1
|
Du Y, Lv X, Siebenmorgen T, Popowicz G, Feng C, Ma Y, Wang Y. Enhancing Catalytic Activity of a Baeyer-Villiger monooxygenase from Oceanicola granulosus: Simultaneous Engineering of the Distal Site and Active Site. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40448641 DOI: 10.1021/acs.jafc.5c01791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
Enzymatic synthesis of δ-lactones using Baeyer-Villiger monooxygenases (BVMOs) has potential in the fragrance and flavor industries but is constrained by poor activity toward ortho-alkyl-substituted cyclopentanones, key δ-lactone precursors. We determined the crystal structure of a BVMO derived from Oceanicola granulosus (OgBVMO), uncovering a unique loop adjacent to key catalytic residue R335. Site-saturation mutagenesis of loop residues A338 and A339 identified the A339E variant, obtaining a 2.4- to 3-fold increase in catalytic activity toward ortho-alkyl-substituted cyclopentanones (2-methyl-, 2-ethyl-, 2-hexyl-, and 2-heptylcyclopentanone). Further engineering the substrate-binding pocket yielded the Q442N variant, improving activity by 2.7-3.8-fold. Remarkably, the combinatorial mutant A339E/Q442N achieved 3.3-5.2-fold higher activity than the wild-type. Molecular dynamics simulations indicated that these improvements were driven by more favorable nucleophilic attack distances, underscoring the synergistic effects of distal and active-site mutations. These findings offer valuable insights into enhancing the catalytic activity of BVMOs, supporting the green manufacturing of high-value flavor compounds.
Collapse
Affiliation(s)
- Yu Du
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- School of Public Health, Qilu Medical University, Zibo 255300, China
| | - Xiang Lv
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214129, China
| | - Till Siebenmorgen
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg 85764, Germany
- TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Technical University of Munich, Munich 80539, Germany
| | - Grzegorz Popowicz
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg 85764, Germany
- TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Technical University of Munich, Munich 80539, Germany
| | - Chenhao Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yunjian Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Youmei Institute of Intelligent Bio-Manufacturing Co. Ltd, Foshan 528012, China
| |
Collapse
|
2
|
Yin CF, Xu Y, Li T, Zhou NY. Wide distribution of the sad gene cluster for sub-terminal oxidation in alkane utilizers. Environ Microbiol 2022; 24:6307-6319. [PMID: 35837858 DOI: 10.1111/1462-2920.16124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/04/2022] [Accepted: 07/01/2022] [Indexed: 01/12/2023]
Abstract
Alkane constitutes major fractions of crude oils, and its microbial aerobic degradation dominantly follows the terminal oxidation and the sub-terminal pathways. However, the latter one received much less attention, especially since the related genes were yet to be fully defined. Here, we isolated a bacterium designated Acinetobacter sp. strain NyZ410, capable of growing on alkanes with a range of chain lengths and derived sub-terminal oxidation products. From its genome, a secondary alcohol degradation gene cluster (sad) was identified to be likely involved in converting the aliphatic secondary alcohols (the sub-terminal oxidation products of alkanes) to the corresponding primary alcohols by removing two-carbon unit. On this cluster, sadC encoded an alcohol dehydrogenase converting the aliphatic secondary alcohols to the corresponding ketones; sadD encoded a Baeyer-Villiger monooxygenase catalysing the conversion of the aliphatic ketones to the corresponding esters; SadA and SadB are two esterases hydrolyzing aliphatic esters to the primary alcohols and acetic acids. Bioinformatics analyses indicated that the sad cluster was widely distributed in the genomes of probable alkane degraders, apparently coexisting (64%) with the signature enzymes AlkM and AlmA for alkane terminal oxidation in 350 bacterial genomes. It suggests that the alkane sub-terminal oxidation may be more ubiquitous than previously thought.
Collapse
Affiliation(s)
- Chao-Fan Yin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Two enantiocomplementary Baeyer-Villiger monooxygenases newly identified for asymmetric oxyfunctionalization of thioether. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Paul CE, Eggerichs D, Westphal AH, Tischler D, van Berkel WJH. Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnol Adv 2021; 51:107712. [PMID: 33588053 DOI: 10.1016/j.biotechadv.2021.107712] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Flavoprotein monooxygenases (FPMOs) are single- or two-component enzymes that catalyze a diverse set of chemo-, regio- and enantioselective oxyfunctionalization reactions. In this review, we describe how FPMOs have evolved from model enzymes in mechanistic flavoprotein research to biotechnologically relevant catalysts that can be applied for the sustainable production of valuable chemicals. After a historical account of the development of the FPMO field, we explain the FPMO classification system, which is primarily based on protein structural properties and electron donor specificities. We then summarize the most appealing reactions catalyzed by each group with a focus on the different types of oxygenation chemistries. Wherever relevant, we report engineering strategies that have been used to improve the robustness and applicability of FPMOs.
Collapse
Affiliation(s)
- Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Daniel Eggerichs
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
5
|
Ren SM, Liu F, Wu YQ, Chen Q, Zhang ZJ, Yu HL, Xu JH. Identification two key residues at the intersection of domains of a thioether monooxygenase for improving its sulfoxidation performance. Biotechnol Bioeng 2020; 118:737-744. [PMID: 33073356 DOI: 10.1002/bit.27604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/20/2020] [Accepted: 10/11/2020] [Indexed: 02/01/2023]
Abstract
AcCHMO, a cyclohexanone monooxygenase from Acinetobacter calcoaceticus, is a typical Type I Baeyer-Villiger monooxygenase (BVMO). We previously obtained the AcCHMOM6 mutant, which oxidizes omeprazole sulfide (OPS) to the chiral sulfoxide drug esomeprazole. To further improve the catalytic efficiency of the AcCHMOM6 mutant, a focused mutagenesis strategy was adopted at the intersections of the FAD-binding domain, NADPH-binding domain, and α-helical domain based on structural characteristics of AcCHMO. By using focused mutagenesis and subsequent global evolution two key residues (L55 and P497) at the intersections of the domains were identified. Mutant of L55Y improved catalytic efficiency significantly, whereas the P497S mutant alleviated substrate inhibition remarkably. AcCHMOM7 (L55Y/P497S) was obtained by combining the two mutations, which increased the specific activity from 18.5 (M6) to 108 U/g, and an increase in the Ki of the substrate OPS from 34 to 265 μM. The results indicate that catalytic performance can be elevated by modification of the sensitive sites at the intersection of the domains of AcCHMO. The results also provided some insights for the engineering of other Type I BVMOs or other multidomain proteins.
Collapse
Affiliation(s)
- Shi-Miao Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yin-Qi Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Mansouri HR, Mihovilovic MD, Rudroff F. Investigation of a New Type I Baeyer-Villiger Monooxygenase from Amycolatopsis thermoflava Revealed High Thermodynamic but Limited Kinetic Stability. Chembiochem 2020; 21:971-977. [PMID: 31608538 PMCID: PMC7187199 DOI: 10.1002/cbic.201900501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/11/2019] [Indexed: 12/11/2022]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are remarkable biocatalysts, but, due to their low stability, their application in industry is hampered. Thus, there is a high demand to expand on the diversity and increase the stability of this class of enzyme. Starting from a known thermostable BVMO sequence from Thermocrispum municipale (TmCHMO), a novel BVMO from Amycolaptosis thermoflava (BVMOFlava ), which was successfully expressed in Escherichia coli BL21(DE3), was identified. The activity and stability of the purified enzyme was investigated and the substrate profile for structurally different cyclohexanones and cyclobutanones was assigned. The enzyme showed a lower activity than that of cyclohexanone monooxygenase (CHMOAcineto ) from Acinetobacter sp., as the prototype BVMO, but indicated higher kinetic stability by showing a twofold longer half-life at 30 °C. The thermodynamic stability, as represented by the melting temperature, resulted in a Tm value of 53.1 °C for BVMOFlava , which was comparable to the Tm of TmCHMO (ΔTm =1 °C) and significantly higher than the Tm value for CHMOAcineto ((ΔTm =14.6 °C)). A strong deviation between the thermodynamic and kinetic stabilities of BVMOFlava was observed; this might have a major impact on future enzyme discovery for BVMOs and their synthetic applications.
Collapse
Affiliation(s)
- Hamid R. Mansouri
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 91060ViennaAustria
| | | | - Florian Rudroff
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 91060ViennaAustria
| |
Collapse
|
7
|
Natural Variation in the ‘Control Loop’ of BVMOAFL210 and Its Influence on Regioselectivity and Sulfoxidation. Catalysts 2020. [DOI: 10.3390/catal10030339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are flavin-dependent enzymes that primarily convert ketones to esters, but can also catalyze heteroatom oxidation. Several structural studies have highlighted the importance of the ‘control loop’ in BVMOs, which adopts different conformations during catalysis. Central to the ‘control loop’ is a conserved tryptophan that has been implicated in NADP(H) binding. BVMOAFL210 from Aspergillus flavus, however, contains a threonine in the equivalent position. Here, we report the structure of BVMOAFL210 in complex with NADP+ in both the ‘open’ and ‘closed’ conformations. In neither conformation does Thr513 contact the NADP+. Although mutagenesis of Thr513 did not significantly alter the substrate scope, changes in peroxyflavin stability and reaction rates were observed. Mutation of this position also brought about changes in the regio- and enantioselectivity of the enzyme. Moreover, lower rates of overoxidation during sulfoxidation of thioanisole were also observed.
Collapse
|
8
|
Schmidt S, Bornscheuer UT. Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:231-281. [DOI: 10.1016/bs.enz.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Fürst MJLJ, Gran-Scheuch A, Aalbers FS, Fraaije MW. Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03396] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maximilian J. L. J. Fürst
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Alejandro Gran-Scheuch
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Friso S. Aalbers
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| |
Collapse
|
10
|
Fürst MJLJ, Boonstra M, Bandstra S, Fraaije MW. Stabilization of cyclohexanone monooxygenase by computational and experimental library design. Biotechnol Bioeng 2019; 116:2167-2177. [PMID: 31124128 PMCID: PMC6836875 DOI: 10.1002/bit.27022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 12/23/2022]
Abstract
Enzymes often by far exceed the activity, selectivity, and sustainability achieved with chemical catalysts. One of the main reasons for the lack of biocatalysis in the chemical industry is the poor stability exhibited by many enzymes when exposed to process conditions. This dilemma is exemplified in the usually very temperature‐sensitive enzymes catalyzing the Baeyer–Villiger reaction, which display excellent stereo‐ and regioselectivity and offer a green alternative to the commonly used, explosive peracids. Here we describe a protein engineering approach applied to cyclohexanone monooxygenase from Rhodococcus sp. HI‐31, a substrate‐promiscuous enzyme that efficiently catalyzes the production of the nylon‐6 precursor ε‐caprolactone. We used a framework for rapid enzyme stabilization by computational libraries (FRESCO), which predicts protein‐stabilizing mutations. From 128 screened point mutants, approximately half had a stabilizing effect, albeit mostly to a small degree. To overcome incompatibility effects observed upon combining the best hits, an easy shuffled library design strategy was devised. The most stable and highly active mutant displayed an increase in unfolding temperature of 13°C and an approximately 33x increase in half‐life at 30°C. In contrast to the wild‐type enzyme, this thermostable 8x mutant is an attractive biocatalyst for biotechnological applications.
Collapse
Affiliation(s)
| | - Marjon Boonstra
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Selle Bandstra
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Expanding the substrate scope of phenylacetone monooxygenase from Thermobifida fusca towards cyclohexanone by protein engineering. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2018.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Fürst MJLJ, Romero E, Gómez Castellanos JR, Fraaije MW, Mattevi A. Side-Chain Pruning Has Limited Impact on Substrate Preference in a Promiscuous Enzyme. ACS Catal 2018; 8:11648-11656. [PMID: 30687578 PMCID: PMC6345240 DOI: 10.1021/acscatal.8b03793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/26/2018] [Indexed: 01/02/2023]
Abstract
![]()
Detoxifying
enzymes such as flavin-containing monooxygenases deal
with a huge array of highly diverse xenobiotics and toxic compounds.
In addition to being of high physiological relevance, these drug-metabolizing
enzymes are useful catalysts for synthetic chemistry. Despite the
wealth of studies, the molecular basis of their relaxed substrate
selectivity remains an open question. Here, we addressed this issue
by applying a cumulative alanine mutagenesis approach to cyclohexanone
monooxygenase from Thermocrispum municipale, a flavin-dependent
Baeyer–Villiger monooxygenase which we chose as a model system
because of its pronounced thermostability and substrate promiscuity.
Simultaneous removal of up to eight noncatalytic active-site side
chains including four phenylalanines had no effect on protein folding,
thermostability, and cofactor loading. We observed a linear decrease
in activity, rather than a selectivity switch, and attributed this
to a less efficient catalytic environment in the enlarged active-site
space. Time-resolved kinetic studies confirmed this interpretation.
We also determined the crystal structure of the enzyme in complex
with a mimic of the reaction intermediate that shows an unaltered
overall protein conformation. These findings led us to propose that
this cyclohexanone monooxygenase may lack a distinct substrate selection
mechanism altogether. We speculate that the main or exclusive function
of the protein shell in promiscuous enzymes might be the stabilization
and accessibility of their very reactive catalytic intermediates.
Collapse
Affiliation(s)
- Maximilian J. L. J. Fürst
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Elvira Romero
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | | | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy
| |
Collapse
|
13
|
Hollmann F, Kara S, Opperman DJ, Wang Y. Biocatalytic synthesis of lactones and lactams. Chem Asian J 2018; 13:3601-3610. [PMID: 30256534 PMCID: PMC6348383 DOI: 10.1002/asia.201801180] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/26/2018] [Indexed: 01/15/2023]
Abstract
Cyclic esters and amides (lactones and lactams) are important active ingredients and polymer building blocks. In recent years, numerous biocatalytic methods for their preparation have been developed including enzymatic and chemoenzymatic Baeyer-Villiger oxidations, oxidative lactonisation of diols, and reductive lactonisation and lactamisation of ketoesters. The current state of the art of these methods is reviewed.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology, Delft University of Technology, The Netherlands
| | - Selin Kara
- Department of Engineering, Biological and Chemical Engineering, Aarhus University, Denmark
| | | | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
14
|
Ji Y, Mertens AM, Gertler C, Fekiri S, Keser M, Sauer DF, Smith KEC, Schwaneberg U. Directed OmniChange Evolution Converts P450 BM3 into an Alkyltrimethylammonium Hydroxylase. Chemistry 2018; 24:16865-16872. [DOI: 10.1002/chem.201803806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Yu Ji
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Alan Maurice Mertens
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Christoph Gertler
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Sallama Fekiri
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Merve Keser
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Daniel F. Sauer
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Kilian E. C. Smith
- Institute for Environmental Research RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstraße 50 52074 Aachen Germany
| |
Collapse
|
15
|
Carvalho ATP, Dourado DFAR, Skvortsov T, de Abreu M, Ferguson LJ, Quinn DJ, Moody TS, Huang M. Spatial requirement for PAMO for transformation of non-native linear substrates. Phys Chem Chem Phys 2018; 20:2558-2570. [PMID: 29318252 DOI: 10.1039/c7cp07172h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phenylacetone monooxygenase is the most stable and thermo-tolerant member of the Baeyer-Villiger monooxygenases family, and therefore it is an ideal candidate for the synthesis of industrially relevant ester or lactone compounds. However, its limited substrate scope has largely limited its industrial applications. Linear substrates are interesting from an industrial point of view, it is thus necessary to identify the essential spatial requirement for achieving high conversions for non-native linear substrates. Here using molecular dynamics simulations, we compared the conversion of a non-native linear substrate 2-octanone and the native substrate phenylacetone, catalyzed by the WT enzyme and a quadruple variant P253F/G254A/R258M/L443F that exhibits significantly improved activity towards 2-octanone. We uncovered that a remarkable movement of L289 is crucial for a reshaping of the active site of the quadruple variant so as to prevent the aliphatic substrate from moving away from the C4a-peroxyflavin, thus enabling it to keep a catalytically relevant pose during the oxygenation process. By performing steady-state kinetic analysis of two single-mutation variants at position 258, we further validated that the L289 reposition is attributed to the combined effect of quadruple mutations. In order to further explore the substrate scope of PAMO we also studied the binding of cyclopentanone and 2-phenylcyclohexanone, which are the typical substrates of CPMO in group I and CHMO in group III, respectively. Our study provides fundamental atomic-level insights in rational engineering of PAMO for wide applications in industrial biocatalysis, in particular, in the biotransformation of long-chain aliphatic oils into potential biodiesels.
Collapse
Affiliation(s)
- Alexandra T P Carvalho
- School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Carvalho ATP, Dourado DFAR, Skvortsov T, de Abreu M, Ferguson LJ, Quinn DJ, Moody TS, Huang M. Catalytic mechanism of phenylacetone monooxygenases for non-native linear substrates. Phys Chem Chem Phys 2018; 19:26851-26861. [PMID: 28951930 DOI: 10.1039/c7cp03640j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Phenylacetone monooxygenase (PAMO) is the most stable and thermo-tolerant member of the Baeyer-Villiger monooxygenase family, and therefore it is an ideal candidate for the synthesis of industrially relevant compounds. However, its limited substrate scope has largely limited its industrial applications. In the present work, we provide, for the first time, the catalytic mechanism of PAMO for the native substrate phenylacetone as well as for a linear non-native substrate 2-octanone, using molecular dynamics simulations, quantum mechanics and quantum mechanics/molecular mechanics calculations. We provide a theoretical basis for the preference of the enzyme for the native aromatic substrate over non-native linear substrates. Our study provides fundamental atomic-level insights that can be employed in the rational engineering of PAMO for wide applications in industrial biocatalysis, in particular, in the biotransformation of long-chain aliphatic oils into potential biodiesels.
Collapse
Affiliation(s)
- Alexandra T P Carvalho
- School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Balke K, Beier A, Bornscheuer UT. Hot spots for the protein engineering of Baeyer-Villiger monooxygenases. Biotechnol Adv 2018; 36:247-263. [DOI: 10.1016/j.biotechadv.2017.11.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
|
18
|
Bisagni S, Abolhalaj M, de Brevern AG, Rebehmed J, Hatti-Kaul R, Mamo G. Enhancing the Activity of a Dietzia
sp. D5 Baeyer-Villiger Monooxygenase towards Cyclohexanone by Saturation Mutagenesis. ChemistrySelect 2017. [DOI: 10.1002/slct.201701212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Serena Bisagni
- Biotechnology, Department of Chemistry; Centre for Chemistry and Chemical Engineering; Lund University; Box 124 SE-221 00 Lund Sweden
- Johnson Matthey; Cambridge Science Park 28 CB4 0FP Cambridge United Kingdom
| | - Milad Abolhalaj
- Department of Immunotechnology; Medicon Village; Scheelevägen 2 22100 Lund Sweden
| | - Alexandre G. de Brevern
- Inserm U1134; Paris France
- Université Paris Diderot; Sorbonne, Paris Cité, UMR_S 1134; Paris France
- Institut National de la Transfusion Sanguine; Paris France
- Laboratory of Excellence GR-Ex; Paris France
| | - Joseph Rebehmed
- Inserm U1134; Paris France
- Université Paris Diderot; Sorbonne, Paris Cité, UMR_S 1134; Paris France
- Institut National de la Transfusion Sanguine; Paris France
- Laboratory of Excellence GR-Ex; Paris France
- Department of Computer Science and Mathematics; Lebanese American University; Byblos 1 h401 2010 Lebanon
| | - Rajni Hatti-Kaul
- Biotechnology, Department of Chemistry; Centre for Chemistry and Chemical Engineering; Lund University; Box 124 SE-221 00 Lund Sweden
| | - Gashaw Mamo
- Biotechnology, Department of Chemistry; Centre for Chemistry and Chemical Engineering; Lund University; Box 124 SE-221 00 Lund Sweden
| |
Collapse
|
19
|
Balke K, Bäumgen M, Bornscheuer UT. Controlling the Regioselectivity of Baeyer-Villiger Monooxygenases by Mutation of Active-Site Residues. Chembiochem 2017; 18:1627-1638. [PMID: 28504873 DOI: 10.1002/cbic.201700223] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 11/12/2022]
Abstract
Baeyer-Villiger monooxygenase (BVMO)-mediated regiodivergent conversions of asymmetric ketones can lead to the formation of "normal" or "abnormal" lactones. In a previous study, we were able to change the regioselectivity of a BVMO by mutation of the active-site residues to smaller amino acids, which thus created more space. In this study, we demonstrate that this method can also be used for other BVMO/substrate combinations. We investigated the regioselectivity of 2-oxo-Δ3 -4,5,5-trimethylcyclopentenylacetyl-CoA monooxygenase from Pseudomonas putida (OTEMO) for cis-bicyclo[3.2.0]hept-2-en-6-one (1) and trans-dihydrocarvone (2), and we were able to switch the regioselectivity of this enzyme for one of the substrate enantiomers. The OTEMO wild-type enzyme converted (-)-1 into an equal (50:50) mixture of the normal and abnormal products. The F255A/F443V variant produced 90 % of the normal product, whereas the W501V variant formed up to 98 % of the abnormal product. OTEMO F255A exclusively produced the normal lactone from (+)-2, whereas the wild-type enzyme was selective for the production of the abnormal product. The positions of these amino acids were equivalent to those mutated in the cyclohexanone monooxygenases from Arthrobacter sp. and Acinetobacter sp. (CHMOArthro and CHMOAcineto ) to switch their regioselectivity towards (+)-2, which suggests that there are hot spots in the active site of BVMOs that can be targeted with the aim to change the regioselectivity.
Collapse
Affiliation(s)
- Kathleen Balke
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Marcus Bäumgen
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| |
Collapse
|
20
|
van Beek HL, Romero E, Fraaije MW. Engineering Cyclohexanone Monooxygenase for the Production of Methyl Propanoate. ACS Chem Biol 2017; 12:291-299. [PMID: 27935281 DOI: 10.1021/acschembio.6b00965] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A previous study showed that cyclohexanone monooxygenase from Acinetobacter calcoaceticus (AcCHMO) catalyzes the Baeyer-Villiger oxidation of 2-butanone, yielding ethyl acetate and methyl propanoate as products. Methyl propanoate is of industrial interest as a precursor of acrylic plastic. Here, various residues near the substrate and NADP+ binding sites in AcCHMO were subjected to saturation mutagenesis to enhance both the activity on 2-butanone and the regioselectivity toward methyl propanoate. The resulting libraries were screened using whole cell biotransformations, and headspace gas chromatography-mass spectrometry was used to identify improved AcCHMO variants. This revealed that the I491A AcCHMO mutant exhibits a significant improvement over the wild type enzyme in the desired regioselectivity using 2-butanone as a substrate (40% vs 26% methyl propanoate, respectively). Another interesting mutant is the T56S AcCHMO mutant, which exhibits a higher conversion yield (92%) and kcat (0.5 s-1) than wild type AcCHMO (52% and 0.3 s-1, respectively). Interestingly, the uncoupling rate for the T56S AcCHMO mutant is also significantly lower than that for the wild type enzyme. The T56S/I491A double mutant combined the beneficial effects of both mutations leading to higher conversion and improved regioselectivity. This study shows that even for a relatively small aliphatic substrate (2-butanone), catalytic efficiency and regioselectivity can be tuned by structure-inspired enzyme engineering.
Collapse
Affiliation(s)
- Hugo L. van Beek
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Elvira Romero
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
21
|
Li G, Fürst MJLJ, Mansouri HR, Ressmann AK, Ilie A, Rudroff F, Mihovilovic MD, Fraaije MW, Reetz MT. Manipulating the stereoselectivity of the thermostable Baeyer–Villiger monooxygenase TmCHMO by directed evolution. Org Biomol Chem 2017; 15:9824-9829. [DOI: 10.1039/c7ob02692g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The thermostable Baeyer–Villiger monooxygenase TmCHMO and evolved mutants are viable catalysts in stereoselective reactions of structurally different ketones.
Collapse
Affiliation(s)
- Guangyue Li
- Max-Planck-Institut für Kohlenforschung
- Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
- Philipps-Universität
| | | | | | - Anna K. Ressmann
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
| | - Adriana Ilie
- Max-Planck-Institut für Kohlenforschung
- Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
- Philipps-Universität
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
| | | | - Marco W. Fraaije
- Molecular Enzymology Group
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung
- Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
- Philipps-Universität
| |
Collapse
|
22
|
Romero E, Castellanos JRG, Mattevi A, Fraaije MW. Characterization and Crystal Structure of a Robust Cyclohexanone Monooxygenase. Angew Chem Int Ed Engl 2016; 55:15852-15855. [PMID: 27873437 PMCID: PMC5213842 DOI: 10.1002/anie.201608951] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Indexed: 12/03/2022]
Abstract
Cyclohexanone monooxygenase (CHMO) is a promising biocatalyst for industrial reactions owing to its broad substrate spectrum and excellent regio‐, chemo‐, and enantioselectivity. However, the low stability of many Baeyer–Villiger monooxygenases is an obstacle for their exploitation in industry. Characterization and crystal structure determination of a robust CHMO from Thermocrispum municipale is reported. The enzyme efficiently converts a variety of aliphatic, aromatic, and cyclic ketones, as well as prochiral sulfides. A compact substrate‐binding cavity explains its preference for small rather than bulky substrates. Small‐scale conversions with either purified enzyme or whole cells demonstrated the remarkable properties of this newly discovered CHMO. The exceptional solvent tolerance and thermostability make the enzyme very attractive for biotechnology.
Collapse
Affiliation(s)
- Elvira Romero
- Department of Biotechnology, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - J Rubén Gómez Castellanos
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Marco W Fraaije
- Department of Biotechnology, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| |
Collapse
|
23
|
Romero E, Castellanos JRG, Mattevi A, Fraaije MW. Characterization and Crystal Structure of a Robust Cyclohexanone Monooxygenase. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608951] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Elvira Romero
- Department of Biotechnology; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
| | - J. Rubén Gómez Castellanos
- Department of Biology and Biotechnology “Lazzaro Spallanzani”; University of Pavia; Via Ferrata 9 27100 Pavia Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”; University of Pavia; Via Ferrata 9 27100 Pavia Italy
| | - Marco W. Fraaije
- Department of Biotechnology; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
| |
Collapse
|
24
|
Yang J, Ruff AJ, Hamer SN, Cheng F, Schwaneberg U. Screening through the PLICable promoter toolbox enhances protein production in Escherichia coli. Biotechnol J 2016; 11:1639-1647. [PMID: 27753230 DOI: 10.1002/biot.201600270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/26/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022]
Abstract
Escherichia coli is a common host for recombinant protein production in which production titers are highly dependent on the employed expression system. Promoters are thereby a key element to control gene expression levels. In this study, a novel PLICable promoter toolbox was developed which enables in a single cloning step and after a screening experiment to identify out of ten IPTG-inducible promoters (T7, A3, lpp, tac, pac, Sp6, lac, npr, trc and syn) the most suitable one for high level protein production. The target gene is cloned under the control of different promoters in a single and efficient cloning step using the ligase-free cloning method PLICing (phosphorothioate-based ligase-independent gene cloning). The promoter toolbox was firstly validated using three well producible proteins (a cellulase from a metagenome library, a phytase from Yersinia mollaretii and an alcohol dehydrogenase from Pseudomonas putida) and then applied to two enzymes (3D1 DNA polymerase and glutamate dehydrogenase mutant) which are poorly produced in E. coli. By applying our PLICable pET-promoter toolbox, the authors were able to increase production by two-fold for 3D1 DNA polymerase (lac promoter) and 29-fold for glutamate dehydrogenase mutant H52Y (trc promoter).
Collapse
Affiliation(s)
- Jianhua Yang
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
| | | | - Feng Cheng
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz Institut für Interaktive Materialien, Aachen, Germany
| |
Collapse
|
25
|
Ferroni FM, Tolmie C, Smit MS, Opperman DJ. Structural and Catalytic Characterization of a Fungal Baeyer-Villiger Monooxygenase. PLoS One 2016; 11:e0160186. [PMID: 27472055 PMCID: PMC4966971 DOI: 10.1371/journal.pone.0160186] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts that convert ketones to esters. Due to their high regio-, stereo- and enantioselectivity and ability to catalyse these reactions under mild conditions, they have gained interest as alternatives to chemical Baeyer-Villiger catalysts. Despite their widespread occurrence within the fungal kingdom, most of the currently characterized BVMOs are from bacterial origin. Here we report the catalytic and structural characterization of BVMOAFL838 from Aspergillus flavus. BVMOAFL838 converts linear and aryl ketones with high regioselectivity. Steady-state kinetics revealed BVMOAFL838 to show significant substrate inhibition with phenylacetone, which was more pronounced at low pH, enzyme and buffer concentrations. Para substitutions on the phenyl group significantly improved substrate affinity and increased turnover frequencies. Steady-state kinetics revealed BVMOAFL838 to preferentially oxidize aliphatic ketones and aryl ketones when the phenyl group are separated by at least two carbons from the carbonyl group. The X-ray crystal structure, the first of a fungal BVMO, was determined at 1.9 Å and revealed the typical overall fold seen in type I bacterial BVMOs. The active site Arg and Asp are conserved, with the Arg found in the “in” position. Similar to phenylacetone monooxygenase (PAMO), a two residue insert relative to cyclohexanone monooxygenase (CHMO) forms a bulge within the active site. Approximately half of the “variable” loop is folded into a short α-helix and covers part of the active site entry channel in the non-NADPH bound structure. This study adds to the current efforts to rationalize the substrate scope of BVMOs through comparative catalytic and structural investigation of different BVMOs.
Collapse
Affiliation(s)
- Felix Martin Ferroni
- Department of Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Carmien Tolmie
- Department of Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Martha Sophia Smit
- Department of Biotechnology, University of the Free State, Bloemfontein, South Africa
| | | |
Collapse
|
26
|
Sun Z, Lonsdale R, Wu L, Li G, Li A, Wang J, Zhou J, Reetz MT. Structure-Guided Triple-Code Saturation Mutagenesis: Efficient Tuning of the Stereoselectivity of an Epoxide Hydrolase. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02751] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhoutong Sun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Richard Lonsdale
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Lian Wu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guangyue Li
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Aitao Li
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Jianbo Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
27
|
Balke K, Schmidt S, Genz M, Bornscheuer UT. Switching the Regioselectivity of a Cyclohexanone Monooxygenase toward (+)-trans-Dihydrocarvone by Rational Protein Design. ACS Chem Biol 2016; 11:38-43. [PMID: 26505211 DOI: 10.1021/acschembio.5b00723] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The regioselectivity of the Baeyer-Villiger monooxygenase-catalyzed oxidation is governed mostly by electronic effects leading to the migration of the higher substituted residue. However, in some cases, substrate binding occurs in a way that the less substituted residue lies in an antiperiplanar orientation to the peroxy bond in the Criegee intermediate yielding in the formation of the "abnormal" lactone product. We are the first to demonstrate a complete switch in the regioselectivity of the BVMO from Arthrobacter sp. (CHMOArthro) as exemplified for (+)-trans-dihydrocarvone by redesigning the active site of the enzyme. In the designed triple mutant, the substrate binds in an inverted orientation leading to a ratio of 99:1 in favor of the normal lactone instead of exclusive formation of the abnormal lactone in case of the wild type enzyme. In order to validate our computational study, the beneficial mutations were successfully transferred to the CHMO from Acinetobacter sp. (CHMOAcineto), again yielding in a complete switch of regioselectivity.
Collapse
Affiliation(s)
- Kathleen Balke
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, 17487 Greifswald, Germany
| | - Sandy Schmidt
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, 17487 Greifswald, Germany
| | - Maika Genz
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, 17487 Greifswald, Germany
| | - Uwe T. Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, 17487 Greifswald, Germany
| |
Collapse
|
28
|
Fink MJ, Mihovilovic MD. Non-hazardous Baeyer-Villiger oxidation of levulinic acid derivatives: alternative renewable access to 3-hydroxypropionates. Chem Commun (Camb) 2015; 51:2874-7. [PMID: 25583122 DOI: 10.1039/c4cc08734h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Baeyer-Villiger monooxygenases catalyze the energetically challenging oxidation of levulinates (4-oxopentanoates) to 3-hydroxypropionic acid (3-HPA) derivates under ambient conditions, replacing propellant-grade H2O2 with aerial oxygen as the oxidant. This reaction enables a new pathway to a platform for chemical 3-HPA, an important intermediate in the non-petrol based production of a variety of bulk chemicals (acrylates, malonates, 1,3-propanediol).
Collapse
Affiliation(s)
- Michael J Fink
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria.
| | | |
Collapse
|
29
|
Parra LP, Acevedo JP, Reetz MT. Directed evolution of phenylacetone monooxygenase as an active catalyst for the Baeyer-Villiger conversion of cyclohexanone to caprolactone. Biotechnol Bioeng 2015; 112:1354-64. [PMID: 25675885 DOI: 10.1002/bit.25564] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/05/2015] [Indexed: 01/10/2023]
Abstract
Phenylacetone monooxygenase (PAMO) is an exceptionally robust Baeyer-Villiger monooxygenase, which makes it ideal for potential industrial applications. However, its substrate scope is limited, unreactive cyclohexanone being a prominent example. Such a limitation is unfortunate, because this particular transformation in an ecologically viable manner would be highly desirable, the lactone and the respective lactam being of considerable interest as monomers in polymer science. We have applied directed evolution in search of an active mutant for this valuable C-C activating reaction. Using iterative saturation mutagenesis (ISM), several active mutants were evolved, with only a minimal trade-off in terms of stability. The best mutants allow for quantitative conversion of 2 mM cyclohexanone within 1 h reaction time. In order to circumvent the NADP(+) regeneration problem, whole E. coli resting cells were successfully applied. Molecular dynamics simulations and induced fit docking throw light on the origin of enhanced PAMO activity. The PAMO mutants constitute ideal starting points for future directed evolution optimization necessary for an industrial process.
Collapse
Affiliation(s)
- Loreto P Parra
- Department of Synthetic Organic Chemistry, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.,Fachbereich Chemie Philipps-Universität Marburg, Marburg, Germany.,Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan P Acevedo
- Department of Synthetic Organic Chemistry, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.,Fachbereich Chemie Philipps-Universität Marburg, Marburg, Germany.,Facultad de Medicina y Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, Chile
| | - Manfred T Reetz
- Department of Synthetic Organic Chemistry, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany. .,Fachbereich Chemie Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
30
|
Tsakos M, Schaffert ES, Clement LL, Villadsen NL, Poulsen TB. Ester coupling reactions – an enduring challenge in the chemical synthesis of bioactive natural products. Nat Prod Rep 2015; 32:605-32. [DOI: 10.1039/c4np00106k] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review we investigate the use of complex ester fragment couplings within natural product total syntheses. Using examples from the literature up to 2014 we illustrate the state-of-the-art as well as the challenges within this area of organic synthesis.
Collapse
Affiliation(s)
- Michail Tsakos
- Chemical Biology Laboratory
- Department of Chemistry
- Aarhus University
- Aarhus C
- Denmark
| | - Eva S. Schaffert
- Chemical Biology Laboratory
- Department of Chemistry
- Aarhus University
- Aarhus C
- Denmark
| | - Lise L. Clement
- Chemical Biology Laboratory
- Department of Chemistry
- Aarhus University
- Aarhus C
- Denmark
| | - Nikolaj L. Villadsen
- Chemical Biology Laboratory
- Department of Chemistry
- Aarhus University
- Aarhus C
- Denmark
| | - Thomas B. Poulsen
- Chemical Biology Laboratory
- Department of Chemistry
- Aarhus University
- Aarhus C
- Denmark
| |
Collapse
|
31
|
Brondani PB, Dudek HM, Martinoli C, Mattevi A, Fraaije MW. Finding the switch: turning a baeyer-villiger monooxygenase into a NADPH oxidase. J Am Chem Soc 2014; 136:16966-9. [PMID: 25423359 DOI: 10.1021/ja508265b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
By a targeted enzyme engineering approach, we were able to create an efficient NADPH oxidase from a monooxygenase. Intriguingly, replacement of only one specific single amino acid was sufficient for such a monooxygenase-to-oxidase switch-a complete transition in enzyme activity. Pre-steady-state kinetic analysis and elucidation of the crystal structure of the C65D PAMO mutant revealed that the mutation introduces small changes near the flavin cofactor, resulting in a rapid decay of the peroxyflavin intermediate. The engineered biocatalyst was shown to be a thermostable, solvent tolerant, and effective cofactor-regenerating biocatalyst. Therefore, it represents a valuable new biocatalytic tool.
Collapse
Affiliation(s)
- Patrícia B Brondani
- Molecular Enzymology Group, University of Groningen , Nijenborgh 4, 9747AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Ceccoli RD, Bianchi DA, Rial DV. Flavoprotein monooxygenases for oxidative biocatalysis: recombinant expression in microbial hosts and applications. Front Microbiol 2014; 5:25. [PMID: 24567729 PMCID: PMC3915288 DOI: 10.3389/fmicb.2014.00025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/14/2014] [Indexed: 11/21/2022] Open
Abstract
External flavoprotein monooxygenases comprise a group of flavin-dependent oxidoreductases that catalyze the insertion of one atom of molecular oxygen into an organic substrate and the second atom is reduced to water. These enzymes are involved in a great number of metabolic pathways both in prokaryotes and eukaryotes. Flavoprotein monooxygenases have attracted the attention of researchers for several decades and the advent of recombinant DNA technology caused a great progress in the field. These enzymes are subjected to detailed biochemical and structural characterization and some of them are also regarded as appealing oxidative biocatalysts for the production of fine chemicals and valuable intermediates toward active pharmaceutical ingredients due to their high chemo-, stereo-, and regioselectivity. Here, we review the most representative reactions catalyzed both in vivo and in vitro by prototype flavoprotein monooxygenases, highlighting the strategies employed to produce them recombinantly, to enhance the yield of soluble proteins, and to improve cofactor regeneration in order to obtain versatile biocatalysts. Although we describe the most outstanding features of flavoprotein monooxygenases, we mainly focus on enzymes that were cloned, expressed and used for biocatalysis during the last years.
Collapse
Affiliation(s)
- Romina D Ceccoli
- Área Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario CONICET, Rosario, Argentina
| | - Dario A Bianchi
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Área Análisis de Medicamentos, Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Rosario, Argentina
| | - Daniela V Rial
- Área Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario CONICET, Rosario, Argentina
| |
Collapse
|