1
|
Schrey H, Lambert C, Stadler M. Fungi: Pioneers of chemical creativity - Techniques and strategies to uncover fungal chemistry. IMA Fungus 2025; 16:e142462. [PMID: 40093757 PMCID: PMC11909596 DOI: 10.3897/imafungus.16.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Natural product discovery from fungi for drug development and description of novel chemistry has been a tremendous success. This success is expected to accelerate even further, owing to the advent of sophisticated technical advances of technical advances that recently led to the discovery of an unparalleled biodiversity in the fungal kingdom. This review aims to give an overview on i) important secondary metabolite-derived drugs or drug leads, ii) discuss the analytical and strategic framework of how natural product discovery and drug lead identification transformed from earlier days to the present, iii) how knowledge of fungal biology and biodiversity facilitates the discovery of new compounds, and iv) point out endeavors in understanding fungal secondary metabolite chemistry in order to systematically explore fungal genomes by utilizing synthetic biology. An outlook is given, underlining the necessity for a collaborative and cooperative scenario to harness the full potential of the fungal secondary metabolome.
Collapse
Affiliation(s)
- Hedda Schrey
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Christopher Lambert
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Marc Stadler
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
2
|
Hu Z, Liu Q, Ouyang B, Wang G, Wei C, Zhao X. Recent advances in genetic engineering to enhance plant-polysaccharide-degrading enzyme expression in Penicillium oxalicum: A brief review. Int J Biol Macromol 2024; 278:134775. [PMID: 39153674 DOI: 10.1016/j.ijbiomac.2024.134775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
With the depletion of non-renewable fossil fuels, there has been an increasing emphasis on renewable biomass. Penicillium oxalicum is notable for its exceptional capacity to secrete a diverse array of enzymes that degrade plant polysaccharides into monosaccharides. These valuable monosaccharides can be harnessed in the production of bioethanol and other sustainable forms of energy. By enhancing the production of plant-polysaccharide-degrading enzymes (PPDEs) in P. oxalicum, we can optimize the utilization of plant biomass. This paper presents recent advances in augmenting PPDE expression in P. oxalicum through genetic engineering strategies involving protoplast preparation, transformation, and factors influencing PPDE gene expression.
Collapse
Affiliation(s)
- Ziyan Hu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Qiling Liu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Bei Ouyang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Guoping Wang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Chenyang Wei
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xihua Zhao
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
3
|
Badura J, van Wyk N, Zimmer K, Pretorius IS, von Wallbrunn C, Wendland J. PCR-based gene targeting in Hanseniaspora uvarum. FEMS Yeast Res 2023; 23:foad034. [PMID: 37500280 DOI: 10.1093/femsyr/foad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/09/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
Lack of gene-function analyses tools limits studying the biology of Hanseniaspora uvarum, one of the most abundant yeasts on grapes and in must. We investigated a rapid PCR-based gene targeting approach for one-step gene replacement in this diploid yeast. To this end, we generated and validated two synthetic antibiotic resistance genes, pFA-hygXL and pFA-clnXL, providing resistance against hygromycin and nourseothricin, respectively, for use with H. uvarum. Addition of short flanking-homology regions of 56-80 bp to these selection markers via PCR was sufficient to promote gene targeting. We report here the deletion of the H. uvarum LEU2 and LYS2 genes with these marker genes via two rounds of consecutive transformations, each resulting in the generation of auxotrophic strains (leu2/leu2; lys2/lys2). The hereby constructed leucine auxotrophic leu2/leu2 strain was subsequently complemented in a targeted manner, thereby further validating this approach. PCR-based gene targeting in H. uvarum was less efficient than in Saccharomyces cerevisiae. However, this approach, combined with the availability of two marker genes, provides essential tools for directed gene manipulations in H. uvarum.
Collapse
Affiliation(s)
- Jennifer Badura
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Niël van Wyk
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Kerstin Zimmer
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Christian von Wallbrunn
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| |
Collapse
|
4
|
Roux I, Chooi YH. Cre/ lox-Mediated Chromosomal Integration of Biosynthetic Gene Clusters for Heterologous Expression in Aspergillus nidulans. ACS Synth Biol 2022; 11:1186-1195. [PMID: 35168324 DOI: 10.1021/acssynbio.1c00458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Building strains of filamentous fungi for stable long-term heterologous expression of large biosynthetic pathways is limited by the low transformation efficiency or genetic stability of current methods. Here, we developed a system for targeted chromosomal integration of large biosynthetic gene clusters in Aspergillus nidulans based on site-specific recombinase-mediated cassette exchange. We built A. nidulans strains harboring a chromosomal landing pad for Cre/lox-mediated recombination and demonstrated efficient targeted integration of a 21 kb DNA fragment in a single step. We further evaluated the integration at two loci by analyzing the expression of a fluorescent reporter and the production of a heterologous polyketide metabolite. We compared chromosomal expression at those landing loci to episomal AMA1-based expression, which also shed light on uncharacterized aspects of episomal expression in filamentous fungi. This is the first demonstration of site-specific recombinase-mediated integration in filamentous fungi, setting the foundations for the further development of this tool.
Collapse
Affiliation(s)
- Indra Roux
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
5
|
Lin YY, Zhao S, Lin X, Zhang T, Li CX, Luo XM, Feng JX. Improvement of cellulase and xylanase production in Penicillium oxalicum under solid-state fermentation by flippase recombination enzyme/ recognition target-mediated genetic engineering of transcription repressors. BIORESOURCE TECHNOLOGY 2021; 337:125366. [PMID: 34144430 DOI: 10.1016/j.biortech.2021.125366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 05/15/2023]
Abstract
Penicillium oxalicum has received increasing attention as a potential cellulase-producer. In this study, a copper-controlled flippase recombination enzyme/recognition target (FLP/FRT)-mediated recombination system was constructed in P. oxalicum, to overcome limited availability of antibiotic resistance markers. Using this system, two crucial transcription repressor genes atf1 and cxrC for the production of cellulase and xylanase under solid-state fermentation (SSF) were simultaneously deleted, thereby leading to 2.4- to 29.1-fold higher cellulase and 78.9% to 130.8% higher xylanase production than the parental strain under SSF, respectively. Glucose and xylose released from hydrolysis of pretreated sugarcane bagasse achieved 10.6%-13.5% improvement by using the crude enzymes from the engineered strain Δatf1ΔcxrC::flp under SSF in comparison with that of the parental strain. Consequently, these results provide a feasible strategy for improved cellulase and xylanase production by filamentous fungi.
Collapse
Affiliation(s)
- Ying-Ying Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiong Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China.
| |
Collapse
|
6
|
Misslinger M, Hortschansky P, Brakhage AA, Haas H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118885. [PMID: 33045305 DOI: 10.1016/j.bbamcr.2020.118885] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023]
Abstract
To maintain iron homeostasis, fungi have to balance iron acquisition, storage, and utilization to ensure sufficient supply and to avoid toxic excess of this essential trace element. As pathogens usually encounter iron limitation in the host niche, this metal plays a particular role during virulence. Siderophores are iron-chelators synthesized by most, but not all fungal species to sequester iron extra- and intracellularly. In recent years, the facultative human pathogen Aspergillus fumigatus has become a model for fungal iron homeostasis of siderophore-producing fungal species. This article summarizes the knowledge on fungal iron homeostasis and its links to virulence with a focus on A. fumigatus. It covers mechanisms for iron acquisition, storage, and detoxification, as well as the modes of transcriptional iron regulation and iron sensing in A. fumigatus in comparison to other fungal species. Moreover, potential translational applications of the peculiarities of fungal iron metabolism for treatment and diagnosis of fungal infections is addressed.
Collapse
Affiliation(s)
- Matthias Misslinger
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany; Department Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hubertus Haas
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
7
|
Kjærbølling I, Mortensen UH, Vesth T, Andersen MR. Strategies to establish the link between biosynthetic gene clusters and secondary metabolites. Fungal Genet Biol 2019; 130:107-121. [DOI: 10.1016/j.fgb.2019.06.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/26/2019] [Accepted: 06/02/2019] [Indexed: 01/01/2023]
|
8
|
Murphy KC, Nelson SJ, Nambi S, Papavinasasundaram K, Baer CE, Sassetti CM. ORBIT: a New Paradigm for Genetic Engineering of Mycobacterial Chromosomes. mBio 2018; 9:e01467-18. [PMID: 30538179 PMCID: PMC6299477 DOI: 10.1128/mbio.01467-18] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/19/2018] [Indexed: 11/20/2022] Open
Abstract
Two efficient recombination systems were combined to produce a versatile method for chromosomal engineering that obviates the need to prepare double-stranded DNA (dsDNA) recombination substrates. A synthetic "targeting oligonucleotide" is incorporated into the chromosome via homologous recombination mediated by the phage Che9c RecT annealase. This oligonucleotide contains a site-specific recombination site for the directional Bxb1 integrase (Int), which allows the simultaneous integration of a "payload plasmid" that contains a cognate recombination site and a selectable marker. The targeting oligonucleotide and payload plasmid are cotransformed into a RecT- and Int-expressing strain, and drug-resistant homologous recombinants are selected in a single step. A library of reusable target-independent payload plasmids is available to generate gene knockouts, promoter replacements, or C-terminal tags. This new system is called ORBIT (for "oligonucleotide-mediated recombineering followed by Bxb1 integrase targeting") and is ideally suited for the creation of libraries consisting of large numbers of deletions, insertions, or fusions in a bacterial chromosome. We demonstrate the utility of this "drag and drop" strategy by the construction of insertions or deletions in over 100 genes in Mycobacteriumtuberculosis and M. smegmatisIMPORTANCE We sought to develop a system that could increase the usefulness of oligonucleotide-mediated recombineering of bacterial chromosomes by expanding the types of modifications generated by an oligonucleotide (i.e., insertions and deletions) and by making recombinant formation a selectable event. This paper describes such a system for use in M. smegmatis and M. tuberculosis By incorporating a single-stranded DNA (ssDNA) version of the phage Bxb1 attP site into the oligonucleotide and coelectroporating it with a nonreplicative plasmid that carries an attB site and a drug selection marker, we show both formation of a chromosomal attP site and integration of the plasmid in a single transformation. No target-specific dsDNA substrates are required. This system will allow investigators studying mycobacterial diseases, including tuberculosis, to easily generate multiple mutants for analysis of virulence factors, identification of new drug targets, and development of new vaccines.
Collapse
Affiliation(s)
- Kenan C Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Samantha J Nelson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Subhalaxmi Nambi
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
9
|
Schwarz C, Vandeputte P, Rougeron A, Giraud S, Dugé de Bernonville T, Duvaux L, Gastebois A, Alastruey-Izquierdo A, Martín-Gomez MT, Mazuelos EM, Sole A, Cano J, Pemán J, Quindos G, Botterel F, Bougnoux ME, Chen S, Delhaès L, Favennec L, Ranque S, Sedlacek L, Steinmann J, Vazquez J, Williams C, Meyer W, Le Gal S, Nevez G, Fleury M, Papon N, Symoens F, Bouchara JP. Developing collaborative works for faster progress on fungal respiratory infections in cystic fibrosis. Med Mycol 2018. [PMID: 29538733 DOI: 10.1093/mmy/myx106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is the major genetic inherited disease in Caucasian populations. The respiratory tract of CF patients displays a sticky viscous mucus, which allows for the entrapment of airborne bacteria and fungal spores and provides a suitable environment for growth of microorganisms, including numerous yeast and filamentous fungal species. As a consequence, respiratory infections are the major cause of morbidity and mortality in this clinical context. Although bacteria remain the most common agents of these infections, fungal respiratory infections have emerged as an important cause of disease. Therefore, the International Society for Human and Animal Mycology (ISHAM) has launched a working group on Fungal respiratory infections in Cystic Fibrosis (Fri-CF) in October 2006, which was subsequently approved by the European Confederation of Medical Mycology (ECMM). Meetings of this working group, comprising both clinicians and mycologists involved in the follow-up of CF patients, as well as basic scientists interested in the fungal species involved, provided the opportunity to initiate collaborative works aimed to improve our knowledge on these infections to assist clinicians in patient management. The current review highlights the outcomes of some of these collaborative works in clinical surveillance, pathogenesis and treatment, giving special emphasis to standardization of culture procedures, improvement of species identification methods including the development of nonculture-based diagnostic methods, microbiome studies and identification of new biological markers, and the description of genotyping studies aiming to differentiate transient carriage and chronic colonization of the airways. The review also reports on the breakthrough in sequencing the genomes of the main Scedosporium species as basis for a better understanding of the pathogenic mechanisms of these fungi, and discusses treatment options of infections caused by multidrug resistant microorganisms, such as Scedosporium and Lomentospora species and members of the Rasamsonia argillacea species complex.
Collapse
Affiliation(s)
- Carsten Schwarz
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Center Berlin/Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Vandeputte
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France.,Laboratoire de Parasitologie-Mycologie, CHU, Angers, France
| | - Amandine Rougeron
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité UMR 5234, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; Laboratoire de Parasitologie-Mycologie, CHU, Bordeaux, France
| | - Sandrine Giraud
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Thomas Dugé de Bernonville
- Biomolécules et Biotechnologies Végétales (EA 2106), Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Université François Rabelais, Tours
| | - Ludovic Duvaux
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France.,Institut de Recherche en Horticulture et Semences (IRHS), UMR INRA 1345, Beaucouzé, France
| | - Amandine Gastebois
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Maria Teresa Martín-Gomez
- Respiratory Bacteriology Unit & Clinical Mycology Unit, Department of Microbiology, Vall D'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Amparo Sole
- Unidad de Trasplante Pulmonar y Fibrosis Quística, Hospital Universitari la Fe, Valencia, Spain
| | - Josep Cano
- Mycology Unit, Medical School/Oenology School, Universitat Rovira i Virgili, Reus, Spain
| | - Javier Pemán
- Unidad de Micología, Servicio de Microbiología, Universitari la Fe, Valencia, Spain
| | - Guillermo Quindos
- Laboratorio de Micología Médica, Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería, Universidad del País Vasco, Bilbao, Spain
| | - Françoise Botterel
- Laboratoire de Parasitologie-Mycologie, CHU Henri Mondor, Créteil, France
| | | | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, Westmead Hospital, Westmead, New South Wales, Australia
| | - Laurence Delhaès
- Center for Cardiothoracic Research of Bordeaux, Inserm U1045, Bordeaux, France
| | - Loïc Favennec
- Laboratoire de Parasitologie-Mycologie, EA 3800, CHU Charles Nicolle and Université de Rouen, Rouen, France
| | - Stéphane Ranque
- Laboratoire de Parasitologie-Mycologie, AP-HM Timone, Marseille, France
| | - Ludwig Sedlacek
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jose Vazquez
- Division of Infectious Diseases, Department of Medicine, Georgia Regents University, Augusta, GA, USA
| | - Craig Williams
- University of the West of Scotland, Institute of Healthcare Associated Infection, University Hospital Crosshouse, Kilmarnock, United Kingdom
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead Hospital, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Solène Le Gal
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Brest, France.,Laboratoire de Parasitologie-Mycologie, CHU, Brest, France
| | - Gilles Nevez
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Brest, France.,Laboratoire de Parasitologie-Mycologie, CHU, Brest, France
| | - Maxime Fleury
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Nicolas Papon
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Françoise Symoens
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Jean-Philippe Bouchara
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France.,Laboratoire de Parasitologie-Mycologie, CHU, Angers, France
| | | |
Collapse
|
10
|
Weber J, Valiante V, Nødvig CS, Mattern DJ, Slotkowski RA, Mortensen UH, Brakhage AA. Functional Reconstitution of a Fungal Natural Product Gene Cluster by Advanced Genome Editing. ACS Synth Biol 2017; 6:62-68. [PMID: 27611015 DOI: 10.1021/acssynbio.6b00203] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Filamentous fungi produce varieties of natural products even in a strain dependent manner. However, the genetic basis of chemical speciation between strains is still widely unknown. One example is trypacidin, a natural product of the opportunistic human pathogen Aspergillus fumigatus, which is not produced among different isolates. Combining computational analysis with targeted gene editing, we could link a single nucleotide insertion in the polyketide synthase of the trypacidin biosynthetic pathway and reconstitute its production in a nonproducing strain. Thus, we present a CRISPR/Cas9-based tool for advanced molecular genetic studies in filamentous fungi, exploiting selectable markers separated from the edited locus.
Collapse
Affiliation(s)
- Jakob Weber
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
- Institute
of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Vito Valiante
- Leibniz
Research Group − Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Christina S. Nødvig
- Eukaryotic
Molecular Cell Biology, Section for Eukaryotic Biotechnology, Department
of Systems Biology, Technical University of Denmark, Søltofts
Plads, 2800 Kongens
Lyngby, Denmark
| | - Derek J. Mattern
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
- Institute
of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Rebecca A. Slotkowski
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Uffe H. Mortensen
- Eukaryotic
Molecular Cell Biology, Section for Eukaryotic Biotechnology, Department
of Systems Biology, Technical University of Denmark, Søltofts
Plads, 2800 Kongens
Lyngby, Denmark
| | - Axel A. Brakhage
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
- Institute
of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
11
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
12
|
Cancer-specific binary expression system activated in mice by bacteriophage HK022 Integrase. Sci Rep 2016; 6:24971. [PMID: 27117628 PMCID: PMC4846993 DOI: 10.1038/srep24971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/07/2016] [Indexed: 12/01/2022] Open
Abstract
Binary systems based on site-specific recombination have been used for tumor specific transcription targeting of suicide genes in animal models. In these binary systems a site specific recombinase or integrase that is expressed from a tumor specific promoter drives tumor specific expression of a cytotoxic gene. In the present study we developed a new cancer specific binary expression system activated by the Integrase (Int) of the lambdoid phage HK022. We demonstrate the validity of this system by the specific expression of a luciferase (luc) reporter in human embryonic kidney 293T (HEK293T) cells and in a lung cancer mouse model. Due to the absence viral vectors and of cytotoxicity the Int based binary system offers advantages over previously described counterparts and may therefore be developed into a safer cancer cell killing system.
Collapse
|
13
|
Jiang B, Zhang R, Feng D, Wang F, Liu K, Jiang Y, Niu K, Yuan Q, Wang M, Wang H, Zhang Y, Fang X. A Tet-on and Cre-loxP Based Genetic Engineering System for Convenient Recycling of Selection Markers in Penicillium oxalicum. Front Microbiol 2016; 7:485. [PMID: 27148179 PMCID: PMC4828452 DOI: 10.3389/fmicb.2016.00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/23/2016] [Indexed: 01/15/2023] Open
Abstract
The lack of selective markers has been a key problem preventing multistep genetic engineering in filamentous fungi, particularly for industrial species such as the lignocellulose degrading Penicillium oxalicum JUA10-1(formerly named as Penicillium decumbens). To resolve this problem, we constructed a genetic manipulation system taking advantage of two established genetic systems: the Cre-loxP system and Tet-on system in P. oxalicum JUA10-1. This system is efficient and convenient. The expression of Cre recombinase was activated by doxycycline since it was controlled by Tet-on system. Using this system, two genes, ligD and bglI, were sequentially disrupted by loxP flanked ptrA. The successful application of this procedure will provide a useful tool for genetic engineering in filamentous fungi. This system will also play an important role in improving the productivity of interesting products and minimizing by-product when fermented by filamentous fungi.
Collapse
Affiliation(s)
- Baojie Jiang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Ruiqin Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Dan Feng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Fangzhong Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Kuimei Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Yi Jiang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Quanquan Yuan
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong UniversityJinan, China; State Key Laboratory of Microbial Technology, School of Life Science, Shandong University-Helmholtz Institute of Biotechnology, Shandong UniversityJinan, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong UniversityJinan, China; State Key Laboratory of Microbial Technology, School of Life Science, Shandong University-Helmholtz Institute of Biotechnology, Shandong UniversityJinan, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| |
Collapse
|
14
|
Abstract
The fields of molecular genetics, biotechnology and synthetic biology are demanding ever more sophisticated molecular tools for programmed precise modification of cell genomic DNA and other DNA sequences. This review presents the current state of knowledge and development of one important group of DNA-modifying enzymes, the site-specific recombinases (SSRs). SSRs are Nature's 'molecular machines' for cut-and-paste editing of DNA molecules by inserting, deleting or inverting precisely defined DNA segments. We survey the SSRs that have been put to use, and the types of applications for which they are suitable. We also discuss problems associated with uses of SSRs, how these problems can be minimized, and how recombinases are being re-engineered for improved performance and novel applications.
Collapse
|
15
|
Synthetic biology advances for pharmaceutical production. Curr Opin Biotechnol 2015; 35:46-51. [PMID: 25744872 PMCID: PMC4617476 DOI: 10.1016/j.copbio.2015.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 01/12/2023]
Abstract
Synthetic biology is quickly moving from proof of concept to industrial application. Pharmaceuticals are a promising target for advanced genetic engineering. Genome sequence data indicate vast underexploited biosynthetic capacity. Synthetic biology can create libraries of novel chemicals enriched for bioactivity. Synthetic biology expands the range of available chassis organisms for industry.
Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems.
Collapse
|
16
|
A new variant of self-excising β-recombinase/six cassette for repetitive gene deletion and homokaryon purification in Neurospora crassa. J Microbiol Methods 2014; 100:17-23. [DOI: 10.1016/j.mimet.2014.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 11/16/2022]
|