powerful tractable system used to study various aspects of eukaryotic cellular and molecular biology. However, the knowledge of S. pombe neutral lipids metabolism is quite limited. In this review, we summarize and discuss the current knowledge of the homeostasis of storage lipids and of the role of LD in the fission yeast S. pombe with the aim to stimulate research of lipid metabolism and its connection with other essential cellular processes. We also discuss the advantages and disadvantages of fission yeast in lipid biotechnology and recent achievements in the use of S. pombe in the biotechnological production of valuable lipid compounds.
Collapse
Affiliation(s)
- Ivan Hapala
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Peter Griac
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| |
Collapse
|
8
|
Holič R, Pokorná L, Griač P. Metabolism of phospholipids in the yeast
Schizosaccharomyces pombe. Yeast 2019; 37:73-92. [DOI: 10.1002/yea.3451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Affiliation(s)
- Roman Holič
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| | - Lucia Pokorná
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| | - Peter Griač
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| |
Collapse
|
9
|
Bioactivity and biotechnological production of punicic acid. Appl Microbiol Biotechnol 2018; 102:3537-3549. [DOI: 10.1007/s00253-018-8883-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 02/01/2023]
|
10
|
Garaiova M, Mietkiewska E, Weselake RJ, Holic R. Metabolic engineering of Schizosaccharomyces pombe to produce punicic acid, a conjugated fatty acid with nutraceutic properties. Appl Microbiol Biotechnol 2017; 101:7913-7922. [DOI: 10.1007/s00253-017-8498-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/09/2017] [Accepted: 08/23/2017] [Indexed: 02/01/2023]
|
11
|
Lee SQE, Tan TS, Kawamukai M, Chen ES. Cellular factories for coenzyme Q 10 production. Microb Cell Fact 2017; 16:39. [PMID: 28253886 PMCID: PMC5335738 DOI: 10.1186/s12934-017-0646-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/10/2017] [Indexed: 04/20/2023] Open
Abstract
Coenzyme Q10 (CoQ10), a benzoquinone present in most organisms, plays an important role in the electron-transport chain, and its deficiency is associated with various neuropathies and muscular disorders. CoQ10 is the only lipid-soluble antioxidant found in humans, and for this, it is gaining popularity in the cosmetic and healthcare industries. To meet the growing demand for CoQ10, there has been considerable interest in ways to enhance its production, the most effective of which remains microbial fermentation. Previous attempts to increase CoQ10 production to an industrial scale have thus far conformed to the strategies used in typical metabolic engineering endeavors. However, the emergence of new tools in the expanding field of synthetic biology has provided a suite of possibilities that extend beyond the traditional modes of metabolic engineering. In this review, we cover the various strategies currently undertaken to upscale CoQ10 production, and discuss some of the potential novel areas for future research.
Collapse
Affiliation(s)
- Sean Qiu En Lee
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Tsu Soo Tan
- School of Chemical & Life Sciences, Nanyang Polytechnic, Singapore, Singapore
| | - Makoto Kawamukai
- Faculty of Life and Environmental Science, Shimane University, Matsue, 690-8504, Japan
| | - Ee Sin Chen
- Department of Biochemistry, National University of Singapore, Singapore, Singapore. .,National University Health System (NUHS), Singapore, Singapore. .,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
12
|
Lambie SC, Kretschmer M, Croll D, Haslam TM, Kunst L, Klose J, Kronstad JW. The putative phospholipase Lip2 counteracts oxidative damage and influences the virulence of Ustilago maydis. MOLECULAR PLANT PATHOLOGY 2017; 18:210-221. [PMID: 26950180 PMCID: PMC6638309 DOI: 10.1111/mpp.12391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Ustilago maydis is an obligate biotrophic fungal pathogen which causes common smut disease of corn. To proliferate in host tissue, U. maydis must gain access to nutrients and overcome plant defence responses, such as the production of reactive oxygen species. The elucidation of the mechanisms by which U. maydis meets these challenges is critical for the development of strategies to combat smut disease. In this study, we focused on the contributions of phospholipases (PLs) to the pathogenesis of corn smut disease. We identified 11 genes encoding putative PLs and characterized the transcript levels for these genes in the fungus grown in culture and during infection of corn tissue. To assess the contributions of specific PLs, we focused on two genes, lip1 and lip2, which encode putative phospholipase A2 (PLA2 ) enzymes with similarity to platelet-activating factor acetylhydrolases. PLA2 enzymes are known to counteract oxidative damage to lipids in other organisms. Consistent with a role in the mitigation of oxidative damage, lip2 mutants were sensitive to oxidative stress provoked by hydrogen peroxide and by increased production of reactive oxygen species caused by inhibitors of mitochondrial functions. Importantly, mutants defective in lip2, but not lip1, were attenuated for virulence in corn seedlings. Finally, a comparative analysis of fatty acid and cardiolipin profiles in the wild-type strain and a lip2 mutant revealed differences consistent with a protective role for Lip2 in maintaining lipid homeostasis and mitochondrial health during proliferation in the hostile host environment.
Collapse
Affiliation(s)
- Scott C. Lambie
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouver V6T 1Z3BCCanada
- The Michael Smith Laboratories, University of British ColumbiaVancouver V6T 1Z4BCCanada
| | - Matthias Kretschmer
- The Michael Smith Laboratories, University of British ColumbiaVancouver V6T 1Z4BCCanada
| | - Daniel Croll
- The Michael Smith Laboratories, University of British ColumbiaVancouver V6T 1Z4BCCanada
- Present address:
Institute of Integrative Biology, ETH Zürich8092 ZürichSwitzerland
| | - Tegan M. Haslam
- Department of BotanyUniversity of British ColumbiaVancouver V6T 1Z4BCCanada
| | - Ljerka Kunst
- Department of BotanyUniversity of British ColumbiaVancouver V6T 1Z4BCCanada
| | - Jana Klose
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouver V6T 1Z3BCCanada
- The Michael Smith Laboratories, University of British ColumbiaVancouver V6T 1Z4BCCanada
| | - James W. Kronstad
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouver V6T 1Z3BCCanada
- The Michael Smith Laboratories, University of British ColumbiaVancouver V6T 1Z4BCCanada
| |
Collapse
|
13
|
Production of ricinoleic acid-containing monoestolide triacylglycerides in an oleaginous diatom, Chaetoceros gracilis. Sci Rep 2016; 6:36809. [PMID: 27830762 PMCID: PMC5103293 DOI: 10.1038/srep36809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/21/2016] [Indexed: 12/24/2022] Open
Abstract
Ricinoleic acid (RA), a hydroxyl fatty acid, is suitable for medical and industrial uses and is produced in high-oil-accumulating organisms such as castor bean and the ergot fungus Claviceps. We report here the efficient production of RA in a transgenic diatom Chaetoceros gracilis expressing the fatty acid hydroxylase gene (CpFAH) from Claviceps purpurea. In transgenic C. gracilis, RA content increased at low temperatures, reaching 2.2 pg/cell when cultured for 7 d at 15 °C, without affecting cell growth, and was enhanced (3.3 pg/cell) by the co-expression of a palmitic acid-specific elongase gene. Most of the accumulated RA was linked with monoestolide triacylglycerol (ME TAG), in which one RA molecule was esterified to the α position of the glycerol backbone and was further esterified at its hydroxy group with a fatty acid or second RA moiety, or 1-OH TAG, in which RA was esterified to the glycerol backbone. Overall, 80% of RA was accumulated as ME TAGs. Furthermore, exogenous RA-methyl ester suppressed the growth of wild-type diatoms in a dose-dependent manner and was rapidly converted to ME TAG. These results suggest that C. gracilis masks the hydroxyl group and accumulates RA as the less-toxic ME TAG.
Collapse
|
14
|
Ledesma-Amaro R, Nicaud JM. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog Lipid Res 2016; 61:40-50. [DOI: 10.1016/j.plipres.2015.12.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
15
|
Yazawa H, Ogiso M, Kumagai H, Uemura H. Suppression of ricinoleic acid toxicity by ptl2 overexpression in fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2014; 98:9325-37. [DOI: 10.1007/s00253-014-6006-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/30/2022]
|