1
|
Du J, Liu K, Liu J, Zhao D, Bai Y. A novel lateral flow immunoassay strip based on a label-free magnetic Fe 3O 4@UiO-66-NH 2 nanocomposite for rapid detection of Listeria monocytogenes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2423-2430. [PMID: 35674012 DOI: 10.1039/d2ay00506a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Listeria monocytogenes (L. monocytogenes) is one of the most lethal pathogenic bacteria. Although the traditional microbial culture method has high sensitivity and selectivity for the diagnosis of L. monocytogenes, it is time-consuming and not suitable for on-site detection. A rapid, convenient and visualized on-site detection method is particularly needed. In this work, Fe3O4@UiO-66-NH2 was prepared for both magnetic separation and lateral flow immunoassay (LFIA) for the detection of L. monocytogenes by taking advantage of the easy separation of the magnetic core Fe3O4 and the high surface area of the outer layer UiO-66-NH2. Fe3O4@UiO-66-NH2 with a high surface area and good water-dispersibility and optical properties was synthesized by a simple hydrothermal process. It could directly adsorb on the surface of target bacteria and form Fe3O4@UiO-66-NH2-bacteria conjugates, without the labeling of an antibody. After magnetic separation and concentration, the Fe3O4@UiO-66-NH2-bacteria conjugates were detected by the antibody on the test line of the LFIA strip, resulting in a visible orange band. The capture efficiency and LFIA detection of Fe3O4@UiO-66-NH2 were optimized in this study. Under the optimal conditions, a good linear correlation between the test line intensity and the concentration of L. monocytogenes was obtained in the range of 105-108 CFU mL-1, and the limit of detection was 2.2 × 106 CFU mL-1 by the naked eye. The Fe3O4@UiO-66-NH2-based LFIA strip showed strong specificity for L. monocytogenes, and the detection took 45 min without culture enrichment. Therefore, the proposed Fe3O4@UiO-66-NH2-based strip showed the advantages of simple synthesis, being label-free, low cost, good selectivity and convenience.
Collapse
Affiliation(s)
- Juan Du
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
- Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Kai Liu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
| | - Jialei Liu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
| | - Dianbo Zhao
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
- Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Yanhong Bai
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
- Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| |
Collapse
|
2
|
Bai X, Shen A, Hu J. A sensitive SERS-based sandwich immunoassay platform for simultaneous multiple detection of foodborne pathogens without interference. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4885-4891. [PMID: 32966366 DOI: 10.1039/d0ay01541e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A reliable and sensitive sensing of multiple foodborne pathogens is critical for timely diagnosis and human health. To meet this need, herein, we designed a sandwich immunoassay platform, using functionalized SERS probes and magnetic beads, for the interference-free simultaneous detection of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in food samples by surface-enhanced Raman scattering (SERS) technology. The signal of two SERS probes coded by triple bonds (C[triple bond, length as m-dash]C and C[triple bond, length as m-dash]N) located at 2105 and 2227 cm-1, respectively, could perfectly avoid the spectral overlap with coexisting materials in the Raman fingerprint region, which ensured the accuracy of the immunoassay platform. The application of functional magnetic beads, integrating enrichment and separation, greatly improved the sensitivity of the detection system. Under magnetic force, due to the mature interaction between the antigen and antibody, the sandwich immunoassay platform could be fabricated. Its limit of detection (LOD) for the simultaneous detection of E. coli and S. aureus was as low as 10 and 25 cfu mL-1, respectively, and the sandwich immunoassay platform was successfully applied for the detection of E. coli and S. aureus in bottled water and milk. As a sensitive and highly selective analytical technique for the simultaneous multiple detection of pathogens, this SERS-based method has great potential to be applied in the field of food safety.
Collapse
Affiliation(s)
- Xiangru Bai
- Institute of Environment and Safety, Wuhan Academy of Agricultural Science, Wuhan 430207, P. R. China.
| | | | | |
Collapse
|
3
|
Duan N, Shen M, Qi S, Wang W, Wu S, Wang Z. A SERS aptasensor for simultaneous multiple pathogens detection using gold decorated PDMS substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118103. [PMID: 32000058 DOI: 10.1016/j.saa.2020.118103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 05/14/2023]
Abstract
An aptamer-based sensitive method was developed here for detection of multiple foodborne pathogens in food matrix by surface-enhanced Raman scattering (SERS) technology. Polydimethylsiloxane (PDMS) film was first prepared and then coated with gold nanoparticles (AuNP) to act as an active substrate for the enhancement of Raman scattering. The as-prepared Au-PDMS film was functionalized with specific pathogen aptamers (Apt) to capture the targets. In addition, aptamers functionalized AuNP integrated with Raman reporters (4-Mercaptobenzoic acid (4-MBA)/Nile blue A (NBA)) were fabricated as pathogen-specific SERS probes. In this scheme, pathogens were first captured by Apt-Au-PDMS film and then bind with SERS probes to allow the formation of a sandwich assay to complete the sensor module for the detection of multiple pathogens. With Vibrio parahaemolyticus and Salmonella typhimurium as model targets, this protocol can selectively detect 18 cfu/mL and 27 cfu/mL, respectively. Furthermore, this platform can be successfully applied to detect pathogens in seafood samples with recoveries ranging from 82.9% to 95.1%.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China
| | - Mofei Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenyue Wang
- China Rural Technology Development Center, Beijing 100045, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China.
| |
Collapse
|
4
|
Bayramoglu G, Ozalp VC, Oztekin M, Arica MY. Rapid and label-free detection of Brucella melitensis in milk and milk products using an aptasensor. Talanta 2019; 200:263-271. [PMID: 31036183 DOI: 10.1016/j.talanta.2019.03.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
In this work, a novel quartz crystal microbalance (QCM) aptasensor is designed for the diagnosis of Brucella melitensis bacteria, which affects the Mediterranean fever (brucellosis) from the zoonotic diseases that are very common in the Middle East Countries. The method is based on the selection of B. melitensis bacterium from solutions using B. melitensis specific binding aptamer (Apt) attached magnetic nanoparticles. The surface of the magnetic nanoparticles (i.e.,Fe3O4) was modified by 3-aminopropyltriethoxysilane (APTES) and then grafted with a hydrophilic macromonomer poly(ethyleneglycol)-methacrylate (PEG-MA) as a first block polymer and glycidylmethacrylate (GMA) as a second block functional polymer via atom transfer radical polymerization (ATRP) method [Fe3O4 @SiO2 @p(PEG-MA-GMA)], then, the specific binding aptamer was immobilized. The aptamer immobilized magnetic nanoparticles were used for the pre-concentration of the target bacterium, and the same aptamer sequence was also immobilized on the QCM chip and used for the quantitative detection of B. melitensis using QCM aptasensor. The detection limits of the QCM aptasensor were in the range 1.02-1.07 CFU mL-1, with recoveries up to 79%. The synthesized [Fe3O4 @SiO2 @p(PEGMA-GMA)] nanoparticles showed a good permanence and high isolation recoveries for the pull down of the target bacterium from food samples, after recycling eight times. The method was successfully applied to target bacterium determinations in milk and milk product samples.
Collapse
Affiliation(s)
- Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Ankara, Turkey; Department of Chemistry, Gazi University, 06500 Ankara, Turkey.
| | - V Cengiz Ozalp
- Kit-ARGEM R&D center and the Department of Bioengineering, Konya Food & Agriculture University, 42080 Konya, Turkey
| | - Merve Oztekin
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Ankara, Turkey
| | - M Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Ankara, Turkey
| |
Collapse
|
5
|
Bayramoglu G, Ozalp VC, Dincbal U, Arica MY. Fast and Sensitive Detection of Salmonella in Milk Samples Using Aptamer-Functionalized Magnetic Silica Solid Phase and MCM-41-Aptamer Gate System. ACS Biomater Sci Eng 2018; 4:1437-1444. [DOI: 10.1021/acsbiomaterials.8b00018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey
- Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Ankara, Turkey
| | - V. Cengiz Ozalp
- Konya Food and Agriculture University, Bioengineering, 42080 Konya, Turkey
- Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University, 42080 Konya, Turkey
| | - Uguray Dincbal
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| | - M. Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| |
Collapse
|
6
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 631] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Borsa BA, Tuna BG, Hernandez FJ, Hernandez LI, Bayramoglu G, Arica MY, Ozalp VC. Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates. Biosens Bioelectron 2016; 86:27-32. [DOI: 10.1016/j.bios.2016.06.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/27/2016] [Accepted: 06/09/2016] [Indexed: 01/01/2023]
|
8
|
Magnetic separation techniques in sample preparation for biological analysis: A review. J Pharm Biomed Anal 2014; 101:84-101. [DOI: 10.1016/j.jpba.2014.04.017] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 11/16/2022]
|
9
|
Ozalp VC, Bayramoglu G, Erdem Z, Arica MY. Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core-shell type magnetic separation. Anal Chim Acta 2014; 853:533-540. [PMID: 25467500 DOI: 10.1016/j.aca.2014.10.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/09/2014] [Indexed: 01/08/2023]
Abstract
A quartz crystal microbalance sensor (QCM) was developed for sensitive and specific detection of Salmonella enterica serovar typhimurium cells in food samples by integrating a magnetic bead purification system. Although many sensor formats based on bioaffinity agents have been developed for sensitive and specific detection of bacterial cells, the development of robust sensor applications for food samples remained a challenging issue. A viable strategy would be to integrate QCM to a pre-purification system. Here, we report a novel and sensitive high throughput strategy which combines an aptamer-based magnetic separation system for rapid enrichment of target pathogens and a QCM analysis for specific and real-time monitoring. As a proof-of-concept study, the integration of Salmonella binding aptamer immobilized magnetic beads to the aptamer-based QCM system was reported in order to develop a method for selective detection of Salmonella. Since our magnetic separation system can efficiently capture cells in a relatively short processing time (less than 10 min), feeding captured bacteria to a QCM flow cell system showed specific detection of Salmonella cells at 100 CFU mL(-1) from model food sample (i.e., milk). Subsequent treatment of the QCM crystal surface with NaOH solution regenerated the aptamer-sensor allowing each crystal to be used several times.
Collapse
Affiliation(s)
- Veli C Ozalp
- School of Medicine, Istanbul Kemerburgaz University, 34217 Istanbul, Turkey
| | - Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey; Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey.
| | - Zehra Erdem
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey; Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| | - M Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| |
Collapse
|
10
|
Development of a rapid capture-cum-detection method for Escherichia coli O157 from apple juice comprising nano-immunomagnetic separation in tandem with surface enhanced Raman scattering. Int J Food Microbiol 2014; 189:89-97. [DOI: 10.1016/j.ijfoodmicro.2014.07.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/25/2014] [Accepted: 07/30/2014] [Indexed: 11/20/2022]
|
11
|
Xu F, Li P, Ming X, Yang D, Xu H, Wu X, Shah NP, Wei H. Detection of Cronobacter species in powdered infant formula by probe-magnetic separation PCR. J Dairy Sci 2014; 97:6067-75. [PMID: 25108865 DOI: 10.3168/jds.2014-8287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/24/2014] [Indexed: 11/19/2022]
Abstract
Cronobacter species are opportunistic foodborne pathogens associated with serious infections in preterm neonates and infants. Based on the epidemiological research, infant formula products are considered to be the main source of infections from this organism. Therefore, accurate methods are required for detection of Cronobacter species. In this study, the specific probe and primers for detection of this organism were designed and verified. The probe-magnetic beads were prepared for sequence capture, followed by PCR assay to detect the target gene. This probe-magnetic separation PCR assay could detect as few as 10(3) cfu/mL of Cronobacter in artificially contaminated infant formulas in less than 4 h. The combination of magnetic beads and PCR showed the potential for the detection of Cronobacter in infant formulas and may have applications in the dairy industry.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Peng Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Xing Ming
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Dong Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Xiaoli Wu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| |
Collapse
|
12
|
Peng Z, Ling M, Ning Y, Deng L. Rapid fluorescent detection of Escherichia coli K88 based on DNA aptamer library as direct and specific reporter combined with immuno-magnetic separation. J Fluoresc 2014; 24:1159-68. [PMID: 24763818 DOI: 10.1007/s10895-014-1396-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
Nucleic acid aptamers have long demonstrated the capacity to bind cells with high affinity so that they have been utilized to diagnose various important pathogens. In this study, a DNA aptamer library was on initial efforts developed to act as a specific reporter for rapid detection of enter toxigenic Escherichia coli (ETEC) K88 combined with immuno-magnetic separation (IMS). During a Whole-cell Systematic Evolution of Ligands by Exponential Enrichment (CELL-SELEX) procedure, the last selection pool against ETEC K88, which is named "DNA aptamer library" here, was selected and subsequently identified by flow cytometric analysis and confocal imaging. A K88 monoclonal antibody (mAb) with high affinity (K(aff): 1.616 ± 0.033 × 10(8) M(-1)) against K88 fimbrial protein was prepared, biotinylated and conjugated to streptavidin-coated magnetic beads (MBs). After the bacteria were effectively captured and enriched from the complex sample by immuno-magnetic beads (IMBs), 5'-FITC modified aptamer library was directly bound to target cells as a specific reporter for its detection. The detection system showed clearly high specificity and sensitivity with the detection limit of 1.1 × 10(3) CFU/ml in pure culture and 2.2 × 10(3) CFU/g in artificially contaminated fecal sample. The results also indicated that fluorophore-lablled DNA aptamer library as specific reporter could generate more reliable signals than individual aptamer with best affinity against target cells and implied it would have great applied potential in directly reporting bacteria from complex samples combined with IMS technology.
Collapse
Affiliation(s)
- Zhihui Peng
- The Co-construction Laboratory of Microbial Molecular Biology of Province and Ministry of Science and Technology, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China
| | | | | | | |
Collapse
|
13
|
Bayramoglu G, Celikbicak O, Arica MY, Salih B. Trypsin Immobilized on Magnetic Beads via Click Chemistry: Fast Proteolysis of Proteins in a Microbioreactor for MALDI-ToF-MS Peptide Analysis. Ind Eng Chem Res 2014. [DOI: 10.1021/ie5002235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Omur Celikbicak
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | | | - Bekir Salih
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
14
|
Ozalp VC, Bayramoglu G, Kavruk M, Keskin BB, Oktem HA, Arica MY. Pathogen detection by core-shell type aptamer-magnetic preconcentration coupled to real-time PCR. Anal Biochem 2013; 447:119-25. [PMID: 24291643 DOI: 10.1016/j.ab.2013.11.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 10/26/2022]
Abstract
The presence of pathogenic bacteria is a major health risk factor in food samples and the commercial food supply chain is susceptible to bacterial contamination. Thus, rapid and sensitive identification methods are in demand for the food industry. Quantitative polymerase chain reaction (PCR) is one of the reliable specific methods with reasonably fast assay times. However, many constituents in food samples interfere with PCR, resulting in false results and thus hindering the usability of the method. Therefore, we aimed to develop an aptamer-based magnetic separation system as a sample preparation method for subsequent identification and quantification of the contaminant bacteria by real-time PCR. To achieve this goal, magnetic beads were prepared via suspension polymerization and grafted with glycidylmethacrylate (GMA) brushes that were modified into high quantities of amino groups. The magnetic beads were decorated with two different aptamer sequences binding specifically to Escherichia coli or Salmonella typhimurium. The results showed that even 1.0% milk inhibited PCR, but our magnetic affinity system capture of bacteria from 100% milk samples allowed accurate determination of bacterial contamination at less than 2.0 h with limit of detection around 100 CFU/mL for both bacteria in spiked-milk samples.
Collapse
Affiliation(s)
- V Cengiz Ozalp
- School of Medicine, Istanbul Kemerburgaz University, 34217 Istanbul, Turkey.
| | - Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey; Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| | - Murat Kavruk
- Department of Biology, Middle East Technical University, Ankara, Turkey; Test and Calibration Center, Turkish Standards Institute (TSE), 41400, Gebze, Kocaeli, Turkey
| | - Batuhan B Keskin
- Department of Biology, Middle East Technical University, Ankara, Turkey
| | - Huseyin A Oktem
- Department of Biology, Middle East Technical University, Ankara, Turkey
| | - M Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| |
Collapse
|