1
|
Salucci E, Cartenì F, Giannino F, de Alteriis E, Raganati F, Mazzoleni S. A process-based dynamic model for succicinic acid production by Actinobacillus succinogenes: regulatory role of ATP/ADP balance. Front Microbiol 2025; 16:1512982. [PMID: 40115192 PMCID: PMC11922874 DOI: 10.3389/fmicb.2025.1512982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/17/2025] [Indexed: 03/23/2025] Open
Abstract
Introduction Succinic acid is an important chemical compound for biotechnological productions, being used as a basic platform to produce many industrial products in major business applications. It can be produced as fermentation end-product of anaerobic metabolism of different bacterial species, among which Actinobacillus succinogenes is largely used. Modeling microbial metabolic processes in controlled bioreactor systems is recognized as a useful tool to optimize growth conditions aimed at maximizing yield. Methods A novel model is presented based on System Dynamics approach in which the maintenance of the ATP/ADP balance is introduced as a key regulatory process of A. succinogenes metabolism. Results and discussion Model simulations accurately reproduce microbial growth and succinic acid production in anaerobic batch cultures at different initial glucose concentrations. Results reveal that the main limitations to maximal succinic acid production are glucose uptake restrictions and energy homeostasis costs (ATP/ADP balance) of the microbial population. The process-based modeling approach effectively describes the main metabolic processes and their regulation, providing a useful tool to define working conditions and overcome the criticalities of the SA fermentation process.
Collapse
Affiliation(s)
- Emiliano Salucci
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Fabrizio Cartenì
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | | | - Francesca Raganati
- Department of Chemical Engineering of Materials and Industrial Production, University of Naples "Federico II", Napoli, Italy
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| |
Collapse
|
2
|
Kumar V, Kumar P, Maity SK, Agrawal D, Narisetty V, Jacob S, Kumar G, Bhatia SK, Kumar D, Vivekanand V. Recent advances in bio-based production of top platform chemical, succinic acid: an alternative to conventional chemistry. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:72. [PMID: 38811976 PMCID: PMC11137917 DOI: 10.1186/s13068-024-02508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/20/2024] [Indexed: 05/31/2024]
Abstract
Succinic acid (SA) is one of the top platform chemicals with huge applications in diverse sectors. The presence of two carboxylic acid groups on the terminal carbon atoms makes SA a highly functional molecule that can be derivatized into a wide range of products. The biological route for SA production is a cleaner, greener, and promising technological option with huge potential to sequester the potent greenhouse gas, carbon dioxide. The recycling of renewable carbon of biomass (an indirect form of CO2), along with fixing CO2 in the form of SA, offers a carbon-negative SA manufacturing route to reduce atmospheric CO2 load. These attractive attributes compel a paradigm shift from fossil-based to microbial SA manufacturing, as evidenced by several commercial-scale bio-SA production in the last decade. The current review article scrutinizes the existing knowledge and covers SA production by the most efficient SA producers, including several bacteria and yeast strains. The review starts with the biochemistry of the major pathways accumulating SA as an end product. It discusses the SA production from a variety of pure and crude renewable sources by native as well as engineered strains with details of pathway/metabolic, evolutionary, and process engineering approaches for enhancing TYP (titer, yield, and productivity) metrics. The review is then extended to recent progress on separation technologies to recover SA from fermentation broth. Thereafter, SA derivatization opportunities via chemo-catalysis are discussed for various high-value products, which are only a few steps away. The last two sections are devoted to the current scenario of industrial production of bio-SA and associated challenges, along with the author's perspective.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Pankaj Kumar
- Department of Chemical Engineering, School of Studies of Engineering and Technology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Sunil K Maity
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502284, India.
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, 248005, India
| | - Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| |
Collapse
|
3
|
Li K, Li C, Zhao XQ, Liu CG, Bai FW. Engineering Corynebacterium glutamicum for efficient production of succinic acid from corn stover pretreated by concentrated-alkali under steam-assistant conditions. BIORESOURCE TECHNOLOGY 2023; 378:128991. [PMID: 37003455 DOI: 10.1016/j.biortech.2023.128991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Corynebacterium glutamicum was developed for efficient production of succinic acid from corn stover (CS) pretreated by concentrated-alkali under steam-assistant (CASA) conditions. First, C. glutamicum was engineered by 1) blocking the by-products pathways (deletion of ldh, pta-ackA, and cat), 2) enhancing the carbon flux to succinate (overexpression of pyc and ppc), and 3) releasing the end-product inhibition (overexpression of Ncgl0275). The recombinant strain produced 117.8 g/L succinate in fed-batch fermentation. Second, to fully utilize xylose in lignocellulosic hydrolysate, two xylose utilization pathways-the isomerase pathway and the Weimberg pathway-were introduced into the recombinant strain. Third, CS was pretreated by CASA with a higher sugars yield and a lower black liquid. Finally, 64.16 g/L of succinic acid was obtained from 150 g/L CASA-pretreated CS by engineered C. glutamicum. These results showed a succinate high-producing C. glutamicum strain using glucose and xylose simultaneously as well as an effective and environmentally acceptable pretreatment strategy.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Song X, Lu C, Luo J, Gong X, Guo D, Ma Y. Matured compost amendment improves compost nutrient content by changing the bacterial community during the composting of Chinese herb residues. Front Microbiol 2023; 14:1146546. [PMID: 37007496 PMCID: PMC10060987 DOI: 10.3389/fmicb.2023.1146546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Composting is a sustainable strategy to deal with organic waste. Our research aimed to study the influence of an amendment of 10% matured compost (MC) during Chinese herb residue (CHR) compost. Here, a 60-day CHR compost was performed, and MC application was able to reduce the nitrogen loss and enhance the humic acid accumulation during the composting as compared with the non-inoculated control (NC), by 25 and 19%, respectively. Furthermore, the matured compost amendment improved the diversity of the bacterial community, increased the complexity of the co-occurrence network, and changed the keystone and module hub bacteria during composting. The increased abundance levels of Thermopolyspora, Thermobispora, and Thermosporomyces, which were significantly higher in MC than in NC, may contribute to the degradation of cellulose and the formation of humic acid. Overall, this study extends our understanding of the effects of matured compost reflux on compost quality and the bacterial community.
Collapse
Affiliation(s)
- Xiuchao Song
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chao Lu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jia Luo
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Nanjing, China
| | - Xin Gong
- Jiangsu Key Laboratory for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dejie Guo
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Ma
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Nanjing, China
- *Correspondence: Yan Ma,
| |
Collapse
|
5
|
Andrade LRS, Felisardo RJA, Cruz IA, Bilal M, Iqbal HMN, Mulla SI, Bharagava RN, de Souza RL, Azevedo LCB, Ferreira LFR. Integrated Biorefinery and Life Cycle Assessment of Cassava Processing Residue-From Production to Sustainable Evaluation. PLANTS (BASEL, SWITZERLAND) 2022; 11:3577. [PMID: 36559689 PMCID: PMC9785145 DOI: 10.3390/plants11243577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Commonly known as a subsistence culture, cassava came to be considered a commodity and key to adding value. However, this tuber's processing for starch and flour production is responsible for generating a large amount of waste that causes serious environmental problems. This biomass of varied biochemical composition has excellent potential for producing fuels (biogas, bioethanol, butanol, biohydrogen) and non-energetic products (succinic acid, glucose syrup, lactic acid) via biorefinery. However, there are environmental challenges, leading to uncertainties related to the sustainability of biorefineries. Thus, the provision of information generated in life cycle assessment (LCA) can help reduce bottlenecks found in the productive stages, making production more competitive. Within that, this review concentrates information on the production of value-added products, the environmental impact generated, and the sustainability of biorefineries.
Collapse
Affiliation(s)
- Larissa Renata Santos Andrade
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju 49032-490, SE, Brazil
- Biomass Technology Laboratory, Université de Sherbrooke, 2500 Boul, de L’Université, Sherbrooke, QC J1K 2R1, Canada
| | - Raul José Alves Felisardo
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju 49032-490, SE, Brazil
| | - Ianny Andrade Cruz
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju 49032-490, SE, Brazil
- Biomass Technology Laboratory, Université de Sherbrooke, 2500 Boul, de L’Université, Sherbrooke, QC J1K 2R1, Canada
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Sikandar I. Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore 560064, India
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Ranyere Lucena de Souza
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju 49032-490, SE, Brazil
- Institute of Technology and Research, Av. Murilo Dantas, 300, Farolândia, Aracaju 49032-490, SE, Brazil
| | | | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju 49032-490, SE, Brazil
- Institute of Technology and Research, Av. Murilo Dantas, 300, Farolândia, Aracaju 49032-490, SE, Brazil
| |
Collapse
|
6
|
Kumar N, Kar S, Shukla P. Role of regulatory pathways and multi-omics approaches for carbon capture and mitigation in cyanobacteria. BIORESOURCE TECHNOLOGY 2022; 366:128104. [PMID: 36257524 DOI: 10.1016/j.biortech.2022.128104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria are known for their metabolic potential and carbon capture and sequestration capabilities. These cyanobacteria are not only an effective source for carbon minimization and resource mobilization into value-added products for biotechnological gains. The present review focuses on the detailed description of carbon capture mechanisms exerted by the various cyanobacterial strains, the role of important regulatory pathways, and their subsequent genes responsible for such mechanisms. Moreover, this review will also describe effectual mechanisms of central carbon metabolism like isoprene synthesis, ethylene production, MEP pathway, and the role of Glyoxylate shunt in the carbon sequestration mechanisms. This review also describes some interesting facets of using carbon assimilation mechanisms for valuable bio-products. The role of regulatory pathways and multi-omics approaches in cyanobacteria will not only be crucial towards improving carbon utilization but also will give new insights into utilizing cyanobacterial bioresource for carbon neutrality.
Collapse
Affiliation(s)
- Niwas Kumar
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Navrangapura, Ahmedabad 380009, India
| | - Srabani Kar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
7
|
Sohn YJ, Son J, Lim HJ, Lim SH, Park SJ. Valorization of lignocellulosic biomass for polyhydroxyalkanoate production: Status and perspectives. BIORESOURCE TECHNOLOGY 2022; 360:127575. [PMID: 35792330 DOI: 10.1016/j.biortech.2022.127575] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
With the increasing concerns regarding climate, energy, and plastic crises, bio-based production of biodegradable polymers has become a dire necessity. Significant progress has been made in biotechnology for the production of biodegradable polymers from renewable resources to achieve the goal of zero plastic waste and a net-zero carbon bioeconomy. In this review, an overview of polyhydroxyalkanoate (PHA) production from lignocellulosic biomass (LCB) was presented. Having established LCB-based biorefinery with proper pretreatment techniques, various PHAs could be produced from LCB-derived sugars, hydrolysates, and/or aromatic mixtures employing microorganisms. This provides a clue for addressing the current environmental crises because "biodegradable polymers" could be produced from one of the most abundant resources that are renewable and sustainable in a "carbon-neutral process". Furthermore, the potential future of LCB-to-non-natural PHA production was discussed with particular reference to non-natural PHA biosynthesis methods and LCB-derived aromatic mixture biofunnelling systems.
Collapse
Affiliation(s)
- Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
8
|
Narisetty V, Okibe MC, Amulya K, Jokodola EO, Coulon F, Tyagi VK, Lens PNL, Parameswaran B, Kumar V. Technological advancements in valorization of second generation (2G) feedstocks for bio-based succinic acid production. BIORESOURCE TECHNOLOGY 2022; 360:127513. [PMID: 35772717 DOI: 10.1016/j.biortech.2022.127513] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Succinic acid (SA) is used as a commodity chemical and as a precursor in chemical industry to produce other derivatives such as 1,4-butaneidol, tetrahydrofuran, fumaric acid, and bio-polyesters. The production of bio-based SA from renewable feedstocks has always been in the limelight owing to the advantages of renewability, abundance and reducing climate change by CO2 capture. Considering this, the current review focuses on various 2G feedstocks such as lignocellulosic biomass, crude glycerol, and food waste for cost-effective SA production. It also highlights the importance of producing SA via separate enzymatic hydrolysis and fermentation, simultaneous saccharification and fermentation, and consolidated bioprocessing. Furthermore, recent advances in genetic engineering, and downstream SA processing are thoroughly discussed. It also elaborates on the techno-economic analysis and life cycle assessment (LCA) studies carried out to understand the economics and environmental effects of bio-based SA synthesis.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | | | - K Amulya
- National University of Ireland Galway, University Road, H91TK33 Galway, Ireland
| | | | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology (NIH), Roorkee 247667, Uttarakhand, India
| | - Piet N L Lens
- National University of Ireland Galway, University Road, H91TK33 Galway, Ireland
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695019, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| |
Collapse
|
9
|
Modeling the Succinic Acid Bioprocess: A Review. FERMENTATION 2022. [DOI: 10.3390/fermentation8080368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Succinic acid has attracted much interest as a key platform chemical that can be obtained in high titers from biomass through sustainable fermentation processes, thus boosting the bioeconomy as a critical production strategy for the future. After several years of development of the production of succinic acid, many studies on lab or pilot scale production have been reported. The relevant experimental data reveal underlying physical and chemical dynamic phenomena. To take advantage of this vast, but disperse, kinetic information, a number of mathematical kinetic models of the unstructured non-segregated type have been proposed in the first place. These relatively simple models feature critical aspects of interest for the design, control, optimization and operation of this key bioprocess. This review includes a detailed description of the phenomena involved in the bioprocesses and how they reflect on the most important and recent models based on macroscopic and metabolic chemical kinetics, and in some cases even coupling mass transport.
Collapse
|
10
|
Assessment of vine shoots and surplus grape must for succinic acid bioproduction. Appl Microbiol Biotechnol 2022; 106:4977-4994. [PMID: 35821430 DOI: 10.1007/s00253-022-12063-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/02/2022]
Abstract
Vine shoots and surplus grape must were assessed as feedstocks for succinic acid production with Actinobacillus succinogenes and Basfia succiniproducens. After acidic and enzymatic hydrolysis, vine shoots released 35-40 g/L total sugars. Both bacterial species produced 18-21 g/L succinic acid from this hydrolysate in 120 h. Regarding grape must fermentation, A. succinogenes clearly outperformed B. succiniproducens. Yeast extract (a source of organic nitrogen and vitamins) was the only additional nutrient needed by A. succinogenes to grow on grape must. Under mathematically optimized conditions (145.7 g/L initial sugars and 24.9 g/L yeast extract), A. succinogenes generated 88.9 ± 1.4 g/L succinic acid in 96 h, reaching a succinic acid yield of 0.66 ± 0.01 g/g and a sugar consumption of 96.64 ± 0.30%. Substrate inhibition was not observed in grape musts with 125-150 g/L initial sugars, provided that an adequate amount of yeast extract was available for bacteria. Alternative nitrogen sources to yeast extract (red wine lees, white wine lees, urea, NH4Cl, and choline chloride) were not suitable for A. succinogenes in grape must. KEY POINTS: • Vine shoots and surplus grape must were assessed for succinic acid bioproduction. • Succinic acid bioproduction was 21 g/L with vine shoots and 89 g/L with grape must. • Fermentation was efficient at high sugar loads if organic N supply was adequate.
Collapse
|
11
|
Awasthi MK, Sindhu R, Sirohi R, Kumar V, Ahluwalia V, Binod P, Juneja A, Kumar D, Yan B, Sarsaiya S, Zhang Z, Pandey A, Taherzadeh MJ. Agricultural waste biorefinery development towards circular bioeconomy. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2022; 158:112122. [DOI: 10.1016/j.rser.2022.112122] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
12
|
Weinland DH, van Putten RJ, Gruter GJM. Evaluating the commercial application potential of polyesters with 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide) by reviewing the synthetic challenges in step growth polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Raajaraam L, Raman K. A Computational Framework to Identify Metabolic Engineering Strategies for the Co-Production of Metabolites. Front Bioeng Biotechnol 2022; 9:779405. [PMID: 35071202 PMCID: PMC8777033 DOI: 10.3389/fbioe.2021.779405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial production of chemicals is a more sustainable alternative to traditional chemical processes. However, the shift to bioprocess is usually accompanied by a drop in economic feasibility. Co-production of more than one chemical can improve the economy of bioprocesses, enhance carbon utilization and also ensure better exploitation of resources. While a number of tools exist for in silico metabolic engineering, there is a dearth of computational tools that can co-optimize the production of multiple metabolites. In this work, we propose co-FSEOF (co-production using Flux Scanning based on Enforced Objective Flux), an algorithm designed to identify intervention strategies to co-optimize the production of a set of metabolites. Co-FSEOF can be used to identify all pairs of products that can be co-optimized with ease using a single intervention. Beyond this, it can also identify higher-order intervention strategies for a given set of metabolites. We have employed this tool on the genome-scale metabolic models of Escherichia coli and Saccharomyces cerevisiae, and identified intervention targets that can co-optimize the production of pairs of metabolites under both aerobic and anaerobic conditions. Anaerobic conditions were found to support the co-production of a higher number of metabolites when compared to aerobic conditions in both organisms. The proposed computational framework will enhance the ease of study of metabolite co-production and thereby aid the design of better bioprocesses.
Collapse
Affiliation(s)
- Lavanya Raajaraam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India.,Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India.,Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India.,Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India.,Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
| |
Collapse
|
14
|
Lee JS, Lin CJ, Lee WC, Teng HY, Chuang MH. Production of succinic acid through the fermentation of Actinobacillus succinogenes on the hydrolysate of Napier grass. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:9. [PMID: 35418147 PMCID: PMC8767706 DOI: 10.1186/s13068-022-02106-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Napier grass biomass can be hydrolyzed mainly containing glucose and xylose after alkaline pretreatment and enzymatic hydrolysis. This biomass can be fermented using Actinobacillus succinogenes to produce succinic acid. The yield of succinic acid was 0.58 g/g. Because metabolizing xylose could produce more acetic acid, this yield of succinic acid was lower than that achieved using glucose as the sole carbon source. RESULTS The addition of glycerol as a fermentation substrate to Napier grass hydrolysate increased the reducing power of the hydrolysate, which not only increased the production of succinic acid but also reduced the formation of undesirable acetic acid in bacterial cells. At a hydrolysate:glycerol ratio of 10:1, the succinic acid yield reached 0.65 g/g. The succinic acid yield increased to 0.88 g/g when a 1:1 ratio of hydrolysate:glycerol was used. For the recovery of succinic acid from the fermentation broth, an outside-in module of an ultrafiltration membrane was used to remove bacterial cells. Air sparging at the feed side with a flow rate of 3 L/min increased the filtration rate. When the air flow rate was increased from 0 to 3 L/min, the average filtration rate increased from 25.0 to 45.7 mL/min, which corresponds to an increase of 82.8%. The clarified fermentation broth was then electrodialized to separate succinate from other contaminated ions. After electrodialysis, the acid products were concentrated through water removal, decolorized through treatment with activated carbon, and precipitated to obtain a purified product. CONCLUSIONS The yield of succinic acid was increased by adding glycerol to the hydrolysate of Napier grass. The downstream processing consisting of ultrafiltration membrane separation and single-stage electrodialysis was effective for product separation and purification. An overall recovery yield of 74.7% ± 4.5% and a purity of 99.4% ± 0.1% were achieved for succinic acid.
Collapse
Affiliation(s)
- Jhih-Sing Lee
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi, Taiwan
| | - Cheng-Jia Lin
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi, Taiwan
| | - Wen-Chien Lee
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi, Taiwan.
| | - Hsin-Yi Teng
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi, Taiwan
| | - Meng-Hsin Chuang
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
15
|
Thakur S, Chaudhary J, Singh P, Alsanie WF, Grammatikos SA, Thakur VK. Synthesis of Bio-based monomers and polymers using microbes for a sustainable bioeconomy. BIORESOURCE TECHNOLOGY 2022; 344:126156. [PMID: 34695587 DOI: 10.1016/j.biortech.2021.126156] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
As a result of environmental concerns and the depletion of biomass assets, eco-friendly, renewable biomass-based chemical extraction has recently received significant attention. Bio-based chemicals can be prepared using different renewable feedstockbio-resources through microbial fermentation. Chemicals produced from renewable feedstockscan reduce ecological consequences from improper disposal and repurpose them into valuable products. Biodegradability, biocompatibility and non-toxicity, particularly in biomedical applications, have inspired researchers towards developing novel technologies that have social benefit. Among semi-synthetic and synthetic polymeric materials, utilization of natural bio-based monomeric materials can provide opportunities for sustainable development of novel non-toxic, biodegradable and biocompatible products. The purpose of this work is to give a summary of research into the generation of natural bio-based succinic acid (SA) monomer, the development of poly(butylene succinate) (PBS) as biodegradable polymer, PBS-based nanocomposites and their innovative uses.
Collapse
Affiliation(s)
- Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; School of Advanced Chemical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Jyoti Chaudhary
- School of Advanced Chemical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sotirios A Grammatikos
- ASEMlab - Advanced and Sustainable Engineering Materials Laboratory, Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, Gjøvik 2815, Norway
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India.
| |
Collapse
|
16
|
Shanmugam M, Chuaicham C, Augustin A, Sagayaraj PJJ, Sasaki K, Sekar K. Upcycling of Hazardous Metals and PET Waste derived Metal-Organic Frameworks: A Review in Recent Progress and Prospects. NEW J CHEM 2022. [DOI: 10.1039/d2nj02481k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An intense increase in non-biodegradable plastics and waste metals is an immediate threat to the world and needs to be addressed urgently. There are several strategies deployed to control, eliminate,...
Collapse
|
17
|
Xu C, Alam MA, Wang Z, Peng Y, Xie C, Gong W, Yang Q, Huang S, Zhuang W, Xu J. Co-fermentation of succinic acid and ethanol from sugarcane bagasse based on full hexose and pentose utilization and carbon dioxide reduction. BIORESOURCE TECHNOLOGY 2021; 339:125578. [PMID: 34298250 DOI: 10.1016/j.biortech.2021.125578] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The full utilization of carbohydrates in lignocellulosic biomass is essential for an efficient biorefining process. In this study, co-fermentation was performed for processing ethanol and succinic from sugarcane bagasse. By optimizing the co-fermentation conditions, nutrition and feeding strategies, a novel process was developed to make full utilization of the glucose and xylose in the hydrolysate of sugarcane bagasse. The achieved concentrations of succinic acid and ethanol reached to 22.1 and 22.0 g/L, respectively, and could realize the conversion of 100 g SCB raw material into 8.6 g ethanol and 8.7 g succinic acid. It is worth mentioning that the CO2 released from S. cerevisiae in co-fermentation system was recycled by A. succinogenes to synthesize succinic acid, realized CO2 emission reduction in the process of lignocellulosic biomass biorefinery. This study provided a clue for efficient biorefinery of lignocellulosic biomass and reduction greenhouse gas emissions.
Collapse
Affiliation(s)
- Chao Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Zhengzhou Tuoyang Industrial Co, Ltd, Zhengzhou 450001, China.
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Wenbing Gong
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Qi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Zhengzhou Tuoyang Industrial Co, Ltd, Zhengzhou 450001, China; Zhengzhou University Industrial Technology Research Institute Co, Ltd, Zhengzhou 450001, China.
| |
Collapse
|
18
|
Groß J, Grundke C, Rocker J, Arduengo AJ, Opatz T. Xylochemicals and where to find them. Chem Commun (Camb) 2021; 57:9979-9994. [PMID: 34522925 DOI: 10.1039/d1cc03512f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This article surveys a range of important platform and high value chemicals that may be considered primary and secondary 'xylochemicals'. A summary of identified xylochemical substances and their natural sources is provided in tabular form. In detail, this review is meant to provide useful assistance for the consideration of potential synthetic strategies using xylochemicals, new methodologies and the development of potentially sustainable, xylochemistry-based processes. It should support the transition from petroleum-based approaches and help to move towards more sustainability within the synthetic community. This feasible paradigm shift is demonstrated with the total synthesis of natural products and active pharmaceutical ingredients as well as the preparation of organic molecules suitable for potential industrial applications.
Collapse
Affiliation(s)
- Jonathan Groß
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Caroline Grundke
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Johannes Rocker
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Anthony J Arduengo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, USA.
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| |
Collapse
|
19
|
García-Franco A, Godoy P, de la Torre J, Duque E, Ramos JL. United Nations sustainability development goals approached from the side of the biological production of fuels. Microb Biotechnol 2021; 14:1871-1877. [PMID: 34427993 PMCID: PMC8449664 DOI: 10.1111/1751-7915.13912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/09/2021] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ana García-Franco
- Estación Experimental del Zaidín, CSIC, Granada, E-18008, Spain.,Programa de Bioquímica y Biología Molecular, University of Granada, Granada, Spain
| | - Patricia Godoy
- Estación Experimental del Zaidín, CSIC, Granada, E-18008, Spain
| | | | - Estrella Duque
- Estación Experimental del Zaidín, CSIC, Granada, E-18008, Spain
| | - Juan L Ramos
- Estación Experimental del Zaidín, CSIC, Granada, E-18008, Spain
| |
Collapse
|
20
|
Anaerobic Acidogenic Fermentation of Cellobiose by Immobilized Cells: Prediction of Organic Acids Production by Response Surface Methodology. Processes (Basel) 2021. [DOI: 10.3390/pr9081441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Response surface methodology was used to derive a prediction model for organic acids production by anaerobic acidogenic fermentation of cellobiose, using a mixed culture immobilized on γ-alumina. Three parameters (substrate concentration, temperature, and initial pH) were evaluated. In order to determine the limits of the parameters, preliminary experiments at 37 °C were conducted using substrates of various cellobiose concentrations and pH values. Cellobiose was used as a model sugar for subsequent experiments with lignocellulosic biomass. The culture was well adapted to cellobiose by successive subculturing at 37 °C in synthetic media (with 100:5:1 COD:N:P ratio). The experimental data of successive batch fermentations were fitted into a polynomial model for the total organic acids concentration in order to derive a predictive model that could be utilized as a tool to predict fermentation results when lignocellulosic biomass is used as a substrate. The quadratic effect of temperature was the most significant, followed by the quadratic effect of initial pH and the linear effect of cellobiose concentration. The results corroborated the validity and effectiveness of the model.
Collapse
|
21
|
Chiang CJ, Hu RC, Huang ZC, Chao YP. Production of Succinic Acid from Amino Acids in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8172-8178. [PMID: 34282894 DOI: 10.1021/acs.jafc.1c02958] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glutamate (Glu) and aspartate (Asp) are the most abundant amino acids in various sources of protein waste, recognized as a sustainable resource. In this study, Escherichia coli was engineered to produce succinic acid (SA) from Glu and Asp. Succinate dehydrogenase involved in the tricarboxylic acid was inactivated in the Glu-utilizing strain. To grow on Asp, this mutant strain was subjected to metabolic evolution. One resulting strain capable of metabolizing Asp was further evolved to improve the growth of Glu and Asp. After the deletion of arcA, the resulting strain was employed for the aerobic production of SA. The shake-flask culture was conducted with the minimal medium containing 10 g/L Glu and 10 g/L Asp. Finally, it resulted in the SA production, with a titer, the molar yield, and productivity reaching 72.8 mM (i.e., 8.6 g/L), 0.54 (ca. 75.4% of the theoretical yield), and 0.66 g/L/h, respectively. Overall, this study opens up a new avenue of the biorefinery platform based on renewable amino acids.
Collapse
Affiliation(s)
- Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Ruo-Ciao Hu
- Department of Chemical Engineering, Feng Chia University 100 Wenhwa Road, Taichung 40724, Taiwan
| | - Zih-Ci Huang
- Department of Chemical Engineering, Feng Chia University 100 Wenhwa Road, Taichung 40724, Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University 100 Wenhwa Road, Taichung 40724, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
22
|
Tenhaef N, Kappelmann J, Eich A, Weiske M, Brieß L, Brüsseler C, Marienhagen J, Wiechert W, Noack S. Microaerobic growth-decoupled production of α-ketoglutarate and succinate from xylose in a one-pot process using Corynebacterium glutamicum. Biotechnol J 2021; 16:e2100043. [PMID: 34089621 DOI: 10.1002/biot.202100043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Lignocellulosic biomass is the most abundant raw material on earth. Its efficient use for novel bio-based materials is essential for an emerging bioeconomy. Possible building blocks for such materials are the key TCA-cycle intermediates α-ketoglutarate and succinate. These organic acids have a wide range of potential applications, particularly in use as monomers for established or novel biopolymers. Recently, Corynebacterium glutamicum was successfully engineered and evolved towards an improved utilization of d-xylose via the Weimberg pathway, yielding the strain WMB2evo . The Weimberg pathway enables a carbon-efficient C5-to-C5 conversion of d-xylose to α-ketoglutarate and a shortcut route to succinate as co-product in a one-pot process. METHODS AND RESULTS C. glutamicum WMB2evo was grown under dynamic microaerobic conditions on d-xylose, leading to the formation of comparably high amounts of succinate and only small amounts of α-ketoglutarate. Subsequent carbon isotope labeling experiments verified the targeted production route for both products in C. glutamicum WMB2evo . Fed-batch process development was initiated and the effect of oxygen supply and feeding strategy for a growth-decoupled co-production of α-ketoglutarate and succinate were studied in detail. The finally established fed-batch production process resulted in the formation of 78.4 mmol L-1 (11.45 g L-1 ) α-ketoglutarate and 96.2 mmol L-1 (11.36 g L-1 ) succinate. CONCLUSION The developed one-pot process represents a promising approach for the combined supply of bio-based α-ketoglutarate and succinate. Future work will focus on tailor-made down-stream processing of both organic acids from the fermentation broth to enable their application as building blocks in chemical syntheses. Alternatively, direct conversion of one or both acids via whole-cell or cell-free enzymatic approaches can be envisioned; thus, extending the network of value chains starting from cheap and renewable d-xylose.
Collapse
Affiliation(s)
- Niklas Tenhaef
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jannick Kappelmann
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Currenta GmbH & Co. OHG, Leverkusen, Germany
| | - Arabel Eich
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Marc Weiske
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lisette Brieß
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christian Brüsseler
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
23
|
Dutta S, Bhat NS. Recent Advances in the Value Addition of Biomass‐Derived Levulinic Acid: A Review Focusing on its Chemical Reactivity Patterns. ChemCatChem 2021. [DOI: 10.1002/cctc.202100032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Saikat Dutta
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| | - Navya Subray Bhat
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| |
Collapse
|
24
|
Hydrophobic Deep Eutectic Solvents for the Recovery of Bio-Based Chemicals: Solid–Liquid Equilibria and Liquid–Liquid Extraction. Processes (Basel) 2021. [DOI: 10.3390/pr9050796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The solid–liquid equilibrium (SLE) behavior and liquid–liquid extraction (LLX) abilities of deep eutectic solvents (DESs) containing (a) thymol and L-menthol, and (b) trioctylphosphine oxide (TOPO) and L-menthol were evaluated. The distribution coefficients (KD) were determined for the solutes relevant for two biorefinery cases, including formic acid, levulinic acid, furfural, acetic acid, propionic acid, butyric acid, and L-lactic acid. Overall, for both cases, an increasing KD was observed for both DESs for acids increasing in size and thus hydrophobicity. Furfural, being the most hydrophobic, was seen to extract the highest KD (for DES (a) 14.2 ± 2.2 and (b) 4.1 ± 0.3), and the KD of lactic acid was small, independent of the DESs (DES (a) 0.5 ± 0.07 and DES (b) 0.4 ± 0.05). The KD of the acids for the TOPO and L-menthol DES were in similar ranges as for traditional TOPO-containing composite solvents, while for the thymol/L-menthol DES, in the absence of the Lewis base functionality, a smaller KD was observed. The selectivity of formic acid and levulinic acid separation was different for the two DESs investigated because of the acid–base interaction of the phosphine group. The thymol and L-menthol DES was selective towards levulinic acid (Sij = 9.3 ± 0.10, and the TOPO and L-menthol DES was selective towards FA (Sij = 2.1 ± 0.28).
Collapse
|
25
|
|
26
|
Li C, Ong KL, Cui Z, Sang Z, Li X, Patria RD, Qi Q, Fickers P, Yan J, Lin CSK. Promising advancement in fermentative succinic acid production by yeast hosts. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123414. [PMID: 32763704 DOI: 10.1016/j.jhazmat.2020.123414] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/27/2020] [Accepted: 07/05/2020] [Indexed: 05/22/2023]
Abstract
As a platform chemical with various applications, succinic acid (SA) is currently produced by petrochemical processing from oil-derived substrates such as maleic acid. In order to replace the environmental unsustainable hydrocarbon economy with a renewable environmentally sound carbohydrate economy, bio-based SA production process has been developed during the past two decades. In this review, recent advances in the valorization of solid organic wastes including mixed food waste, agricultural waste and textile waste for efficient, green and sustainable SA production have been reviewed. Firstly, the application, market and key global players of bio-SA are summarized. Then achievements in SA production by several promising yeasts including Saccharomyces cerevisiae and Yarrowia lipolytica are detailed, followed by calculation and comparison of SA production costs between oil-based substrates and raw materials. Lastly, challenges in engineered microorganisms and fermentation processes are presented together with perspectives on the development of robust yeast SA producers via genome-scale metabolic optimization and application of low-cost raw materials as fermentation substrates. This review provides valuable insights for identifying useful directions for future bio-SA production improvement.
Collapse
Affiliation(s)
- Chong Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Khai Lun Ong
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhenyu Sang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaotong Li
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Raffel Dharma Patria
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech., Av. de la Faculté, 2B, 5030, Gembloux, Belgium
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
27
|
Lu J, Li J, Gao H, Zhou D, Xu H, Cong Y, Zhang W, Xin F, Jiang M. Recent progress on bio-succinic acid production from lignocellulosic biomass. World J Microbiol Biotechnol 2021; 37:16. [PMID: 33394223 DOI: 10.1007/s11274-020-02979-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/05/2020] [Indexed: 11/28/2022]
Abstract
Succinic acid is a valuable bulk chemical, which has been extensively applied in food, medicine, surfactants and biodegradable plastics industries. As a substitute for chemical raw material, bio-based succinic acid production has received increasing attention due to the depletion of fossil fuels and environmental issues. Meanwhile, the effective bioconversion of lignocellulosic biomass has always been a hot spot of interest owning to the advantages of low expense, abundance and renewability. Consolidated bioprocessing (CBP) is considered to be an alternative approach with outstanding potential, as CBP can not only improve the product yield and productivity, but also reduce the equipment and operating costs. In addition, the current emerging microbial co-cultivation systems provide strong competitiveness for lignocellulose utilization through CBP. This article comprehensively discusses different strategies for the bioconversion of lignocellulose to succinic acid. Based on the principles and technical concepts of CBP, this review focuses on the progress of succinic acid production under different CBP strategies (metabolic engineering based and microbial co-cultivation based). Moreover, the main challenges faced by CBP-based succinic acid fermentation are analyzed, and the future direction of CBP production is prospected.
Collapse
Affiliation(s)
- Jiasheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816, People's Republic of China
| | - Jiawen Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816, People's Republic of China
| | - Hao Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816, People's Republic of China
| | - Dawei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816, People's Republic of China
| | - Huixin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816, People's Republic of China
| | - Yuexin Cong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816, People's Republic of China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| |
Collapse
|
28
|
Nacy A, Lima e Freitas LF, Albarracín‐Suazo S, Ruiz‐Valentín G, Roberts CA, Nikolla E, Pagán‐Torres YJ. Selective C−O Bond Cleavage of Bio‐Based Organic Acids over Palladium Promoted MoO
x
/TiO
2. ChemCatChem 2020. [DOI: 10.1002/cctc.202001799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ayad Nacy
- Department of Chemical Engineering University of Puerto Rico-Mayagüez Campus Mayagüez PR 00680 USA
| | | | - Sandra Albarracín‐Suazo
- Department of Chemical Engineering University of Puerto Rico-Mayagüez Campus Mayagüez PR 00680 USA
| | - Génesis Ruiz‐Valentín
- Department of Chemical Engineering University of Puerto Rico-Mayagüez Campus Mayagüez PR 00680 USA
| | | | - Eranda Nikolla
- Department of Chemical Engineering and Materials Science Wayne State University Detroit MI 48202 USA
| | - Yomaira J. Pagán‐Torres
- Department of Chemical Engineering University of Puerto Rico-Mayagüez Campus Mayagüez PR 00680 USA
| |
Collapse
|
29
|
Evaluating the Engineered Saccharomyces cerevisiae With High Spermidine Contents for Increased Tolerance to Lactic, Succinic, and Malic Acids and Increased Xylose Fermentation. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0020-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Chestnut Shells as Waste Material for Succinic Acid Production from Actinobacillus succinogenes 130Z. FERMENTATION 2020. [DOI: 10.3390/fermentation6040105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Currently, the full exploitation of waste materials for the production of value-added compounds is one of the potential solutions to lower costs and increase the sustainability of industrial processes. In this respect, the aim of this work was to evaluate the potential of chestnut shells (CSH) as substrate for the growth of Actinobacillus succinogenes 130Z, a natural producer of succinic acid that is a precursor of several bulk chemicals with diverse applications, such as bioplastics production. Hydrolysis of ammonia pretreated CSH in citrate buffer with the Cellic CTec2 enzyme mix was optimized and strain performance was studied in bottle experiments. Data showed co-consumption of citrate, glucose and xylose, which resulted in a change of the relative ratio of produced acids, providing an insight into the metabolism of A. succinogenes that was never described to date. Furthermore, high C:N ratios seems to have a favorable impact on succinic acid production by decreasing byproduct formation. Finally, yield and volumetric production rate of succinic acid were studied in controlled 2 L bioreactors demonstrating the potential use of CSH as renewable raw material.
Collapse
|
31
|
Ventrone M, Schiraldi C, Squillaci G, Morana A, Cimini D. Chestnut Shells as Waste Material for Succinic Acid Production from Actinobacillus succinogenes 130Z. FERMENTATION 2020. [DOI: 10.339/fermentation604010510.3390/fermentation6040105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Currently, the full exploitation of waste materials for the production of value-added compounds is one of the potential solutions to lower costs and increase the sustainability of industrial processes. In this respect, the aim of this work was to evaluate the potential of chestnut shells (CSH) as substrate for the growth of Actinobacillus succinogenes 130Z, a natural producer of succinic acid that is a precursor of several bulk chemicals with diverse applications, such as bioplastics production. Hydrolysis of ammonia pretreated CSH in citrate buffer with the Cellic CTec2 enzyme mix was optimized and strain performance was studied in bottle experiments. Data showed co-consumption of citrate, glucose and xylose, which resulted in a change of the relative ratio of produced acids, providing an insight into the metabolism of A. succinogenes that was never described to date. Furthermore, high C:N ratios seems to have a favorable impact on succinic acid production by decreasing byproduct formation. Finally, yield and volumetric production rate of succinic acid were studied in controlled 2 L bioreactors demonstrating the potential use of CSH as renewable raw material.
Collapse
|
32
|
Li J, Rong L, Zhao Y, Li S, Zhang C, Xiao D, Foo JL, Yu A. Next-generation metabolic engineering of non-conventional microbial cell factories for carboxylic acid platform chemicals. Biotechnol Adv 2020; 43:107605. [DOI: 10.1016/j.biotechadv.2020.107605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023]
|
33
|
Sagaama A, Brandan SA, Ben Issa T, Issaoui N. Searching potential antiviral candidates for the treatment of the 2019 novel coronavirus based on DFT calculations and molecular docking. Heliyon 2020; 6:e04640. [PMID: 32802981 PMCID: PMC7409764 DOI: 10.1016/j.heliyon.2020.e04640] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/15/2020] [Accepted: 08/03/2020] [Indexed: 01/18/2023] Open
Abstract
In the present work, the succinic acid (SA), L-pyroglutamic acid (L-PGA), N-phenyl-thioacetamide (N-NPTA), 2-amino-5-chloropyridine hydrogen succinate (ACPS), epigallocatechine Gallate (EGCG) or KDH and, selenomethionine (SeM) compounds have been proposed as potential antiviral candidates to treatment of COVID-19 based on B3LYP/6-311++G∗∗ calculations and molecular docking. Solvation energies, stabilization energies, topological properties have been evaluated as function of acceptors and donors groups present in their structures. ACPS presents the higher reactivity in solution possibly because has the higher nucleophilicity and elecrophilicity indexes while KDH evidence the higher solvation energy probably due to the higher quantity of donors and acceptors groups. NBO studies show that KDH is the most stable in solution. Mapped MEP surfaces have evidenced stronger nucleophilic and electrophilic sites in ACPS, in agreement with the three C=O and two N-H and O-H groups present in this species while KDH has only a C=O group but a total of 19 acceptors and donors groups. From the above studies for six species we can propose that the better potential antiviral candidate to treatment of COVID-19 is ACPS and then, KDH. For a better prediction of the antiviral and anti-inflammatory properties of the proposed compounds, molecular docking calculations were performed by using four structures of COVID-19. Docking results were discussed basing on binding affinities and the interaction types among ligands and different amino acid residues, indicating the powerful ability of KDH and then ACPS ligands on front of the novel coronavirus disease especially for the first and the fourth species (6LU7, 7BTF).
Collapse
Affiliation(s)
- Abir Sagaama
- University of Monastir, Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, Monastir 5079, Tunisia
| | - Silvia Antonia Brandan
- Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, San Miguel de Tucumán, Tucumán, Argentina
| | - Takoua Ben Issa
- University of Monastir, Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, Monastir 5079, Tunisia
| | - Noureddine Issaoui
- University of Monastir, Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, Monastir 5079, Tunisia
| |
Collapse
|
34
|
Szczerba H, Dudziak K, Krawczyk M, Targoński Z. A Genomic Perspective on the Potential of Wild-Type Rumen Bacterium Enterobacter sp. LU1 as an Industrial Platform for Bio-Based Succinate Production. Int J Mol Sci 2020; 21:ijms21144835. [PMID: 32650546 PMCID: PMC7402333 DOI: 10.3390/ijms21144835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
Enterobacter sp. LU1, a wild-type bacterium originating from goat rumen, proved to be a potential succinic acid producer in previous studies. Here, the first complete genome of this strain was obtained and analyzed from a biotechnological perspective. A hybrid sequencing approach combining short (Illumina MiSeq) and long (ONT MinION) reads allowed us to obtain a single continuous chromosome 4,636,526 bp in size, with an average 55.6% GC content that lacked plasmids. A total of 4425 genes, including 4283 protein-coding genes, 25 ribosomal RNA (rRNA)-, 84 transfer RNA (tRNA)-, and 5 non-coding RNA (ncRNA)-encoding genes and 49 pseudogenes, were predicted. It has been shown that genes involved in transport and metabolism of carbohydrates and amino acids and the transcription process constitute the major group of genes, according to the Clusters of Orthologous Groups of proteins (COGs) database. The genetic ability of the LU1 strain to metabolize a wide range of industrially relevant carbon sources has been confirmed. The genome exploration indicated that Enterobacter sp. LU1 possesses all genes that encode the enzymes involved in the glycerol metabolism pathway. It has also been shown that succinate can be produced as an end product of fermentation via the reductive branch of the tricarboxylic acid cycle (TCA) and the glyoxylate pathway. The transport system involved in succinate excretion into the growth medium and the genes involved in the response to osmotic and oxidative stress have also been recognized. Furthermore, three intact prophage regions ~70.3 kb, ~20.9 kb, and ~49.8 kb in length, 45 genomic islands (GIs), and two clustered regularly interspaced short palindromic repeats (CRISPR) were recognized in the genome. Sequencing and genome analysis of Enterobacter sp. LU1 confirms many earlier results based on physiological experiments and provides insight into their genetic background. All of these findings illustrate that the LU1 strain has great potential to be an efficient platform for bio-based succinate production.
Collapse
Affiliation(s)
- Hubert Szczerba
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-462-3402
| | - Karolina Dudziak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland;
| | | | - Zdzisław Targoński
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| |
Collapse
|
35
|
Szczerba H, Komoń-Janczara E, Dudziak K, Waśko A, Targoński Z. A novel biocatalyst, Enterobacter aerogenes LU2, for efficient production of succinic acid using whey permeate as a cost-effective carbon source. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:96. [PMID: 32514308 PMCID: PMC7257193 DOI: 10.1186/s13068-020-01739-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Succinic acid (SA), a valuable chemical compound with a broad range of industrial uses, has become a subject of global interest in recent years. The bio-based production of SA by highly efficient microbial producers from renewable feedstock is significantly important, regarding the current trend of sustainable development. RESULTS In this study, a novel bacterial strain, LU2, was isolated from cow rumen and recognized as an efficient producer of SA from lactose. Proteomic and genetic identifications as well as phylogenetic analysis were performed, and strain LU2 was classified as an Enterobacter aerogenes species. The optimal conditions for SA production were 100 g/L lactose, 10 g/L yeast extract, and 20% inoculum at pH 7.0 and 34 °C. Under these conditions, approximately 51.35 g/L SA with a yield of 53% was produced when batch fermentation was conducted in a 3-L stirred bioreactor. When lactose was replaced with whey permeate, the highest SA concentration of 57.7 g/L was achieved with a yield and total productivity of 62% and 0.34 g/(L*h), respectively. The highest productivity of 0.67 g/(L*h) was observed from 48 to 72 h of batch fermentation, when E. aerogenes LU2 produced 16.23 g/L SA. CONCLUSIONS This study shows that the newly isolated strain E. aerogenes LU2 has great potential as a new biocatalyst for producing SA from whey permeate.
Collapse
Affiliation(s)
- Hubert Szczerba
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Elwira Komoń-Janczara
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Karolina Dudziak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Zdzisław Targoński
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| |
Collapse
|
36
|
Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world. Biotechnol Adv 2020; 40:107535. [DOI: 10.1016/j.biotechadv.2020.107535] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 11/22/2022]
|
37
|
Ong KL, Fickers P, Lin CSK. Enhancing succinic acid productivity in the yeast Yarrowia lipolytica with improved glycerol uptake rate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134911. [PMID: 31733546 DOI: 10.1016/j.scitotenv.2019.134911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 05/22/2023]
Abstract
Development of cost effective and highly efficient process for bio-based succinic acid (SA) production is a main concern for industry. The metabolically engineered Y. lipolytica strain PGC01003 was successfully used for SA production with high titre. However, this strain possesses as main drawback with a low growth rate when glycerol is used as a feedstock. Herein, gene GUT1, encoding glycerol kinase, was overexpressed in strain PGC01003 with the aim to improve glycerol uptake capacity. In the resulting strain RIY420, glycerol uptake was 13.5% higher than for the parental strain. GUT1 gene overexpression also positively influences SA production. In batch bioreactor, SA titre, yield and productivity were 32%, 39% and 143% higher, respectively, than for the parental strain PGC01003. Using a glycerol feeding strategy, SA titre, yield and productivity were further improved by 11%, 5% and 10%, respectively. Moreover, the process duration to yield the highest concentration of SA in the culture supernatant was reduced by 9%. This demonstrated the contribution of metabolically engineered strain RIY420 to lower SA process cost and increase the efficiency of bio-based SA production.
Collapse
Affiliation(s)
- Khai Lun Ong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Av. De la Faculté, 2B, 5030 Gembloux, Belgium
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
38
|
Xiao Y, Zhang Z, Wang Y, Gao B, Chang J, Zhu D. Two-Stage Crystallization Combining Direct Succinimide Synthesis for the Recovery of Succinic Acid From Fermentation Broth. Front Bioeng Biotechnol 2020; 7:471. [PMID: 32010679 PMCID: PMC6974449 DOI: 10.3389/fbioe.2019.00471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/23/2019] [Indexed: 11/20/2022] Open
Abstract
Succinic acid is an important chemical and raw material widely used in medicine, food, biodegradable materials, fine chemicals, and other industrial fields. However, traditional methods for purifying succinic acid from fermentation broth are costly, poorly efficient, and harmful to the environment. In this study, an efficient method for purifying succinic acid from the fermentation broth of Escherichia coli NZN111 was developed through crystallization and co-crystallization with urea. First, the filtrate was collected by filtering the fermentation broth, and pH was adjusted to 2.0 by supplementing sulfuric acid. Crystallization was carried out at 8°C for 4 h to obtain succinic acid crystals. The recovery rate and purity of succinic acid were 73.4% and over 99%, respectively. Then, urea was added to the remaining solution with a mass ratio of urea to residual succinic acid of 4:1 (m urea /m SA ). The second crystallization was carried out at pH 2 and 4°C for 12 h to obtain succinic acid-urea co-crystal. The recovery rate of succinic acid residue was 92.0%. The succinic acid-urea crystal was further mixed with phosphorous acid (4.2% of the mass of succinic acid co-crystal) and maintained at 195°C for 6 h to synthesize succinimide, and the yield was >80%. This novel and efficient purification process was characterized by the significantly reduced urea consumption, and high succinic acid recovery (totally 95%), and high succinimide synthesis yield (80%). Thus, this study potentially provided a novel and efficient strategy for the industrial production of succinic acid and succinimide.
Collapse
Affiliation(s)
- Yiwen Xiao
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhibin Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Ya Wang
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Boliang Gao
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jun Chang
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
39
|
Peinemann JC, Pleissner D. Continuous pretreatment, hydrolysis, and fermentation of organic residues for the production of biochemicals. BIORESOURCE TECHNOLOGY 2020; 295:122256. [PMID: 31645308 DOI: 10.1016/j.biortech.2019.122256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Agricultural residues pose a valuable resource. Through microbial fermentations, a variety of products can be obtained, ranging from fuels to platform chemicals. Depending on the nature of the organic residue, pretreatment and hydrolysis are needed prior to fermentation in order to release fermentable sugars. Continuous set-ups are common for the production of methane or ethanol from lignocellulosic biomass, however, this does not apply for the fermentative generation of biochemicals, an approach that conserves chemical functionality present in biomass. Certainly, continuous set-ups could beneficially contribute to bioeconomy by providing techniques allowing the production of biochemicals in a sustainable and efficient way. This review summarizes research conducted on the continuous pretreatment, hydrolysis, and fermentation of lignocellulosic biomass, and particularly towards the production of the biobased molecules: Succinic and lactic acid.
Collapse
Affiliation(s)
- Jan Christoph Peinemann
- Sustainable Chemistry (Resource Efficiency), Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, C13.203, Lüneburg 21335, Germany
| | - Daniel Pleissner
- Sustainable Chemistry (Resource Efficiency), Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, C13.203, Lüneburg 21335, Germany; Institute for Food and Environmental Research e.V., Papendorfer Weg 3, Bad Belzig 14806, Germany.
| |
Collapse
|
40
|
Sun D, Liu X, Zhu M, Chen Y, Li C, Cheng X, Zhu Z, Lu F, Qin HM. Efficient Biosynthesis of High-Value Succinic Acid and 5-Hydroxyleucine Using a Multienzyme Cascade and Whole-Cell Catalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12502-12510. [PMID: 31623431 DOI: 10.1021/acs.jafc.9b05529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Succinic acid (SA) is applied in the food, chemical, and pharmaceutical industries. 5-Hydroxyleucine (5-HLeu) is a promising precursor for the biosynthesis of antituberculosis drugs. Here, we designed a promising synthetic route for the simultaneous production of SA and 5-HLeu by combining l-leucine dioxygenase (NpLDO), l-glutamate oxidase (LGOX), and catalase (CAT). Two bioconversion systems: "a multienzyme cascade catalysis in vitro" (MECCS) and "whole-cell catalysis system" (WCCS) were constructed. A high-activity NpLDO mutant was screened by error-prone polymerase chain reaction (PCR) and showed 6.1-fold improvement of catalytic activity. After optimization of reaction conditions, MECSS yielded 3.15 g/L SA and 3.92 g/L 5-HLeu, while the production of SA and 5-HLeu by the most effective WCSS reached 15.12 and 18.83 g/L, respectively. This is the first attempt to use ferrous iron/α-ketoglutarate-dependent dioxygenases for the simultaneous production of SA and hydroxy-amino-acid. This research provides a tool for industrial production of food of high-value products from low-cost raw materials.
Collapse
Affiliation(s)
- Dengyue Sun
- Key Laboratory of Industrial Fermentation Microbiology , Ministry of Education , Tianjin 300457 , People's Republic of China
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
- Tianjin Key Laboratory of Industrial Microbiology , Tianjin 300457 , People's Republic of China
| | - Xin Liu
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Menglu Zhu
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Ying Chen
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Chao Li
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Xiaotao Cheng
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Zhangliang Zhu
- Key Laboratory of Industrial Fermentation Microbiology , Ministry of Education , Tianjin 300457 , People's Republic of China
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
- Tianjin Key Laboratory of Industrial Microbiology , Tianjin 300457 , People's Republic of China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology , Ministry of Education , Tianjin 300457 , People's Republic of China
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
- Tianjin Key Laboratory of Industrial Microbiology , Tianjin 300457 , People's Republic of China
- National Engineering Laboratory for Industrial Enzymes , Tianjin 300457 , People's Republic of China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology , Ministry of Education , Tianjin 300457 , People's Republic of China
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
- Tianjin Key Laboratory of Industrial Microbiology , Tianjin 300457 , People's Republic of China
- National Engineering Laboratory for Industrial Enzymes , Tianjin 300457 , People's Republic of China
| |
Collapse
|
41
|
Strazzulli A, Cobucci-Ponzano B, Iacono R, Giglio R, Maurelli L, Curci N, Schiano-di-Cola C, Santangelo A, Contursi P, Lombard V, Henrissat B, Lauro FM, Fontes CMGA, Moracci M. Discovery of hyperstable carbohydrate-active enzymes through metagenomics of extreme environments. FEBS J 2019; 287:1116-1137. [PMID: 31595646 DOI: 10.1111/febs.15080] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
The enzymes from hyperthermophilic microorganisms populating volcanic sites represent interesting cases of protein adaptation and biotransformations under conditions where conventional enzymes quickly denature. The difficulties in cultivating extremophiles severely limit access to this class of biocatalysts. To circumvent this problem, we embarked on the exploration of the biodiversity of the solfatara Pisciarelli, Agnano (Naples, Italy), to discover hyperthermophilic carbohydrate-active enzymes (CAZymes) and to characterize the entire set of such enzymes in this environment (CAZome). Here, we report the results of the metagenomic analysis of two mud/water pools that greatly differ in both temperature and pH (T = 85 °C and pH 5.5; T = 92 °C and pH 1.5, for Pool1 and Pool2, respectively). DNA deep sequencing and following in silico analysis led to 14 934 and 17 652 complete ORFs in Pool1 and Pool2, respectively. They exclusively belonged to archaeal cells and viruses with great genera variance within the phylum Crenarchaeota, which reflected the difference in temperature and pH of the two Pools. Surprisingly, 30% and 62% of all of the reads obtained from Pool1 and 2, respectively, had no match in nucleotide databanks. Genes associated with carbohydrate metabolism were 15% and 16% of the total in the two Pools, with 278 and 308 putative CAZymes in Pool1 and 2, corresponding to ~ 2.0% of all ORFs. Biochemical characterization of two CAZymes of a previously unknown archaeon revealed a novel subfamily GH5_19 β-mannanase/β-1,3-glucanase whose hemicellulose specificity correlates with the vegetation surrounding the sampling site, and a novel NAD+ -dependent GH109 with a previously unreported β-N-acetylglucosaminide/β-glucoside specificity. DATABASES: The sequencing reads are available in the NCBI Sequence Read Archive (SRA) database under the accession numbers SRR7545549 (Pool1) and SRR7545550 (Pool2). The sequences of GH5_Pool2 and GH109_Pool2 are available in GenBank database under the accession numbers MK869723 and MK86972, respectively. The environmental data relative to Pool1 and Pool2 (NCBI BioProject PRJNA481947) are available in the Biosamples database under the accession numbers SAMN09692669 (Pool1) and SAMN09692670 (Pool2).
Collapse
Affiliation(s)
- Andrea Strazzulli
- Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Italy
| | | | - Roberta Iacono
- Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Naples, Italy.,Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Rosa Giglio
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Luisa Maurelli
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Nicola Curci
- Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Naples, Italy.,Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Corinna Schiano-di-Cola
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Annalisa Santangelo
- Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Patrizia Contursi
- Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Italy
| | - Vincent Lombard
- Centre National de la Recherche Scientifique, INRA, AFMB, USC 1408, Aix Marseille Univ, France
| | - Bernard Henrissat
- Centre National de la Recherche Scientifique, INRA, AFMB, USC 1408, Aix Marseille Univ, France.,Department Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Federico M Lauro
- Asian School of the Environment, Nanyang Technological University, Singapore City, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore City, Singapore
| | - Carlos M G A Fontes
- NZYTech LDA, Estrada Do Paco Do Lumiar, Lisbon, Portugal.,CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Portugal
| | - Marco Moracci
- Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Italy.,Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| |
Collapse
|
42
|
Rosales-Calderon O, Arantes V. A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:240. [PMID: 31624502 PMCID: PMC6781352 DOI: 10.1186/s13068-019-1529-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/17/2019] [Indexed: 05/03/2023]
Abstract
The demand for fossil derivate fuels and chemicals has increased, augmenting concerns on climate change, global economic stability, and sustainability on fossil resources. Therefore, the production of fuels and chemicals from alternative and renewable resources has attracted considerable and growing attention. Ethanol is a promising biofuel that can reduce the consumption of gasoline in the transportation sector and related greenhouse gas (GHG) emissions. Lignocellulosic biomass is a promising feedstock to produce bioethanol (cellulosic ethanol) because of its abundance and low cost. Since the conversion of lignocellulose to ethanol is complex and expensive, the cellulosic ethanol price cannot compete with those of the fossil derivate fuels. A promising strategy to lower the production cost of cellulosic ethanol is developing a biorefinery which produces ethanol and other high-value chemicals from lignocellulose. The selection of such chemicals is difficult because there are hundreds of products that can be produced from lignocellulose. Multiple reviews and reports have described a small group of lignocellulose derivate compounds that have the potential to be commercialized. Some of these products are in the bench scale and require extensive research and time before they can be industrially produced. This review examines chemicals and materials with a Technology Readiness Level (TRL) of at least 8, which have reached a commercial scale and could be shortly or immediately integrated into a cellulosic ethanol process.
Collapse
Affiliation(s)
- Oscar Rosales-Calderon
- Department of Biotechnology, Lorena School of Engineering, University of Sao Paulo, Estrada Municipal do Campinho, Lorena, SP CEP 12602-810 Brazil
| | - Valdeir Arantes
- Department of Biotechnology, Lorena School of Engineering, University of Sao Paulo, Estrada Municipal do Campinho, Lorena, SP CEP 12602-810 Brazil
| |
Collapse
|
43
|
Ferone M, Raganati F, Olivieri G, Marzocchella A. Bioreactors for succinic acid production processes. Crit Rev Biotechnol 2019; 39:571-586. [DOI: 10.1080/07388551.2019.1592105] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mariateresa Ferone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- UCD School of Agriculture & Food Science, University College Dublin, Dublin, Ireland
| | - Francesca Raganati
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Giuseppe Olivieri
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Antonio Marzocchella
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
44
|
Cimini D, Zaccariello L, D’Ambrosio S, Lama L, Ruoppolo G, Pepe O, Faraco V, Schiraldi C. Improved production of succinic acid from Basfia succiniciproducens growing on A. donax and process evaluation through material flow analysis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:22. [PMID: 30740143 PMCID: PMC6360672 DOI: 10.1186/s13068-019-1362-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/25/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Due to its wide range of applications in the food, pharmaceutical and chemical fields, microbial synthesis of succinic acid is receiving growing attention, generating already relevant industrial results, as well as fueling constant research for improvements. In order to develop a sustainable process, a special focus is now set on the exploitation and conversion of lignocellulosic biomasses into platform chemicals. RESULTS In the present work we used Basfia succiniciproducens BPP7 in separated hydrolysis and fermentation experiments with Arundo donax as starting material. Fed-batch strategies showed a maximal production of about 37 g/L of succinic acid after 43 h of growth and a productivity of 0.9 g/L h on the pilot scale. Global mass balance calculations demonstrated a hydrolysis and fermentation efficiency of about 75%. Moreover, the application of a material flow analysis showed the obtainment of 88.5 and 52 % of succinic acid, per kg of virgin biomass and on the total generated output, respectively. CONCLUSIONS The use of fed-batch strategies for the growth of B. succiniciproducens on A. donax improved the titer and productivity of succinic acid on pre-pilot scale. Process evaluation through material flow analysis showed successful results and predicted a yield of succinic acid of about 30% in a fed-batch process that uses A. donax as only carbon source also in the feed. Preliminary considerations on the possibility to achieve an energetic valorization of the residual solid coming from the fermentation process were also carried out.
Collapse
Affiliation(s)
- Donatella Cimini
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Via de Crecchio 7, 80138 Naples, Italy
| | - Lucio Zaccariello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sergio D’Ambrosio
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Via de Crecchio 7, 80138 Naples, Italy
| | - Licia Lama
- Institute of Biomolecular Chemistry (ICB), National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Naples Italy
| | - Giovanna Ruoppolo
- Istituto di Ricerche sulla Combustione (IRC), National Research Council, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Via Università 100, 80055 Portici, Naples Italy
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Via de Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
45
|
|
46
|
Zhang W, Zhang T, Song M, Dai Z, Zhang S, Xin F, Dong W, Ma J, Jiang M. Metabolic Engineering of Escherichia coli for High Yield Production of Succinic Acid Driven by Methanol. ACS Synth Biol 2018; 7:2803-2811. [PMID: 30300546 DOI: 10.1021/acssynbio.8b00109] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methanol is increasingly becoming an attractive carbon feedstock for the production of various biochemicals due to its high abundance and low price. In this study, when methanol assimilation module was introduced into succinic acid producing Escherichia coli by employing the NAD-dependent methanol dehydrogenase from Bacillus methanolicus and ribulose monophosphate pathway from different donor organisms, succinic acid yield was increased from 0.91 ± 0.08 g/g to 0.98 ± 0.11 g/g with methanol as an auxiliary substrate under the anaerobic fermentation. Further 13C-labeling experiments showed that the recombinant strain successfully converted methanol into succinic acid, as the carbon atom of carboxyl group in succinic acid was labeled by 13C. It was found that the NADH generated by methanol oxidation would benefit succinate production, as the NADH/NAD+ ratio in vivo was decreased from 0.67 to 0.45 in the engineered strain, indicating that the efficiency of succinic acid synthesis was significantly improved when driven by methanol. This study represents a successful case for the development of reducing chemical production using methanol as an auxiliary substrate.
Collapse
Affiliation(s)
- Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Ting Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Meng Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Zhongxue Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Shangjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
47
|
Pang J, Li X, Zou W, Tang C, Wang Y, Dong L. Synthesis of Surface‐Controlled CePO4and Its Application for Catalyzed Decarbonylation of Lactic Acid to Acetaldehyde. ChemistrySelect 2018. [DOI: 10.1002/slct.201802285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jun Pang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan ProvinceChina West Normal University Nanchong Sichuan 637002, PR China
- School of Chemistry and Chemical EngineeringChongqing University of Technology Chongqing 400054, PR China
| | - Xinli Li
- School of Chemistry and Chemical EngineeringChongqing University of Technology Chongqing 400054, PR China
| | - Weixin Zou
- Jiangsu Key Laboratory of Vehicle Emissions ControlCenter of Modern AnalysisNanjing University Nanjing 210093, PR China
| | - Congming Tang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan ProvinceChina West Normal University Nanchong Sichuan 637002, PR China
- School of Chemistry and Chemical EngineeringChongqing University of Technology Chongqing 400054, PR China
| | - Yu Wang
- School of Chemistry and Life ScienceGuizhou Education University Guiyang 550018, PR China
| | - Lin Dong
- Jiangsu Key Laboratory of Vehicle Emissions ControlCenter of Modern AnalysisNanjing University Nanjing 210093, PR China
| |
Collapse
|
48
|
Wang C, Su X, Sun W, Zhou S, Zheng J, Zhang M, Sun M, Xue J, Liu X, Xing J, Chen S. Efficient production of succinic acid from herbal extraction residue hydrolysate. BIORESOURCE TECHNOLOGY 2018; 265:443-449. [PMID: 29935453 DOI: 10.1016/j.biortech.2018.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
In this study, six different herbal-extraction residues were evaluated for succinic acid production in terms of chemical composition before and after dilute acid pretreatment (DAP) and sugar release performance. Chemical composition showed that pretreated residues of Glycyrrhiza uralensis Fisch (GUR) and Morus alba L. (MAR) had the highest cellulose content, 50% and 52%, respectively. Higher concentrations of free sugars (71.6 g/L total sugar) and higher hydrolysis yield (92%) were both obtained under 40 FPU/g DM at 10% solid loading for GUR. Using scanning electron microscopy (SEM), GUR was found to show a less compact structure due to process of extraction. Specifically, the fibers in pretreated GUR were coarse and disordered compared with that of GUR indicated by SEM. Finally, 65 g/L succinic acid was produced with a higher yield of 0.89 g/g total sugar or 0.49 g/g GUR. Our results illustrate the potential of GUR for succinic acid production.
Collapse
Affiliation(s)
- Caixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Xinyao Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China; School of Life Science, Huai Bei Normal University, Huaibei 23500, PR China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Sijing Zhou
- Beijing Radiation Center, Beijing 100015, PR China
| | - Junyu Zheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Mengting Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Mengchu Sun
- School of Life Science, Huai Bei Normal University, Huaibei 23500, PR China
| | - Jianping Xue
- School of Life Science, Huai Bei Normal University, Huaibei 23500, PR China
| | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jianmin Xing
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China.
| |
Collapse
|
49
|
Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes. Appl Microbiol Biotechnol 2018; 102:9893-9910. [PMID: 30259101 DOI: 10.1007/s00253-018-9379-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022]
Abstract
Due to environmental issues and the depletion of fossil-based resources, ecofriendly sustainable biomass-based chemical production has been given more attention recently. Succinic acid (SA) is one of the top value added bio-based chemicals. It can be synthesized through microbial fermentation using various waste steam bioresources. Production of chemicals from waste streams has dual function as it alleviates environmental concerns; they could have caused because of their improper disposal and transform them into valuable products. To date, Actinobacillus succinogenes is termed as the best natural SA producer. However, few reviews regarding SA production by A. succinogenes were reported. Herewith, pathways and metabolic engineering strategies, biomass pretreatment and utilization, and process optimization related with SA fermentation by A. succinogenes were discussed in detail. In general, this review covered vital information including merits, achievements, progresses, challenges, and future perspectives in SA production using A. succinogenes. Therefore, it is believed that this review will provide platform to understand the potential of the strain and tackle existing hurdles so as to develop superior strain for industrial applications. It will also be used as a baseline for identification, isolation, and improvement of other SA-producing microbes.
Collapse
|
50
|
Chen X, Zhou Y, Zhang D. EngineeringCorynebacterium crenatumfor enhancing succinic acid production. J Food Biochem 2018. [DOI: 10.1111/jfbc.12645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoju Chen
- College of Chemistry and Material Engineering Chaohu University Chaohu China
| | - Yaojie Zhou
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Di Zhang
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| |
Collapse
|