1
|
Zhang Y, Liu B, Wu W, Liu H, Wang W. Propanol as electron donor for efficient odd-chain carboxylate production by chain elongation with reactor microbiomes. J Environ Sci (China) 2025; 156:849-858. [PMID: 40412981 DOI: 10.1016/j.jes.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 05/27/2025]
Abstract
Microbial consortia that catalyze chain elongation processes have been enriched using different selection strategies, for which the electron donor is an essential one. Propanol is an extraordinarily promising electron donor because it can be generated from renewable resources, including lignocellulosic biomass and protein wastes. Here, propanol was proven in detail to be an efficient electron donor, enhancing the production of odd medium-chain carboxylates during chain elongation. By exploring various electron acceptors, reactor conditions, and electron donor/electron acceptor mol ratios, our study highlights that acetate is the most suitable electron acceptor for the production of both odd- and even-chain carboxylates. The optimal conditions for propanol-based chain elongation were 30 °C and pH 6, achieving 82.8 % selectivity for odd-chain carboxylates. Another critical insight from our work is that a propanol/acetate mol ratio of 1:1 can minimize the inhibitory effect of propanol and maximize the yield of medium-chain carboxylates, with the highest concentration of n-heptanoate reaching 124.5 mmol C/L. This was further illustrated by 16S rRNA amplicon sequencing, which elucidated that the community composition and keystone species in a propanol-based reactor closely resembled that of the ethanol one. The dominant phylum of the propanol-based reactor, Firmicutes showed a significant positive correlation with the concentrations of n-caproate and n-valerate. Additionally, the co-occurrence of Clostridium sensu stricto 12 and Oscillibacter, known as typical chain elongators, was identified within the propanol-based reactor. These findings enhance our understanding of propanol-based chain elongation, offer guiding principles for reactor microbiota assembly, and support efficient odd medium-chain carboxylate production.
Collapse
Affiliation(s)
- Yanshen Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wanling Wu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haopeng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wen Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
2
|
Zhang B, Guo P, Sun X, Shang Y, Luo Y, Wu H. Enhancement of lactate fraction in poly(lactate-co-3-hydroxybutyrate) biosynthesized by metabolically engineered E. coli. BIORESOUR BIOPROCESS 2024; 11:88. [PMID: 39297980 PMCID: PMC11413402 DOI: 10.1186/s40643-024-00803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)] is a high-molecular-weight biomaterial with excellent biocompatibility and biodegradability. In this study, the properties of P(LA-co-3HB) were examined and found to be affected by its lactate fraction. The efficiency of lactyl-CoA biosynthesis from intracellular lactate significantly affected the microbial synthesis of P(LA-co-3HB). Two CoA transferases from Anaerotignum lactatifermentans and Bacillota bacterium were selected for use in copolymer biosynthesis from 11 candidates. We found that cotAl enhanced the lactate fraction by 31.56% compared to that of the frequently used modified form of propionyl-CoA transferase from Anaerotignum propionicum. In addition, utilizing xylose as a favorable carbon source and blocking the lactate degradation pathway further enhanced the lactate fraction to 30.42 mol% and 52.84 mol%, respectively. Furthermore, when a 5 L bioreactor was used for fermentation utilizing xylose as a carbon source, the engineered strain produced 60.60 wt% P(46.40 mol% LA-co-3HB), which was similar to the results of our flask experiments. Our results indicate that the application of new CoA transferases has great potential for the biosynthesis of other lactate-based copolymers.
Collapse
Affiliation(s)
- Binghao Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Pengye Guo
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xinye Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yanzhe Shang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
- Key Laboratory of Bio-based Material Engineering of China, National Light Industry Council, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
3
|
Ishihara S, Orita I, Matsumoto K, Fukui T. (R/S)-lactate/2-hydroxybutyrate dehydrogenases in and biosynthesis of block copolyesters by Ralstonia eutropha. Appl Microbiol Biotechnol 2023; 107:7557-7569. [PMID: 37773219 PMCID: PMC10656315 DOI: 10.1007/s00253-023-12797-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
Bacterial polyhydroxyalkanoates (PHAs) are promising bio-based biodegradable polyesters. It was recently reported that novel PHA block copolymers composed of (R)-3-hydroxybutyrate (3HB) and (R)-2-hydroxybutyrate (2HB) were synthesized by Escherichia coli expressing PhaCAR, a chimeric enzyme of PHA synthases derived from Aeromonas caviae and Ralstonia eutropha. In this study, the sequence-regulating PhaCAR was applied in the natural PHA-producing bacterium, R. eutropha. During the investigation, (R/S)-2HB was found to exhibit strong growth inhibitory effects on the cells of R. eutropha. This was probably due to formation of excess 2-ketobutyrate (2KB) from (R/S)-2HB and the consequent L-valine depletion caused by dominant L-isoleucine synthesis attributed to the excess 2KB. Deletion analyses for genes of lactate dehydrogenase homologs identified cytochrome-dependent D-lactate dehydrogenase (Dld) and [Fe-S] protein-dependent L-lactate dehydrogenase as the enzymes responsible for sensitivity to (R)-2HB and (S)-2HB, respectively. The engineered R. eutropha strain (phaCAR+, ldhACd-hadACd+ encoding clostridial (R)-2-hydroxyisocaproate dehydrogenase and (R)-2-hydoroxyisocaproate CoA transferase, ∆dld) synthesized PHA containing 10 mol% of 2HB when cultivated on glucose with addition of sodium (RS)-2HB, and the 2HB composition in PHA increased up to 35 mol% by overexpression phaCAR. The solvent fractionation and NMR analyses showed that the resulting PHAs were most likely to be block polymers consisting of P(3HB-co-3HV) and P(2HB) segments, suggesting that PhaCAR functions as the sequence-regulating PHA synthase independently from genetic and metabolic backgrounds of the host cell. KEY POINTS: (R/S)-2-hydroxubutyrates (2HB) caused l-valine deletion in Ralstonia eutropha (R)- and (S)-lactate/2HB dehydrogenases functional in R. eutropha were identified The engineered R. eutropha synthesized block copolymers of 2HB-containing polyhydroxyalkanoates on glucose and 2HB.
Collapse
Affiliation(s)
- Shizuru Ishihara
- School of Life Science and Technology, Tokyo Institute of Technology, B-37 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, B-37 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Ken'ichiro Matsumoto
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, 060-8628, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, B-37 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
4
|
Qin N, Li L, Wang Z, Shi S. Microbial production of odd-chain fatty acids. Biotechnol Bioeng 2023; 120:917-931. [PMID: 36522132 DOI: 10.1002/bit.28308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Odd-chain fatty acids (OcFAs) and their derivatives have attracted much attention due to their beneficial physiological effects and their potential to be alternatives to advanced fuels. However, cells naturally produce even-chain fatty acids (EcFAs) with negligible OcFAs. In the process of biosynthesis of fatty acids (FAs), the acetyl-CoA serves as the starter unit for EcFAs, and propionyl-CoA works as the starter unit for OcFAs. The lack of sufficient propionyl-CoA, the precursor, is usually regarded as the main restriction for large-scale bioproduction of OcFAs. In recent years, synthetic biology strategies have been used to modify several microorganisms to produce more propionyl-CoA that would enable an efficient biosynthesis of OcFAs. This review discusses several reported and potential metabolic pathways for propionyl-CoA biosynthesis, followed by advances in engineering several cell factories for OcFAs production. Finally, trends and challenges of synthetic biology driven OcFAs production are discussed.
Collapse
Affiliation(s)
- Ning Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lingyun Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zheng Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
5
|
He J, Shi H, Li X, Nie X, Yang Y, Li J, Wang J, Yao M, Tian B, Zhou J. A review on microbial synthesis of lactate-containing polyesters. World J Microbiol Biotechnol 2022; 38:198. [PMID: 35995888 DOI: 10.1007/s11274-022-03388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Degradable polylactic acids (PLA) have been widely used in agriculture, textile, medicine and degradable plastics industry, and can completely replace petroleum-based plastics in the future. At present, polylactic acid was chemically synthesized by ring-opening polymerisation or the direct polycondensation of lactic acid, which inevitably leads to chemical and heavy metal catalyst pollution. The current research focus has gradually shifted to the development of recombinant industrial strains for the efficiently production of lactate-containing polyesters from renewable resources. This review summarizes various explorations of metabolic pathway optimization and production cost control in the industrialization of lactate-containing polyesters bio-production. In particular, the effects of key enzymes, including CoA transferase, polyhydroxyalkanoate synthase, and their mutants, culture conditions, low-cost carbon sources, and recombinant strains on the yield and composition of lactate-containing polyesters are summarized and discussed. Future prospects and challenges for the industrialization of lactate-containing polyesters are also pointed out.
Collapse
Affiliation(s)
- Junyi He
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Hao Shi
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Xiangqian Li
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Xinling Nie
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Yuxiang Yang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Jing Li
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Jiahui Wang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Mengdie Yao
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Baoxia Tian
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Jia Zhou
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China. .,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.
| |
Collapse
|
6
|
Yesudhas AJR, Ganapathy Raman P, Thirumalai A, Saxena S, Subramanian R. Production of propionic acid through biotransformation of glucose and d-lactic acid by construction of synthetic acrylate pathway in metabolically engineered E. coli. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.2020760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Shuchi Saxena
- Centre for Biotechnology, Anna University, Chennai, India
| | | |
Collapse
|
7
|
McGregor C, Minton NP, Kovács K. Biosynthesis of Poly(3HB- co-3HP) with Variable Monomer Composition in Recombinant Cupriavidus necator H16. ACS Synth Biol 2021; 10:3343-3352. [PMID: 34762808 DOI: 10.1021/acssynbio.1c00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyhydroxyalkanoates are attractive alternatives to traditional plastics. However, although polyhydroxybutyrate (PHB) is produced in large quantities by Cupriavidus necator H16, its properties are far from ideal for the manufacture of plastic products. These properties may be improved through its coproduction with 3-hydroxypropionate (3HP), which leads to the formation of the copolymer poly(3-hydroxybutyrate-co-3-hydroxypropionate) (poly(3HB-co-3HP). To achieve this, a pathway was designed to enable C. necator H16 to convert β-alanine to 3HP. The initial low levels of incorporation of 3HP into the copolymer were overcome by the overproduction of the native propionyl-CoA transferase together with PHA synthase from Chromobacterium sp. USM2. Following optimization of 3HP incorporation into the copolymer, the molar fraction of 3HP could be controlled by cultivation in medium containing different concentrations of β-alanine. Between 0 and 80 mol % 3HP could be achieved. Further supplementation with 2 mM cysteine increased the maximum 3HP molar fraction to 89%. Additionally, the effect of deletions of the phaA and phaB1 genes of the phaCAB operon on 3HP molar fraction were investigated. A phaAB1 double knockout resulted in a copolymer containing 91 mol % 3HP without the need for cysteine supplementation.
Collapse
Affiliation(s)
- Callum McGregor
- BBSRC/EPSRC Synthetic Biology Research Centre, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Nigel P. Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Katalin Kovács
- BBSRC/EPSRC Synthetic Biology Research Centre, The University of Nottingham, Nottingham NG7 2RD, U.K
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
8
|
Huang S, Xue Y, Yu B, Wang L, Zhou C, Ma Y. A Review of the Recent Developments in the Bioproduction of Polylactic Acid and Its Precursors Optically Pure Lactic Acids. Molecules 2021; 26:molecules26216446. [PMID: 34770854 PMCID: PMC8587312 DOI: 10.3390/molecules26216446] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Lactic acid (LA) is an important organic acid with broad industrial applications. Considered as an environmentally friendly alternative to petroleum-based plastic with a wide range of applications, polylactic acid has generated a great deal of interest and therefore the demand for optically pure l- or d-lactic acid has increased accordingly. Microbial fermentation is the industrial route for LA production. LA bacteria and certain genetic engineering bacteria are widely used for LA production. Although some fungi, such as Saccharomyces cerevisiae, are not natural LA producers, they have recently received increased attention for LA production because of their acid tolerance. The main challenge for LA bioproduction is the high cost of substrates. The development of LA production from cost-effective biomasses is a potential solution to reduce the cost of LA production. This review examined and discussed recent progress in optically pure l-lactic acid and optically pure d-lactic acid fermentation. The utilization of inexpensive substrates is also focused on. Additionally, for PLA production, a complete biological process by one-step fermentation from renewable resources is also currently being developed by metabolically engineered bacteria. We also summarize the strategies and procedures for metabolically engineering microorganisms producing PLA. In addition, there exists some challenges to efficiently produce PLA, therefore strategies to overcome these challenges through metabolic engineering combined with enzyme engineering are also discussed.
Collapse
Affiliation(s)
- Shiyong Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.H.); (Y.X.); (Y.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.H.); (Y.X.); (Y.M.)
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Limin Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- Correspondence: (L.W.); (C.Z.)
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.H.); (Y.X.); (Y.M.)
- Correspondence: (L.W.); (C.Z.)
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.H.); (Y.X.); (Y.M.)
| |
Collapse
|
9
|
Bui TPN, Mannerås-Holm L, Puschmann R, Wu H, Troise AD, Nijsse B, Boeren S, Bäckhed F, Fiedler D, deVos WM. Conversion of dietary inositol into propionate and acetate by commensal Anaerostipes associates with host health. Nat Commun 2021; 12:4798. [PMID: 34376656 PMCID: PMC8355322 DOI: 10.1038/s41467-021-25081-w] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 07/19/2021] [Indexed: 12/19/2022] Open
Abstract
We describe the anaerobic conversion of inositol stereoisomers to propionate and acetate by the abundant intestinal genus Anaerostipes. A inositol pathway was elucidated by nuclear magnetic resonance using [13C]-inositols, mass spectrometry and proteogenomic analyses in A. rhamnosivorans, identifying 3-oxoacid CoA transferase as a key enzyme involved in both 3-oxopropionyl-CoA and propionate formation. This pathway also allowed conversion of phytate-derived inositol into propionate as shown with [13C]-phytate in fecal samples amended with A. rhamnosivorans. Metabolic and (meta)genomic analyses explained the adaptation of Anaerostipes spp. to inositol-containing substrates and identified a propionate-production gene cluster to be inversely associated with metabolic biomarkers in (pre)diabetes cohorts. Co-administration of myo-inositol with live A. rhamnosivorans in western-diet fed mice reduced fasting-glucose levels comparing to heat-killed A. rhamnosivorans after 6-weeks treatment. Altogether, these data suggest a potential beneficial role for intestinal Anaerostipes spp. in promoting host health.
Collapse
Affiliation(s)
- Thi Phuong Nam Bui
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
- Caelus Pharmaceuticals, Zegveld, The Netherlands.
| | - Louise Mannerås-Holm
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert Puschmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hao Wu
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Antonio Dario Troise
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, NA, Italy
| | - Bart Nijsse
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Willem M deVos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Nattermann M, Burgener S, Pfister P, Chou A, Schulz L, Lee SH, Paczia N, Zarzycki J, Gonzalez R, Erb TJ. Engineering a Highly Efficient Carboligase for Synthetic One-Carbon Metabolism. ACS Catal 2021; 11:5396-5404. [PMID: 34484855 PMCID: PMC8411744 DOI: 10.1021/acscatal.1c01237] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Indexed: 12/15/2022]
Abstract
![]()
One of the biggest
challenges to realize a circular carbon economy
is the synthesis of complex carbon compounds from one-carbon (C1)
building blocks. Since the natural solution space of C1–C1
condensations is limited to highly complex enzymes, the development
of more simple and robust biocatalysts may facilitate the engineering
of C1 assimilation routes. Thiamine diphosphate-dependent enzymes
harbor great potential for this task, due to their ability to create
C–C bonds. Here, we employed structure-guided iterative saturation
mutagenesis to convert oxalyl-CoA decarboxylase (OXC) from Methylobacterium extorquens into a glycolyl-CoA synthase
(GCS) that allows for the direct condensation of the two C1 units
formyl-CoA and formaldehyde. A quadruple variant MeOXC4 showed a 100 000-fold
switch between OXC and GCS activities, a 200-fold increase in the
GCS activity compared to the wild type, and formaldehyde affinity
that is comparable to natural formaldehyde-converting enzymes. Notably,
MeOCX4 outcompetes all other natural and engineered enzymes for C1–C1
condensations by more than 40-fold in catalytic efficiency and is
highly soluble in Escherichia coli.
In addition to the increased GCS activity, MeOXC4 showed up to 300-fold
higher activity than the wild type toward a broad range of carbonyl
acceptor substrates. When applied in vivo, MeOXC4 enables the production
of glycolate from formaldehyde, overcoming the current bottleneck
of C1–C1 condensation in whole-cell bioconversions and paving
the way toward synthetic C1 assimilation routes in vivo.
Collapse
Affiliation(s)
- Maren Nattermann
- Department of Biochemistry & Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Simon Burgener
- Department of Biochemistry & Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Pascal Pfister
- Department of Biochemistry & Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Alexander Chou
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Luca Schulz
- Department of Biochemistry & Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Seung Hwan Lee
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Nicole Paczia
- Department of Biochemistry & Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Jan Zarzycki
- Department of Biochemistry & Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Ramon Gonzalez
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Tobias J. Erb
- Department of Biochemistry & Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| |
Collapse
|
11
|
Ma C, Shi Y, Mu Q, Li R, Xue Y, Yu B. Unravelling the thioesterases responsible for propionate formation in engineered Pseudomonas putida KT2440. Microb Biotechnol 2021; 14:1237-1242. [PMID: 33739583 PMCID: PMC8085926 DOI: 10.1111/1751-7915.13804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/08/2021] [Accepted: 03/07/2021] [Indexed: 11/30/2022] Open
Abstract
Pseudomonas putida KT2440 is becoming a new robust metabolic chassis for biotechnological applications, due to its metabolic versatility, low nutritional requirements and biosafety status. We have previously engineered P. putida KT2440 to be an efficient propionate producer from L-threonine, although the internal enzymes converting propionyl-CoA to propionate are not clear. In this study, we thoroughly investigated 13 genes annotated as potential thioesterases in the KT2440 mutant. One thioesterase encoded by locus tag PP_4975 was verified to be the major contributor to propionate production in vivo. Deletion of PP_4975 significantly decreased propionate production, whereas the performance was fully restored by gene complement. Compared with thioesterase HiYciA from Haemophilus influenza, thioesterase PP_4975 showed a faster substrate conversion rate in vitro. Thus, this study expands our knowledge on acyl-CoA thioesterases in P. putida KT2440 and may also reveal a new target for further engineering the strain to improve propionate production performance.
Collapse
Affiliation(s)
- Chao Ma
- CAS Key Laboratory of Microbial Physiological & Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Ya’nan Shi
- CAS Key Laboratory of Microbial Physiological & Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qingxuan Mu
- CAS Key Laboratory of Microbial Physiological & Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Rongshan Li
- CAS Key Laboratory of Microbial Physiological & Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Yanfen Xue
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological & Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| |
Collapse
|
12
|
Park YK, Bordes F, Letisse F, Nicaud JM. Engineering precursor pools for increasing production of odd-chain fatty acids in Yarrowia lipolytica. Metab Eng Commun 2021; 12:e00158. [PMID: 33391990 PMCID: PMC7773535 DOI: 10.1016/j.mec.2020.e00158] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 01/12/2023] Open
Abstract
Microbial production of lipids is one of the promising alternatives to fossil resources with increasing environmental and energy concern. Odd-chain fatty acids (OCFA), a type of unusual lipids, are recently gaining a lot of interest as target compounds in microbial production due to their diverse applications in the medical, pharmaceutical, and chemical industries. In this study, we aimed to enhance the pool of precursors with three-carbon chain (propionyl-CoA) and five-carbon chain (β-ketovaleryl-CoA) for the production of OCFAs in Yarrowia lipolytica. We evaluated different propionate-activating enzymes and the overexpression of propionyl-CoA transferase gene from Ralstonia eutropha increased the accumulation of OCFAs by 3.8 times over control strain, indicating propionate activation is the limiting step of OCFAs synthesis. It was shown that acetate supplement was necessary to restore growth and to produce a higher OCFA contents in total lipids, suggesting the balance of the precursors between acetyl-CoA and propionyl-CoA is crucial for OCFA accumulation. To improve β-ketovaleryl-CoA pools for further increase of OCFA production, we co-expressed the bktB encoding β-ketothiolase in the producing strain, and the OCFA production was increased by 33% compared to control. Combining strain engineering and the optimization of the C/N ratio promoted the OCFA production up to 1.87 g/L representing 62% of total lipids, the highest recombinant OCFAs titer reported in yeast, up to date. This study provides a strong basis for the microbial production of OCFAs and its derivatives having high potentials in a wide range of applications.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Florence Bordes
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Fabien Letisse
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
13
|
Ren JY, Liu G, Chen YF, Jiang S, Ma YR, Zheng P, Guo XW, Xiao DG. Enhanced Production of Ethyl Lactate in Saccharomyces cerevisiae by Genetic Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13863-13870. [PMID: 33166457 DOI: 10.1021/acs.jafc.0c03967] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ethyl lactate is an important flavor substance in baijiu, and it is also one of the common raw materials in the production of flavors and spices. In this study, we first established the ethyl lactate biosynthesis pathway in Saccharomyces cerevisiae α(L) by introducing propionyl coenzyme A transferase (Pct) and alcohol acyltransferase (AAT), and the results showed that strain α(L)-CP-Ae produced the most ethyl lactate 239.53 ± 5.45 mg/L. Subsequently, the copy number of the Pctcp gene and AeAT9 gene was increased, and the modified strain α(L)-tCP-tAe produced 346.39 ± 3.99 mg/L ethyl lactate. Finally, the porin gene (por2) and the mitochondrial pyruvate carrier gene (MPC2) were knocked to impede mitochondrial transport of pyruvate, and the final modified strain α(L)-tCP-tAeΔpor2 produced ethyl lactate 420.48 ± 6.03 mg/L.
Collapse
Affiliation(s)
- Jin-Ying Ren
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Gang Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Ye-Fu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Sen Jiang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yan-Rui Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Peng Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xue-Wu Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Dong-Guang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| |
Collapse
|
14
|
Ko YS, Kim JW, Chae TU, Song CW, Lee SY. A Novel Biosynthetic Pathway for the Production of Acrylic Acid through β-Alanine Route in Escherichia coli. ACS Synth Biol 2020; 9:1150-1159. [PMID: 32243749 DOI: 10.1021/acssynbio.0c00019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acrylic acid (AA) is an important industrial chemical used for several applications including superabsorbent polymers and acrylate esters. Here, we report the development of a new biosynthetic pathway for the production of AA from glucose in metabolically engineered Escherichia coli through the β-alanine (BA) route. The AA production pathway was partitioned into two modules: an AA forming downstream pathway and a BA forming upstream pathway. We first validated the operation of the downstream pathway in vitro and in vivo, and then constructed the downstream pathway by introducing efficient enzymes (Act, Acl2, and YciA) screened out of various microbial sources and optimizing the expression levels. For the direct fermentative production of AA from glucose, the downstream pathway was introduced into the BA producing E. coli strain. The resulting strain could successfully produce AA from glucose in flask cultivation. AA production was further enhanced by expressing the upstream genes (panD and aspA) under the constitutive BBa_J23100 promoter. Replacement of the native promoter of the acs gene with the BBa_J23100 promoter in the genome increased AA production to 55.7 mg/L in flask. Fed-batch fermentation of the final engineered strain allowed production of 237 mg/L of AA in 57.5 h, representing the highest AA titer reported to date.
Collapse
Affiliation(s)
- Yoo-Sung Ko
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Je Woong Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tong Un Chae
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chan Woo Song
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Ma C, Mu Q, Wang L, Shi Y, Zhu L, Zhang S, Xue Y, Tao Y, Ma Y, Yu B. Bio-production of high-purity propionate by engineering l-threonine degradation pathway in Pseudomonas putida. Appl Microbiol Biotechnol 2020; 104:5303-5313. [DOI: 10.1007/s00253-020-10619-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 01/08/2023]
|
16
|
Hanko EKR, Paiva AC, Jonczyk M, Abbott M, Minton NP, Malys N. A genome-wide approach for identification and characterisation of metabolite-inducible systems. Nat Commun 2020; 11:1213. [PMID: 32139676 PMCID: PMC7057948 DOI: 10.1038/s41467-020-14941-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/07/2020] [Indexed: 12/21/2022] Open
Abstract
Inducible gene expression systems are vital tools for the advancement of synthetic biology. Their application as genetically encoded biosensors has the potential to contribute to diagnostics and to revolutionise the field of microbial cell factory development. Currently, the number of compounds of biological interest by far exceeds the number of available biosensors. Here, we address this limitation by developing a generic genome-wide approach to identify transcription factor-based inducible gene expression systems. We construct and validate 15 functional biosensors, provide a characterisation workflow to facilitate forward engineering efforts, exemplify their broad-host-range applicability, and demonstrate their utility in enzyme screening. Previously uncharacterised interactions between sensors and compounds of biological relevance are identified by employing the largest reported library of metabolite-responsive biosensors in an automated high-throughput screen. With the rapidly growing genomic data these innovative capabilities offer a platform to vastly increase the number of biologically detectable molecules. Inducible gene expression tools have important applications as genetically encoded biosensors. Here the authors conduct a genome-wide approach to identify and utilise functional sensors.
Collapse
Affiliation(s)
- Erik K R Hanko
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ana C Paiva
- Centre for Biomolecular Sciences, School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Magdalena Jonczyk
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Matthew Abbott
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Naglis Malys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
17
|
Zhuang Q, Qi Q. Engineering the pathway in Escherichia coli for the synthesis of medium-chain-length polyhydroxyalkanoates consisting of both even- and odd-chain monomers. Microb Cell Fact 2019; 18:135. [PMID: 31409350 PMCID: PMC6693092 DOI: 10.1186/s12934-019-1186-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/03/2019] [Indexed: 12/19/2022] Open
Abstract
Background Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) containing various chain length monomers from C6 to C14 have more applications besides sustainable and environmental-friendly biomaterials owing to their superior physical and mechanical properties. We engineered a reversed fatty acid β-oxidation pathway in Escherichia coli that can synthesize mcl-PHA directly from glucose and achieved high yield. However, there were only even-chain monomers in the biosynthetic polymers. The need for mcl-PHA harboring both even- and odd-chain monomers with better and wider utility impels us to develop the biosynthetic routes for the production of the novel and unnatural mcl-PHA through rewiring the basic metabolism. Results In the present study, a propionate assimilation and metabolic route was integrated into the reversed fatty acid β-oxidation in order to produce mcl-PHA consisting of both even- and odd-numbered monomers. The content of odd-numbered monomers in mcl-PHA was improved with the increased propionate addition. After further deletion of pyruvate oxidase (PoxB) and pyruvate formate-lyase (PflB), the metabolically engineered chassis E. coli LZ08 harboring pQQ05 and pZQ06 (overexpression of prpP and prpE genes from Ralstonia eutropha H16) innovatively accumulated 6.23 wt% mcl-PHA containing odd-chain monomers ranging from 7 to 13 carbon atoms about 20.03 mol%. Conclusions This is the first successful report on production of mcl-PHA harboring both even- and odd-chain monomers (C6–C14) synthesized from glucose and propionate in recombinant E. coli. This present study achieved the highest yield of de novo production of mcl-PHA containing odd-numbered monomers in E. coli at shake-flask fermentation level. Continued engineering of host strains and pathway enzymes will ultimately lead to more economical production of odd-chain monomers based on market demand. The synthetic pathway can provide a promising platform for production of other value-added chemicals and biomaterials that use acetyl-CoA and propionyl-CoA as versatile precursors and can be extended to other microorganisms as intelligent cell factories. Electronic supplementary material The online version of this article (10.1186/s12934-019-1186-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qianqian Zhuang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China. .,Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| |
Collapse
|
18
|
Choi SY, Cho IJ, Lee Y, Park S, Lee SY. Biocatalytic synthesis of polylactate and its copolymers by engineered microorganisms. Methods Enzymol 2019; 627:125-162. [PMID: 31630738 DOI: 10.1016/bs.mie.2019.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poly(lactate), also called poly(lactic acid) or poly(lactide) [PLA], has been one of the most attractive bio-based polymers since it possesses desirable material properties for its use in general performance plastics in addition to biodegradability and biocompatibility. PLA has been produced by biological and chemical hybrid process comprising microbial fermentation for lactate (LA) production followed by purification and chemical polymerization process of LA. Recently, the direct one-step fermentative processes for production of PLA and several LA-containing polyesters have been developed by employing metabolically engineered microorganisms. Since natural microorganisms cannot produce the LA-containing polymers, several engineering strategies have been employed together based on the polyhydroxyalkanoate (PHA) biosynthesis system. In this chapter, we summarize strategies and procedures on developing the engineered microorganisms producing PLA and its copolymers, cultivating the cells, and extracting the polymers from the cells. Focuses were given on construction of enzymatic polymerization process of LA: design of metabolic pathway for PLA by mimicking PHA biosynthetic pathway, examination of possible enzymes, and engineering of the enzymes for better performances. This synthetic pathway has been established in a microorganism producing LA that enabled one-step fermentative production of LA-containing polyesters from carbohydrates derived from renewable biomass. Polymer production has been further enhanced by implementing strain engineering to concentrate the metabolic fluxes toward PLA formation. In addition, various monomers such as glycolate, 2-hydroxybutyrate, and phenyllactate have been copolymerized with LA by the microbial system. These fermentative production systems developed by using the engineered microorganisms can be versatile and sustainable platforms for the production of LA-containing polyesters and other non-natural polymers.
Collapse
Affiliation(s)
- So Young Choi
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea; Applied Science Research Institute, KAIST, Daejeon, Republic of Korea
| | - In Jin Cho
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea
| | - Youngjoon Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea
| | - Seongjin Park
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea; Applied Science Research Institute, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
19
|
Zhang X, Mao Y, Wang B, Cui Z, Zhang Z, Wang Z, Chen T. Screening, expression, purification and characterization of CoA-transferases for lactoyl-CoA generation. J Ind Microbiol Biotechnol 2019; 46:899-909. [PMID: 30963328 DOI: 10.1007/s10295-019-02174-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
Abstract
Lactoyl-CoA is critical for the biosynthesis of biodegradable and biocompatible lactate-based copolymers, which have wide applications. However, reports on acetyl-CoA: lactate CoA-transferases (ALCTs) are rare. To exploit novel ALCTs, amino acid sequence similarity searches based on the CoA-transferases from Clostridium propionicum and Megasphaera elsdenii were conducted. Two known and three novel enzymes were expressed, purified and characterized. Three novel ALCTs were identified, one each from Megasphaera sp. DISK 18, Clostridium lactatifermentans An75 and Firmicutes bacterium CAG: 466. ME-PCT from Megasphaera elsdenii had the highest catalytic efficiency for both acetyl-CoA (264.22 s-1 mM-1) and D-lactate (84.18 s-1 mM-1) with a broad temperature range for activity and good stability. This study, therefore, offers novel and efficient enzymes for lactoyl-CoA generation. To our best knowledge, this is the first report on the systematic mining of ALCTs, which offers valuable new tools for the engineering of pathways that rely on these enzymes.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yufeng Mao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Baowei Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhenzhen Cui
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhidan Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
20
|
Heine V, Meinert-Berning C, Lück J, Mikowsky N, Voigt B, Riedel K, Steinbüchel A. The catabolism of 3,3'-thiodipropionic acid in Variovorax paradoxus strain TBEA6: A proteomic analysis. PLoS One 2019; 14:e0211876. [PMID: 30742653 PMCID: PMC6370202 DOI: 10.1371/journal.pone.0211876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/23/2019] [Indexed: 01/11/2023] Open
Abstract
Variovorax paradoxus strain TBEA6 is one of the few organisms known to utilize 3,3'-thiodipropionate (TDP) as the only source of carbon and energy. It cleaves TDP to 3-mercaptopropionate (3MP), which is a direct precursor for polythioester synthesis. To establish this process in V. paradoxus TBEA6, it is crucial to unravel its TDP metabolism. Therefore, a proteomic approach with subsequent deletion of interesting genes in the bacterium was chosen. Cells were cultivated with D-gluconate, TDP or 3-sulfinopropionate as the only carbon sources. Proteins with high abundances in gels of cells cultivated with either of the organic sulfur compounds were analyzed further. Thereby, we did not only confirm parts of the already postulated TDP metabolism, but also eight new protein candidates for TDP degradation were detected. Deletions of the corresponding genes (two enoyl-CoA hydratases (Ech-20 and Ech-30), an FK506-binding protein, a putative acetolactate synthase, a carnitinyl-CoA dehydratase, and a putative crotonase family protein) were obtained. Only the deletions of both Ech-20 and Ech-30 led to a TDP negative phenotype. The deletion mutant of VPARA_05510, which encodes the putative crotonase family protein showed reduced growth with TDP. The three genes are located in one cluster with genes proven to be involved in TDP metabolism. Thermal shift assays showed an increased stability of Ech-20 with TDP-CoA but not with TDP. These results indicate that Ech-20 uses TDP-CoA as a substrate instead of TDP. Hence, we postulate a new putative pathway for TDP metabolism. Ech-30 interacts with neither TDP-CoA nor TDP but might interact with other CoA-activated intermediates of the proposed pathway. Further enzyme characterization is necessary to unravel the complete pathway from TDP to 3MP.
Collapse
Affiliation(s)
- Viktoria Heine
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Christina Meinert-Berning
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Janina Lück
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Nadine Mikowsky
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Birgit Voigt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Katharina Riedel
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
- Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Arenas-López C, Locker J, Orol D, Walter F, Busche T, Kalinowski J, Minton NP, Kovács K, Winzer K. The genetic basis of 3-hydroxypropanoate metabolism in Cupriavidus necator H16. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:150. [PMID: 31236137 PMCID: PMC6572756 DOI: 10.1186/s13068-019-1489-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/07/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND 3-Hydroxypropionic acid (3-HP) is a promising platform chemical with various industrial applications. Several metabolic routes to produce 3-HP from organic substrates such as sugars or glycerol have been implemented in yeast, enterobacterial species and other microorganisms. In this study, the native 3-HP metabolism of Cupriavidus necator was investigated and manipulated as it represents a promising chassis for the production of 3-HP and other fatty acid derivatives from CO2 and H2. RESULTS When testing C. necator for its tolerance towards 3-HP, it was noted that it could utilise the compound as the sole source of carbon and energy, a highly undesirable trait in the context of biological 3-HP production which required elimination. Inactivation of the methylcitrate pathway needed for propionate utilisation did not affect the organism's ability to grow on 3-HP. Putative genes involved in 3-HP degradation were identified by bioinformatics means and confirmed by transcriptomic analyses, the latter revealing considerably increased expression in the presence of 3-HP. Genes identified in this manner encoded three putative (methyl)malonate semialdehyde dehydrogenases (mmsA1, mmsA2 and mmsA3) and two putative dehydrogenases (hpdH and hbdH). These genes, which are part of three separate mmsA operons, were inactivated through deletion of the entire coding region, either singly or in various combinations, to engineer strains unable to grow on 3-HP. Whilst inactivation of single genes or double deletions could only delay but not abolish growth, a triple ∆mmsA1∆mmsA2∆mmsA3 knock-out strain was unable utilise 3-HP as the sole source of carbon and energy. Under the used conditions this strain was also unable to co-metabolise 3-HP alongside other carbon and energy sources such as fructose and CO2/H2. Further analysis suggested primary roles for the different mmsA operons in the utilisation of β-alanine generating substrates (mmsA1), degradation of 3-HP (mmsA2), and breakdown of valine (mmsA3). CONCLUSIONS Three different (methyl)malonate semialdehyde dehydrogenases contribute to 3-HP breakdown in C. necator H16. The created triple ∆mmsA1∆mmsA2∆mmsA3 knock-out strain represents an ideal chassis for autotrophic 3-HP production.
Collapse
Affiliation(s)
- Christian Arenas-López
- BBSRC/EPSCR Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Jessica Locker
- BBSRC/EPSCR Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Diego Orol
- BBSRC/EPSCR Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Frederik Walter
- BBSRC/EPSCR Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Nigel P. Minton
- BBSRC/EPSCR Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Katalin Kovács
- BBSRC/EPSCR Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Klaus Winzer
- BBSRC/EPSCR Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
22
|
Raberg M, Volodina E, Lin K, Steinbüchel A. Ralstonia eutrophaH16 in progress: Applications beside PHAs and establishment as production platform by advanced genetic tools. Crit Rev Biotechnol 2017; 38:494-510. [DOI: 10.1080/07388551.2017.1369933] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Matthias Raberg
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Elena Volodina
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kaichien Lin
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Designer enzyme for green materials innovation: Lactate-polymerizing enzyme as a key catalyst. Front Chem Sci Eng 2017. [DOI: 10.1007/s11705-017-1636-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
(S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (FadB') from fatty acid degradation operon of Ralstonia eutropha H16. AMB Express 2014; 4:69. [PMID: 25401070 PMCID: PMC4230905 DOI: 10.1186/s13568-014-0069-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/13/2014] [Indexed: 11/12/2022] Open
Abstract
In this study (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (H16_A0461/FadB’, gene ID: 4247876) from one of two active fatty acid degradation operons of Ralstonia eutropha H16 has been heterologously expressed in Escherichia coli, purified as protein possessing a His-Tag and initially characterized. FadB’ is an enzyme with two catalytic domains exhibiting a single monomeric structure and possessing a molecular weight of 86 kDa. The C-terminal part of the enzyme harbors enoyl-CoA hydratase activity and is able to convert trans-crotonyl-CoA to 3-hydroxybutyryl-CoA. The N-terminal part of FadB’ comprises an NAD+ binding site and is responsible for 3-hydroxyacyl-CoA dehydrogenase activity converting (S)-3-hydroxybutyryl-CoA to acetoacetyl-CoA. Enoyl-CoA hydratase activity was detected spectrophotometrically with trans-crotonyl-CoA. (S)-3-Hydroxyacyl-CoA dehydrogenase activity was measured in both directions with acetoacetyl-CoA and 3-hydroxybutyryl-CoA. FadB’ was found to be strictly stereospecific to (S)-3-hydroxybutyryl-CoA and to prefer NAD+. The Km value for acetoacetyl-CoA was 48 μM and Vmax 149 μmol mg−1 min−1. NADP(H) was utilized at a rate of less than 10% in comparison to activity with NAD(H). FadB’ exhibited optimal activity at pH 6–7 and the activity decreased at alkaline and acidic pH values. Acetyl-CoA, propionyl-CoA and CoA were found to have an inhibitory effect on FadB’. This study is a first report on biochemical properties of purified (S)-stereospecific 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase with the inverted domain order from R. eutropha H16. In addition to fundamental information about FadB’ and fatty acid metabolism, FadB’ might be also interesting for biotechnological applications.
Collapse
|