1
|
Jain PM, Nellikka A, Kammara R. Understanding bacteriocin heterologous expression: A review. Int J Biol Macromol 2024; 277:133916. [PMID: 39033897 DOI: 10.1016/j.ijbiomac.2024.133916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Bacteriocins are a diverse group of ribosomally synthesised antimicrobial peptides/proteins that play an important role in self-defence. They are widely used as bio-preservatives and effective substitutes for disease eradication. They can be used in conjunction with or as an alternative to antibiotics to minimize the risk of resistance development. There are remarkably few reports indicating resistance to bacteriocins. Although there are many research reports that emphasise heterologous expression of bacteriocin, there are no convincing reports on the significant role that intrinsic and extrinsic factors play in overexpression. A coordinated and cooperative expression system works in concert with multiple genetic elements encoding native proteins, immunoproteins, exporters, transporters and enzymes involved in the post-translational modification of bacteriocins. The simplest way could be to utilise the existing E. coli expression system, which is conventional, widely used for heterologous expression and has been further extended for bacteriocin expression. In this article, we will review the intrinsic and extrinsic factors, advantages, disadvantages and major problems associated with bacteriocin overexpression in E. coli. Finally, we recommend the most effective strategies as well as numerous bacteriocin expression systems from E. coli, Lactococcus, Kluveromyces lactis, Saccharomyces cerevisiae and Pichia pastoris for their suitability for successful overexpression.
Collapse
Affiliation(s)
- Priyanshi M Jain
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India
| | - Anagha Nellikka
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India
| | - Rajagopal Kammara
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India.
| |
Collapse
|
2
|
Contente D, Díaz-Formoso L, Feito J, Hernández PE, Muñoz-Atienza E, Borrero J, Poeta P, Cintas LM. Genomic and Functional Evaluation of Two Lacticaseibacillus paracasei and Two Lactiplantibacillus plantarum Strains, Isolated from a Rearing Tank of Rotifers ( Brachionus plicatilis), as Probiotics for Aquaculture. Genes (Basel) 2024; 15:64. [PMID: 38254954 PMCID: PMC10815930 DOI: 10.3390/genes15010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Aquaculture plays a crucial role in meeting the increasing global demand for food and protein sources. However, its expansion is followed by increasing challenges, such as infectious disease outbreaks and antibiotic misuse. The present study focuses on the genetic and functional analyses of two Lacticaseibacillus paracasei (BF3 and RT4) and two Lactiplantibacillus plantarum (BF12 and WT12) strains isolated from a rotifer cultivation tank used for turbot larviculture. Whole-genome sequencing (WGS) and bioinformatics analyses confirmed their probiotic potential, the absence of transferable antibiotic resistance genes, and the absence of virulence and pathogenicity factors. Bacteriocin mining identified a gene cluster encoding six plantaricins, suggesting their role in the antimicrobial activity exerted by these strains. In vitro cell-free protein synthesis (IV-CFPS) analyses was used to evaluate the expression of the plantaricin genes. The in vitro-synthesized class IIb (two-peptide bacteriocins) plantaricin E/F (PlnE/F) exerted antimicrobial activity against three indicator microorganisms, including the well-known ichthyopathogen Lactococcus garvieae. Furthermore, MALDI-TOF MS on colonies detected the presence of a major peptide that matches the dimeric form of plantaricins E (PlnE) and F (PlnF). This study emphasizes the importance of genome sequencing and bioinformatic analysis for evaluating aquaculture probiotic candidates. Moreover, it provides valuable insights into their genetic features and antimicrobial mechanisms, paving the way for their application as probiotics in larviculture, which is a major bottleneck in aquaculture.
Collapse
Affiliation(s)
- Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Lara Díaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Pablo E. Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Juan Borrero
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| |
Collapse
|
3
|
Goel A, Halami PM. Structural and biosynthetic diversity of plantaricins from Lactiplantibacillus. Appl Microbiol Biotechnol 2023; 107:5635-5649. [PMID: 37493805 DOI: 10.1007/s00253-023-12692-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
Lactiplantibacillus plantarum (L. plantarum) produces an antimicrobial peptide known as plantaricin. Plantaricin-producing L. plantarum is of interest for its gut-friendly nature, wide range of sugar utilization, palatability, and probiotic attributes, making it a better candidate for the food industry. Numerous strains of plantaricin-producing L. plantarum have been isolated from different ecological niches and found to follow different mechanisms for plantaricin production. The mechanism of plantaricin production is sensitive to environmental factors; therefore, any alteration in the optimum conditions can inhibit/halt bacteriocin production. To regain the lost or hidden plantaricin-producing character of the L. plantarum strains under ideal laboratory conditions, it is essential to understand the mechanism of plantaricin production. Previously, discrete information on various mechanisms of plantaricin production has been elaborated. However, based on the literature analysis, we observed that a systematic classification of plantaricins produced by L. plantarum is not explored. Hence, we aim to collect information about rapidly emerging plantaricins and distribute them among the different classes of bacteriocin, followed by classifying them based on different mechanisms of plantaricin production. This may help scaleup the bacteriocin production at industrial levels, which is otherwise challenging to achieve. This will also help the reader understand plantaricins and their mechanism of plantaricin production to a deeper extent and to characterize/reproduce the peptide where plantaricin production is a hidden character. KEY POINTS: • L. plantarum produces the antimicrobial compound plantaricin. • L. plantarum has different regulatory operons which control plantaricin production. • Based on the regulatory operon, the mechanism of plantaricin production is different.
Collapse
Affiliation(s)
- Aditi Goel
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India
| | - Prakash Motiram Halami
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India.
| |
Collapse
|
4
|
Class II two-peptide lanthipeptide proteases: exploring LicTP for biotechnological applications. Appl Microbiol Biotechnol 2023; 107:1687-1696. [PMID: 36763118 PMCID: PMC10006061 DOI: 10.1007/s00253-023-12388-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/23/2022] [Accepted: 01/15/2023] [Indexed: 02/11/2023]
Abstract
The enzymatic machinery involved in the biosynthesis of lantibiotic is an untapped source of proteases with different specificities. Lanthipeptide biosynthesis requires proteolysis of specific target sequences by known proteases, which are encoded by contiguous genes. Herein, the activity of lichenicidin A2 (LicA2) trimming proteases (LicP and LicT) was investigated in vivo. Firstly, the impact of some residues and the size of the peptide were evaluated. Then followed trials in which LicA2 leader was evaluated as a tag to direct production and secretion of other relevant peptides. Our results show that a negatively charged residue (preferably Glu) at cleavage site is important for LicP efficacy. Some mutations of the lichenicidin hexapeptide such as Val-4Ala, Asp-5Ala, Asn-6Ser, and the alteration of GG-motif to GA resulted in higher processing rates, indicating the possibility of improved lichenicidin production in Escherichia coli. More importantly, insulin A, amylin (non-lanthipeptides), and epidermin were produced and secreted to E. coli supernatant, when fused to the LicA2 leader peptide. This work aids in clarifying the activity of lantibiotic-related transporters and proteases and to evaluate their possible application in industrial processes of relevant compounds, taking advantage of the potential of microorganisms as biofactories. KEY POINTS: • LicM2 correct activity implies a negatively charged residue at position -1. • Hexapeptide mutations can increase the amount of fully processed Bliβ. • LicA2 leader peptide directs LicTP cleavage and secretion of other peptides.
Collapse
|
5
|
Zhao D, Wang Q, Meng F, Lu F, Bie X, Lu Z, Lu Y. TetR-Type Regulator Lp_2642 Positively Regulates Plantaricin EF Production Based on Genome-Wide Transcriptome Sequencing of Lactiplantibacillus plantarum 163. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4362-4372. [PMID: 35311254 DOI: 10.1021/acs.jafc.2c00206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Whole-genome and transcriptome sequences of Lactiplantibacillus plantarum 163 are provided. There was one circular chromosome and four circular plasmids, with sizes of 3,131,367; 56,674; 49,140; 43,628; and 36,387 bp, respectively, in L. plantarum 163. The regulator Lp_2642 was selected from the genome data, the overexpression of which increased the transcriptional levels of related genes in plantaricin EF biosynthesis and enhanced plantaricin EF production. Its production was 17.30 mg/L in 163 (Lp_2642), which was 1.29-fold higher than that of the original strain. The regulation mechanism demonstrated that Lp_2642 can bind to three sites of plnA promoter, which enhances its transcription and expression, thereby increasing plantaricin EF production. Amino acids Asn-100, Asn-64, and Thr-69 may play a key role in the binding of Lp_2642. These results provide a novel strategy for mass production of plantaricin EF, which facilitates its large-scale production and application in the agriculture and food industries as a preservative.
Collapse
Affiliation(s)
- Deyin Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingjian Lu
- College of Food Science & Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
6
|
Maltose effective improving production and regulatory biosynthesis of plantaricin EF in Lactobacillus plantarum 163. Appl Microbiol Biotechnol 2021; 105:2713-2723. [PMID: 33710357 DOI: 10.1007/s00253-021-11218-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
Plantaricin EF, a kind of natural antibacterial substance, has shown inhibitory effect on most pathogen and spoilage microorganisms, which possessed great potential in food preservation. However, the lower production of plantaricin EF has limited its large-scale production and application. In this study, the effect of maltose on plantaricin EF production and its regulation mechanism in Lactobacillus plantarum 163 were investigated. Maltose significantly improved the biomass and plantaricin EF production, which increased by 3.35 and 3.99 times comparing to the control without maltose, respectively. The maximum production of plantaricin E and F in fed-batch fermentation were 10.55 mg/L and 22.94 mg/L, respectively. Besides, qPCR results showed that maltose remarkably improved transcription of plnA, plnB, plnD, plnE, plnF, plnG1 and plnH, and heighten transcription of lamR, lamK, hpk6 and rrp6. These results provided an effective method to enhance plantaricin EF production and revealed a possible regulatory mechanism from transcriptome results that hpk6, rrp6, lamK and lamR were relative to plantaricin EF production. Genes, hpk6 and rrp6, promote transcription of plnG1, whereas lamK and lamR enhance transcription of plnA, plnB and plnD, which increased plantaricin EF production. KEYPOINTS: • Maltose was proved to be effective in promoting the biosynthesis of plantaricin EF. • Maltose promoted the transcription of biosynthesis and secretion genes of plantaricin EF. • Up-regulation of genes lamR, lamK, hpk6 and rrp6 heightened the plantaricin EF production.
Collapse
|
7
|
Efficacy, toxicity study and antioxidant properties of plantaricin E and F recombinants against enteropathogenic Escherichia coli K1.1 (EPEC K1.1). Mol Biol Rep 2019; 46:6501-6512. [PMID: 31583564 DOI: 10.1007/s11033-019-05096-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/22/2019] [Indexed: 10/25/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is one of the resistance bacteria towards antibiotics and have been raising problem during treatments. Therefore, a new antibiotic candidate is required. Plantaricin E and F recombinant have been successfully produced by a GRAS host Lactococcus lactis. This study was aimed to evaluate the efficacy and toxicity of plantaricin E and F recombinant against EPEC K1.1 infection by in vivo assay. The production of plantaricin E and F recombinants from Lactococcus lactis was conducted and encapsulated. The in vivo study was carried out by inoculating the mice perorally with EPEC K1.1 for 7 days then treated with 100, 250, and 500 mg/kg body weight/day of recombinant plantaricin E and F for another 7 days. The toxicity assay were observed in ddY mice using various concentrations of treatment (50, 100, 1000, and 5000 mg/kg/body weight) doses perorally for 48 h. The result showed that the plantaricin E and F recombinant were successfully produced in Lactococcus lactis expression host with 3.7 kDa and 3.8 kDa in size. The efficacy study revealed the optimal doses of plantaricin E and F recombinant against EPEC K1.1 infection was 250 mg/kgBW for plantaricin E and 500 mg/kgBW for plantaricin F. The plantarisin E and F recombinant treatment showed improvement in leukocyte, hematocrit, and hemoglobin levels as well in decreasing malondialdehyde (MDA) level. Observation of the intestine histopathology showed small amounts of mononuclear inflammatory cell infiltration than the other groups of treatment. The acute toxicity assay showed that there was no mortality observed during the assay, even after 5000 mg/kg body weight of plantarisin E and F recombinant treatment (LD50 > 5000 mg/KgBW). The hematological and biochemical observations showed normal levels in leukocytes, erythrocytes, hematocrit, hemoglobin, platelets, urea, creatinine, and alanine transaminase aspartate transaminase (SGOT and SGPT) while histopathological observation shows a picture of normal liver and kidney cells. This study confirmed the application of bacteriocin for further academic and industrial purposes as a non-toxic substance for food preservative and antibiotic candidate.
Collapse
|
8
|
Xu Y, Yang L, Li P, Gu Q. Heterologous expression of Class IIb bacteriocin Plantaricin JK in Lactococcus Lactis. Protein Expr Purif 2019; 159:10-16. [DOI: 10.1016/j.pep.2019.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
|
9
|
Liang Y, Kong Q, Yao Y, Xu S, Xie X. Fusion expression and anti-Aspergillus flavus activity of a novel inhibitory protein DN-AflR. Int J Food Microbiol 2018; 290:184-192. [PMID: 30347354 DOI: 10.1016/j.ijfoodmicro.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 02/06/2023]
Abstract
The regulatory gene (aflR) encodes AflR, a positive regulator of transcriptional pathway that activates aflatoxin biosynthesis. It has been demonstrated in our laboratory that L-Asp-L-Asn (DN) extracted from Bacillus megaterium inhibited the growth of Aspergillus flavus. We fused gene encoding DN with the gene encoding specific dinuclear zinc finger cluster protein of AflR, then fusion protein competed with the AflS-AflR complex for the AflR binding site and significantly improved anti-A. flavus activity (growth of A. flavus and biosynthesis of aflatoxin B1) of DN. The fusion gene dn-aflR was cloned into pET32a and recombinant plasmid was introduced into Escherichia coli BL21. The highest expression was observed after 10 h induction and fusion protein was purified by affinity chromatography column. Compared with DN, the novel fusion protein DN-AflR significantly inhibited the growth of A. flavus and biosynthesis of aflatoxin B1 (P < 0.05). This study promoted the use of competitive inhibition of fusion proteins to reduce the expression of regulatory genes in the biosynthetic pathway of aflatoxin. Moreover, it provided more supports for deep research and industrialization of such novel anti-A. flavus bio-inhibitors and biological control of microbial contamination.
Collapse
Affiliation(s)
- Yuan Liang
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Qing Kong
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.
| | - Yao Yao
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Shujing Xu
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Xiang Xie
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
10
|
Mustopa AZ, Mariyah S, Fatimah, Budiarti S, Murtiyaningsih H, Alfisyahrin WN. Construction, heterologous expression, partial purification, and in vitro cytotoxicity of the recombinant plantaricin E produced by Lactococcus lactis against Enteropathogenic Escherichia coli K.1.1 and human cervical carcinoma (HeLa) cells. Mol Biol Rep 2018; 45:1235-1244. [PMID: 30066296 DOI: 10.1007/s11033-018-4277-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
Lactobacillus plantarum produces bacteriocin called plantaricin that can kill or inhibit other bacteria. Plantaricin E (Pln E), a recombinant bacteriocin, has been successfully constructed and produced by a GRAS host, Lactococcus lactis. A polymerase chain reaction (PCR) overlapping technique has been used to construct a ligation of signal peptide gene, Pln A and bacteriocin encoding gene, Pln E. Furthermore, the fusion fragment were cloned into pNZ8148 vector and transformed into L. lactis NZ3900. Molecular expression study shows that recombinant L. lactis NZ3900 is able to express the mature pln E at transcription level with size of 168 bp. Plantaricin E is purified by ammonium sulphate precipitation followed by gel filtration chromatography. Purified fractions were proven to be active against Enteropathogenic Escherichia coli K.1.1. The other fractions of Pln E also have antibacterial activity against several Gram positive and Gram negative bacteria. Purified recombinant plantaricin E is 3.7 kDa in size. The cytotoxicity assay shows purified Pln E inhibits 46.949 ± 3.338% of HeLa cell lines on 10 ppm dose whilst the metabolite inhibits 53.487 ± 2.957% of HeLa cell line on 100 ppm dose. The IC50 calculation of Pln E metabolite is 107.453 ppm, while the purified protein is 11.613 ppm.
Collapse
Affiliation(s)
- Apon Zaenal Mustopa
- Research Center for Biotechnology, Indonesia Institute of Science (LIPI), Raya Bogor Street Km. 46, Cibinong, Bogor, West Java, 16911, Indonesia.
| | - Siti Mariyah
- School of Biotechnology, Bogor Agricultural University, Bogor, Indonesia
| | - Fatimah
- Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD), Cimanggu, Bogor, Indonesia
| | - Sri Budiarti
- School of Biotechnology, Bogor Agricultural University, Bogor, Indonesia.,Research Center for Bioresources and Biotechnology, Bogor Agricultural University, Bogor, Indonesia
| | - Hidayah Murtiyaningsih
- Research Center for Biotechnology, Indonesia Institute of Science (LIPI), Raya Bogor Street Km. 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Wida Nurul Alfisyahrin
- Research Center for Biotechnology, Indonesia Institute of Science (LIPI), Raya Bogor Street Km. 46, Cibinong, Bogor, West Java, 16911, Indonesia
| |
Collapse
|
11
|
Mesa-Pereira B, Rea MC, Cotter PD, Hill C, Ross RP. Heterologous Expression of Biopreservative Bacteriocins With a View to Low Cost Production. Front Microbiol 2018; 9:1654. [PMID: 30093889 PMCID: PMC6070625 DOI: 10.3389/fmicb.2018.01654] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/02/2018] [Indexed: 02/04/2023] Open
Abstract
Bacteriocins, a heterogenous group of antibacterial ribosomally synthesized peptides, have potential as bio-preservatives in in a wide range of foods and as future therapeutics for the inhibition of antibiotic-resistant bacteria. While many bacteriocins have been characterized, several factors limit their production in large quantities, a requirement to make them commercially viable for food or pharma applications. The identification of new bacteriocins by database mining has been promising, but their potential is difficult to evaluate in the absence of suitable expression systems. E. coli has been used as a heterologous host to produce recombinant proteins for decades and has an extensive set of expression vectors and strains available. Here, we review the different expression systems for bacteriocin production using this host and identify the most important features to guarantee successful production of a range of bacteriocins.
Collapse
Affiliation(s)
- Beatriz Mesa-Pereira
- Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,College of Science Engineering and Food Science, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Antimicrobial activity and preliminary mode of action of PlnEF expressed in Escherichia coli against Staphylococci. Protein Expr Purif 2018; 143:28-33. [DOI: 10.1016/j.pep.2017.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 11/24/2022]
|
13
|
Meng F, Zhu X, Lu F, Bie X, Lu Z. Functional Analysis of Plantaricin E and Its Mutant by Heterologous Expression in Escherichia coli. Appl Biochem Biotechnol 2016; 182:311-323. [PMID: 27854041 DOI: 10.1007/s12010-016-2328-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
Abstract
Plantaricins are a group of ribosomally synthesized antimicrobial peptides in Lactobacillus plantarum that exert antimicrobial activities against some foodborne pathogens. In this study, we observed that plantaricin E in L. plantarum 163 was missing 19 amino acids (plnE mutant amino acid sequence: FNRGGYNFGKSVRH, plnE amino acid sequence: FNRGGYNFGKSVRHVVDAIGSVAGIRGILKSIR). In order to study the effects of mutant plnE, plnE mutant genes with and without the signal peptide were cloned from the L. plantarum 163 genome, linked to the pET32a vector, and expressed via a fusion protein (thioredoxin) in Escherichia coli BL21 (DE3). All target proteins were purified using Ni-NTA, SP FF columns, and RP-HPLC. The purified proteins were stable in an acidic environment and at temperatures below 80 °C, but they were easily degraded under alkaline conditions and by protease treatment. They showed antimicrobial activity against gram-positive bacteria such as Micrococcus luteus, Staphylococcus epidermidis, Lactococcus lactis, Lactobacillus paracasei, and Listeria innocua. In addition, SP-plnE and PlnE exerted stronger activity than nisin. The signal peptide had a positive effect on the activities of PlnE and PlnEm. Thus, these purified proteins may have potential applications in the food industry to control foodborne pathogens.
Collapse
Affiliation(s)
- Fanqiang Meng
- College of Food Science and Technology, Nanjing Agriculture University, 1 Weigang, Nanjing, 210095, China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agriculture University, 1 Weigang, Nanjing, 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agriculture University, 1 Weigang, Nanjing, 210095, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agriculture University, 1 Weigang, Nanjing, 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agriculture University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
14
|
Jiang H, Li P, Gu Q. Heterologous expression and purification of plantaricin NC8, a two-peptide bacteriocin against Salmonella spp. from Lactobacillus plantarum ZJ316. Protein Expr Purif 2016; 127:28-34. [DOI: 10.1016/j.pep.2016.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 01/24/2023]
|
15
|
Pal G, Srivastava S. Scaling Up the Production of Recombinant Antimicrobial Plantaricin E from a Heterologous Host, Escherichia coli. Probiotics Antimicrob Proteins 2016; 7:216-21. [PMID: 26044056 DOI: 10.1007/s12602-015-9193-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enhanced production of heterologously expressed plantaricin (plnE) from Escherichia coli BL21 (DE3) was achieved from a small- to large-scale batch culture. Starting from a 15-ml shake-flask culture grown in Luria-Bertani (LB) broth, the protein expression could be scaled up using 50 ml, 100 ml, 1 l, and 2 l batch culture. Using similar condition, plantaricin E (PlnE) was successfully expressed in a 30-l stirred fermenter. The protein was expressed as TRX-(His)6-fusion protein and separated by Ni(2+) affinity chromatography. Growth in two complex media, LB and Terrific broth (TB), was optimized and compared for the production of PlnE, which was higher in LB in comparison with that of TB. In the fermenter, 140 and 180 mg of PlnE could be produced from 12 l of culture volume at 30 and 25 °C, respectively. The yield of heterologously purified PlnE was found to be 1.2-1.5%, which was much higher in comparison with the plantaricins produced from the native strain of Lactobacillus plantarum (0.3-0.7%). Overproduction of PlnE with the help of heterologous expression can overcome the constraint of the low yield from producer strain and provides an easy and low-cost strategy for large-scale production.
Collapse
Affiliation(s)
- Gargi Pal
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110021, India
| | | |
Collapse
|
16
|
Meng F, Zhao H, Zhang C, Lu F, Bie X, Lu Z. Expression of a novel bacteriocin—the plantaricin Pln1—in Escherichia coli and its functional analysis. Protein Expr Purif 2016; 119:85-93. [DOI: 10.1016/j.pep.2015.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
|
17
|
Soluble expression, purification and functional characterization of a coil peptide composed of a positively charged and hydrophobic motif. Amino Acids 2015; 48:567-77. [PMID: 26459292 DOI: 10.1007/s00726-015-2113-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
A de novo heterodimeric coiled-coil system formed by the association of two synthetic peptides, the Ecoil and Kcoil, has been previously designed and proven to be an excellent and versatile tool for various biotechnology applications. However, based on the challenges encountered during its chemical synthesis, the Kcoil peptide has been designated as a "difficult peptide". In this study, we explore the expression of the Kcoil peptide by a bacterial system as well as its subsequent purification. The maximum expression level was observed when the peptide was fused to thioredoxin and the optimized purification process consisted of three chromatographic steps: immobilized-metal affinity chromatography followed by cation-exchange chromatography and, finally, a reverse-phase high-performance liquid chromatography. This entire process led to a final volumetric production yield of 1.5 mg of pure Kcoil peptide per liter of bacterial culture, which represents a significant step towards the cost-effective production and application of coiled-coil motifs. Our results thus demonstrate for the first time that bacterial production is a viable alternative to the chemical synthesis of de novo designed coil peptides.
Collapse
|
18
|
Lages AC, Mustopa AZ, Sukmarini L. Cloning and Expression of Plantaricin W Produced by Lactobacillus plantarum U10 Isolate from "Tempoyak" Indonesian Fermented Food as Immunity Protein in Lactococcus lactis. Appl Biochem Biotechnol 2015; 177:909-22. [PMID: 26276444 DOI: 10.1007/s12010-015-1786-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/27/2015] [Indexed: 11/26/2022]
Abstract
Plantaricins, one of bacteriocin produced by Lactobacillus plantarum, are already known to have activities against several pathogenic bacterium. L. plantarum U10 isolated from "tempoyak," an Indonesian fermented food, produced one kind of plantaricin designated as plantaricin W (plnW). The plnW is suggested as a putative membrane location of protein and has similar conserved motif which is important as immunity to bacteriocin itself. Thus, due to study about this plantaricin, several constructs have been cloned and protein was analyzed in Lactococcus lactis. In this study, plnW gene was successfully cloned into vector NICE system pNZ8148 and created the transformant named L. lactis NZ3900 pNZ8148-WU10. PlnW protein was 25.3 kDa in size. The concentration of expressed protein was significantly increased by 10 ng/mL nisin induction. Furthermore, PlnW exhibited protease activity with value of 2.22 ± 0.05 U/mL and specific activity about 1.65 ± 0.03 U/mg protein with 50 ng/mL nisin induction. Immunity study showed that the PlnW had immunity activity especially against plantaricin and rendered L. lactis recombinant an immunity broadly to other bacteriocins such as pediocin, fermentcin, and acidocin.
Collapse
Affiliation(s)
- Aksar Chair Lages
- Research Center for Biotechnology, Indonesian Institute of Science (LIPI), Cibinong, Bogor, 16911, West Java, Indonesia
- School of Biotechnology, Bogor Agricultural University, Darmaga, Bogor, 16680, West Java, Indonesia
| | - Apon Zaenal Mustopa
- Research Center for Biotechnology, Indonesian Institute of Science (LIPI), Cibinong, Bogor, 16911, West Java, Indonesia.
| | - Linda Sukmarini
- Research Center for Biotechnology, Indonesian Institute of Science (LIPI), Cibinong, Bogor, 16911, West Java, Indonesia
| |
Collapse
|
19
|
Pal G, Srivastava S. In vitro activity of a recombinant ABC transporter protein in the processing of plantaricin E pre-peptide. Arch Microbiol 2015; 197:843-9. [PMID: 26018217 DOI: 10.1007/s00203-015-1120-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 05/16/2015] [Accepted: 05/19/2015] [Indexed: 11/27/2022]
Abstract
Most bacteriocins of lactic acid bacteria (LAB) are initially synthesized as pre-peptides with an N-terminal extension (leader peptides). Generally, the precursor peptides containing a double-glycine-type leader are processed by a dedicated ATP-binding cassette (ABC) transporter. The ABC transporter and an accessory protein lead to the cleavage of inactive pre-peptide with the concomitant export of the mature peptide across the cytoplasmic membrane. Plantaricins E, F, J, and K belong to class IIb 2-peptide bacteriocins and are synthesized as pre-peptides containing N-terminal G-G leader peptide. In this study, the heterologous expression, purification, and characterization of PlnE pre-peptide, ABC transporter (PlnG), and accessory protein (PlnH) from Lactobacillus plantarum LR/14 in Escherichia coli BL21 (DE3) strain were reported. An in vitro assay was conducted with the inactive PlnE pre-peptide, which after cleavage by the addition of ABC transporter protein exhibited antimicrobial activity against some LAB species. The activity of cleaved pre-peptide was comparable to the activity of mature peptide. Accessory protein was also heterologously expressed and purified; however, no effect on processing activity was detected by the addition of the accessory protein, which suggests that accessory protein is not involved in cleavage, but it might help in the transport of mature plantaricins across the membrane.
Collapse
Affiliation(s)
- Gargi Pal
- Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India
| | | |
Collapse
|
20
|
de Castro AP, Fernandes GDR, Franco OL. Insights into novel antimicrobial compounds and antibiotic resistance genes from soil metagenomes. Front Microbiol 2014; 5:489. [PMID: 25278933 PMCID: PMC4166954 DOI: 10.3389/fmicb.2014.00489] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/01/2014] [Indexed: 11/13/2022] Open
Abstract
In recent years a major worldwide problem has arisen with regard to infectious diseases caused by resistant bacteria. Resistant pathogens are related to high mortality and also to enormous healthcare costs. In this field, cultured microorganisms have been commonly focused in attempts to isolate antibiotic resistance genes or to identify antimicrobial compounds. Although this strategy has been successful in many cases, most of the microbial diversity and related antimicrobial molecules have been completely lost. As an alternative, metagenomics has been used as a reliable approach to reveal the prospective reservoir of antimicrobial compounds and antibiotic resistance genes in the uncultured microbial community that inhabits a number of environments. In this context, this review will focus on resistance genes as well as on novel antibiotics revealed by a metagenomics approach from the soil environment. Biotechnology prospects are also discussed, opening new frontiers for antibiotic development.
Collapse
Affiliation(s)
- Alinne P de Castro
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Laboratórios Inova, Campo Grande, Brazil
| | - Gabriel da R Fernandes
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Analises Proteomicas e Bioquimicas, Universidade Católica de Brasília Brasilia, Brazil
| | - Octávio L Franco
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Laboratórios Inova, Campo Grande, Brazil ; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Analises Proteomicas e Bioquimicas, Universidade Católica de Brasília Brasilia, Brazil
| |
Collapse
|
21
|
Pal G, Srivastava S. Inhibitory effect of plantaricin peptides (Pln E/F and J/K) against Escherichia coli. World J Microbiol Biotechnol 2014; 30:2829-37. [DOI: 10.1007/s11274-014-1708-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/21/2014] [Indexed: 01/19/2023]
|