1
|
Robles-Machuca M, Diaz-Vidal T, Camacho-Ruiz MA, Martínez-Pérez RB, Martin Del Campo M, Mateos-Díaz JC, Rodríguez JA. Further Characterization of Lipase B from Ustilago maydis Expressed in Pichia pastoris: a Member of the Candida antarctica Lipase B-like Superfamily. Appl Biochem Biotechnol 2025; 197:3108-3131. [PMID: 39821504 DOI: 10.1007/s12010-024-05166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
Lipases from the basidiomycete fungus Ustilago maydis are promising but underexplored biocatalysts due to their high homology with Candida antarctica lipases. This study provides a comprehensive characterization of a recombinant CALB-like lipase from U. maydis, expressed in Pichia pastoris (rUMLB), and compares its properties with those of the well-studied recombinant lipase B from C. antarctica (rCALB). Biochemical analyses included evaluations of optimal pH, temperature, triglyceride (TG) preference for short- and medium-chain acyl groups, phospholipase and amidase activities, enantiopreference, thermostability, stability in organic solvents, and response to NaCl concentrations. rUMLB, a glycosylated enzyme with a molecular weight of 38.6 kDa, exhibited cold-active behavior at 0 °C and preferred hydrolysis of partially soluble short-chain fatty acid TGs, like rCALB. In addition, rUMLB was also capable of hydrolyzing insoluble long-chain triglycerides like rCALB. The half-life at 50 °C for rCALB was approximately 1.6 times greater than that of UMLB, which has fewer surface-exposed proline residues. Both enzymes displayed strong (R)-enantiopreference on (R)-glycidyl butyrate, (R)-ethyl hydroxy butyrate, and (R)-methyl hydroxy valerate enantiomers with increased activity in non-polar solvents. However, rUMLB was more sensitive to polar solvents. Notably, rUMLB was activated at high NaCl concentrations, as previously reported for rCALB. rUMLB showed amidase activity on capsaicinoids similar to rCALB; however, rUMLB uniquely demonstrated significant phospholipase activity toward natural phospholipids, a feature not observed in rCALB. The analysis of the cavity adjacent to the active site in the UMLB model and CALB structure revealed slightly larger area, volume, and hydrophobicity values for UMLB. These comparative insights highlight the functional diversity within the CALB-type lipase family, underscoring the potential of UMLB as a versatile biocatalyst and providing valuable information for biotechnological applications and for understanding enzyme structure-function relationships within the CALB superfamily.
Collapse
Affiliation(s)
- Marcela Robles-Machuca
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, 45019, Zapopan, Jal, Mexico
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63000, Tepic, Nay, Mexico
| | - Tania Diaz-Vidal
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, 45019, Zapopan, Jal, Mexico
| | - M Angeles Camacho-Ruiz
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, 45019, Zapopan, Jal, Mexico
- Laboratorio de Investigación en Biotecnología, Departamento de Fundamentos del Conocimiento, Centro Universitario del Norte, Universidad de Guadalajara, 46200, Colotlán, Jal, Mexico
| | - Raúl B Martínez-Pérez
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, 45019, Zapopan, Jal, Mexico
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 85137, Ciudad Obregón, Son, Mexico
| | - Martha Martin Del Campo
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, 45019, Zapopan, Jal, Mexico
- Laboratorio de Investigación en Biotecnología, Departamento de Fundamentos del Conocimiento, Centro Universitario del Norte, Universidad de Guadalajara, 46200, Colotlán, Jal, Mexico
| | - Juan Carlos Mateos-Díaz
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, 45019, Zapopan, Jal, Mexico
| | - Jorge A Rodríguez
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, 45019, Zapopan, Jal, Mexico.
| |
Collapse
|
2
|
Faria PED, Nunes GS, Brêda GC, Aguieiras ECG, Mota MBS, Dobler L, Freire DMG, Almeida RV, Mesquita RD. Unveiling six novel CALB-like lipases using genome-centric and patent-driven prospection. Enzyme Microb Technol 2024; 181:110525. [PMID: 39405779 DOI: 10.1016/j.enzmictec.2024.110525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 11/05/2024]
Abstract
Lipases present biotechnological applications in various industrial sectors due to their ability to perform multiple biochemical reactions. However, the high cost sometimes discourages their potential uses, besides the extensive number of patents involving them. One of the most utilized and researched lipases is Candida antarctica lipase B (CALB), known for its versatility, encompassing enantioselectivity, thermostability, and a wide range of substrates. Therefore, finding new CALB-like lipases is an interesting strategy to enable the implementation of biocatalysts, especially if intellectual property analysis is included. The present study identified and produced six CALB-like enzymes without patent protection, with differences in pocket amino acids and substrate specificity. We conducted genomic searches in almost 7000 Fungal genomes, identifying over 1500 unique CALB homolog candidates. The phylogenetic and intellectual property analysis filtered those results into a few sequences without protection that were very similar to CALB. One cloned lipase had a lower hydrophobicity at the pocket entrance and preferred the C4 p-nitrophenyl ester as substrate. Another had a wider opening and more polar pocket, showing no preference. These results identified new patent-free lipases with conserved essential catalytic elements and diverse substrate specificity due to variations in the catalytic pocket. These enzymes can be the starting point for biocatalyst innovation with potential applications in diverse biotechnological areas.
Collapse
Affiliation(s)
- Priscila Esteves de Faria
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Gabriel Stamato Nunes
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Gabriela Coelho Brêda
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Erika Cristina Gonçalves Aguieiras
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; Campus UFRJ Duque de Caxias Professor Geraldo Cidade, Rod. Washington Luiz, 19.593 - km 104,5 - Santa Cruz da Serra, Duque de Caxia, RJ 25240-005, Brazil
| | - Maria Beatriz Santos Mota
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Leticia Dobler
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Denise Maria Guimarães Freire
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Rodrigo Volcan Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Rafael Dias Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.
| |
Collapse
|
3
|
Jaito N, Kaewsawat N, Phetlum S, Uengwetwanit T. Metagenomic discovery of lipases with predicted structural similarity to Candida antarctica lipase B. PLoS One 2023; 18:e0295397. [PMID: 38055755 PMCID: PMC10699602 DOI: 10.1371/journal.pone.0295397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Here we employed sequence-based and structure-based screening for prospecting lipases that have structural homolog to Candida antarctica lipase B (CalB). CalB, a widely used biocatalyst, was used as structural template reference because of its enzymatic properties. Structural homolog could aid in the discovery of novel wild-type enzymes with desirable features and serve as a scaffold for further biocatalyst design. The available metagenomic data isolated from various environments was leveraged as a source for bioprospecting. We identified two bacteria lipases that showed high structural similarity to CalB with <40% sequence identity. Partial purification was conducted. In comparison to CalB, the enzymatic characteristics of two potential lipases were examined. A candidate exhibited optimal pH of 8 and temperature of 50°C similar to CalB. The second lipase candidate demonstrated an optimal pH of 8 and a higher optimal temperature of 55°C. Notably, this candidate sustained considerable activity at extreme conditions, maintaining high activity at 70°C or pH 9, contrasting with the diminished activity of CalB under similar conditions. Further comprehensive experimentation is warranted to uncover and exploit these novel enzymatic properties for practical biotechnological purposes.
Collapse
Affiliation(s)
- Nongluck Jaito
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Nattha Kaewsawat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Suthathip Phetlum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Tanaporn Uengwetwanit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
4
|
Novel CaLB-like Lipase Found Using ProspectBIO, a Software for Genome-Based Bioprospection. BIOTECH (BASEL (SWITZERLAND)) 2023; 12:biotech12010006. [PMID: 36648832 PMCID: PMC9844320 DOI: 10.3390/biotech12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Enzymes have been highly demanded in diverse applications such as in the food, pharmaceutical, and industrial fuel sectors. Thus, in silico bioprospecting emerges as an efficient strategy for discovering new enzyme candidates. A new program called ProspectBIO was developed for this purpose as it can find non-annotated sequences by searching for homologs of a model enzyme directly in genomes. Here we describe the ProspectBIO software methodology and the experimental validation by prospecting for novel lipases by sequence homology to Candida antarctica lipase B (CaLB) and conserved motifs. As expected, we observed that the new bioprospecting software could find more sequences (1672) than a conventional similarity-based search in a protein database (733). Additionally, the absence of patent protection was introduced as a criterion resulting in the final selection of a putative lipase-encoding gene from Ustilago hordei (UhL). Expression of UhL in Pichia pastoris resulted in the production of an enzyme with activity towards a tributyrin substrate. The recombinant enzyme activity levels were 4-fold improved when lowering the temperature and increasing methanol concentrations during the induction phase in shake-flask cultures. Protein sequence alignment and structural modeling showed that the recombinant enzyme has high similarity and capability of adjustment to the structure of CaLB. However, amino acid substitutions identified in the active pocket entrance may be responsible for the differences in the substrate specificities of the two enzymes. Thus, the ProspectBIO software allowed the finding of a new promising lipase for biotechnological application without the need for laborious and expensive conventional bioprospecting experimental steps.
Collapse
|
5
|
Perspectives for the application of Ustilaginaceae as biotech cell factories. Essays Biochem 2021; 65:365-379. [PMID: 33860800 DOI: 10.1042/ebc20200141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023]
Abstract
Basidiomycetes fungi of the family Ustilaginaceae are mainly known as plant pathogens causing smut disease on crops and grasses. However, they are also natural producers of value-added substances like glycolipids, organic acids, polyols, and harbor secretory enzymes with promising hydrolytic activities. These attributes recently evoked increasing interest in their biotechnological exploitation. The corn smut fungus Ustilago maydis is the best characterized member of the Ustilaginaceae. After decades of research in the fields of genetics and plant pathology, a broad method portfolio and detailed knowledge on its biology and biochemistry are available. As a consequence, U. maydis has developed into a versatile model organism not only for fundamental research but also for applied biotechnology. Novel genetic, synthetic biology, and process development approaches have been implemented to engineer yields and product specificity as well as for the expansion of the repertoire of produced substances. Furthermore, research on U. maydis also substantially promoted the interest in other members of the Ustilaginaceae, for which the available tools can be adapted. Here, we review the latest developments in applied research on Ustilaginaceae towards their establishment as future biotech cell factories.
Collapse
|
6
|
Graf T, Abstiens K, Wedekind F, Elger C, Haindl M, Wurth C, Leiss M. Controlled polysorbate 20 hydrolysis - A new approach to assess the impact of polysorbate 20 degradation on biopharmaceutical product quality in shortened time. Eur J Pharm Biopharm 2020; 152:318-326. [PMID: 32445968 DOI: 10.1016/j.ejpb.2020.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 11/17/2022]
Abstract
Hydrolysis of polysorbate in biopharmaceutical liquid formulations upon long-term storage represents a risk factor, since reduction of the intact surfactant concentration may compromise protein stability. Moreover, accumulation of polysorbate degradation products is associated with the formation of particulates potentially affecting drug product stability and quality. These effects are conventionally assessed by real-time end-of-shelf life studies constituting an integral yet lengthy process of formulation development. To accelerate this procedure, we describe here a powerful tool to conduct shake stress studies based on the controlled hydrolysis of polysorbate 20 by beads-immobilized lipases. For this purpose, the production of stable, partially degraded material characterized by a representative presence of non-emulsifying degradants such as ethoxylated sorbitan and free fatty acids was monitored by state-of-the-art chromatographic methods ensuring realistic pharmaceutical conditions. Freeze-thaw, shaking and shipping stress studies of a mAb formulation did not only demonstrate that this approach is useful to determine the critical degradation level impairing drug product quality, but furthermore revealed significant differences in protective effects depending on the hydrolysis pattern. As these results emphasize, the outlined strategy may support formulation scientists to unveil the interrelationship between polysorbate hydrolysis products and stabilization of the active pharmaceutical ingredient in a holistic and time-saving manner.
Collapse
Affiliation(s)
- Tobias Graf
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Kathrin Abstiens
- Pharma Technical Development Biologics, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4054, Switzerland
| | - Frank Wedekind
- Instrumental Analytics, Early Development & Reagent Design, Centralised and Point of Care Solutions, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Carsten Elger
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Markus Haindl
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Christine Wurth
- Pharma Technical Development Biologics, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4054, Switzerland
| | - Michael Leiss
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany.
| |
Collapse
|
7
|
Expression and characterization of a CALB-type lipase from Sporisorium reilianum SRZ2 and its potential in short-chain flavor ester synthesis. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-019-1889-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Shimizu Y, Konno Y, Tomita Y. Wickerhamomyces psychrolipolyticus f.a., sp. nov., a novel yeast species producing two kinds of lipases with activity at different temperatures. Int J Syst Evol Microbiol 2020; 70:1158-1165. [PMID: 31833830 DOI: 10.1099/ijsem.0.003894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two yeast strains isolated from soil collected in Hokkaido, Japan, were found to secrete two extracellular lipases that exhibited activities at both 25 and 4 °C. Both strains could utilize olive oil, rapeseed oil, lard and fish oil as sole carbon sources. The similarity of the D1/D2 domain of the large subunit ribosomal RNA (LSU rRNA) sequence of these yeast strains to that of other yeasts in the GenBank database was very low (<96 %). The phylogenetic trees based on the LSU rRNA sequences and translation elongation factor-1-α (tef1-α) sequences indicated that both strains represented a member of the Wickerhamomyces /Candida clade. Sexual reproduction was not observed. The name Wickerhamomyces psychrolipolyticus f.a., sp. nov is proposed for this newly described yeast species producing cold-active lipases. This novel species is distinguishable from the type strains of other related species, Wickerhamomyces alni, Candida ulmi and Candida quercuum due to their abilities to grow at 4 to 30 °C, to produce lipase that is active also at 4 °C and to assimilate soluble starch.
Collapse
Affiliation(s)
- Yumi Shimizu
- Department of Biosciences, College of Science and Engineering, Kanto Gakuin University, 1-50-1 Mutsuura-higashi, Kanazawa-ku, Yokohama, Kanagawa 236-8501, Japan.,NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yusuke Konno
- Department of Biosciences, College of Science and Engineering, Kanto Gakuin University, 1-50-1 Mutsuura-higashi, Kanazawa-ku, Yokohama, Kanagawa 236-8501, Japan
| | - Yosuke Tomita
- Department of Biosciences, College of Science and Engineering, Kanto Gakuin University, 1-50-1 Mutsuura-higashi, Kanazawa-ku, Yokohama, Kanagawa 236-8501, Japan
| |
Collapse
|
9
|
Araiza-Villanueva MG, Olicón-Hernández DR, Pardo JP, Vázquez-Meza H, Guerra-Sánchez G. Monitoring of the enzymatic activity of intracellular lipases of Ustilago maydis expressed during the growth under nitrogen limitation and its correlation in lipolytic reactions. GRASAS Y ACEITES 2019. [DOI: 10.3989/gya.1049182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Under nitrogen starvation, Ustilago maydis forms lipid droplets (LDs). Although the dynamics of these organelles are known in the literature, the identity of the lipases implicated in their degradation is unknown. We determined lipase activity and identified the intracellular lipases expressed during growth under nitrogen starvation and YPD media by zymograms. The results showed that cytosolic extracts exhibited higher lipase activity when cells were grown in YPD. Under nitrogen starvation, lipase activity was not detected after 24 h of culture, resulting in lipid accumulation in LDs. This suggests that these lipases could be implicated in LD degradation. In the zymogram, two bands, one of 25 and the other of 37 kDa, presented lipase activity. The YPD extracts showed lipase activity in olive and almond oils, which contain triacylglycerols with mono and polyunsaturated fatty acids. This is the first report about U. maydis cytosolic lipases involved in LD degradation.
Collapse
|
10
|
New Insights of Ustilago maydis as Yeast Model for Genetic and Biotechnological Research: A Review. Curr Microbiol 2019; 76:917-926. [DOI: 10.1007/s00284-019-01629-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/10/2019] [Indexed: 01/05/2023]
|
11
|
Arredondo-Santoyo M, Vázquez-Garcidueñas MS, Vázquez-Marrufo G. Identification and characterization of the biotechnological potential of a wild strain of Paraconiothyrium
sp. Biotechnol Prog 2018; 34:846-857. [DOI: 10.1002/btpr.2653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 04/21/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Marina Arredondo-Santoyo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo; Michoacán México
| | - Ma. Soledad Vázquez-Garcidueñas
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas Dr. Ignacio Chávez, Universidad Michoacana de San Nicolás de Hidalgo; Michoacán México
| | - Gerardo Vázquez-Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo; Michoacán México
| |
Collapse
|
12
|
Sarkari P, Feldbrügge M, Schipper K. The Corn Smut Fungus Ustilago maydis as an Alternative Expression System for Biopharmaceuticals. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Vaquero ME, de Eugenio LI, Martínez MJ, Barriuso J. A novel calb-type lipase discovered by fungal genomes mining. PLoS One 2015; 10:e0124882. [PMID: 25898146 PMCID: PMC4405274 DOI: 10.1371/journal.pone.0124882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/18/2015] [Indexed: 01/20/2023] Open
Abstract
The fungus Pseudozyma antarctica produces a lipase (CalB) with broad substrate specificity, stability, high regio- and enantio-selectivity. It is active in non-aqueous organic solvents and at elevated temperatures. Hence, CalB is a robust biocatalyst for chemical conversions on an industrial scale. Here we report the in silico mining of public metagenomes and fungal genomes to discover novel lipases with high homology to CalB. The candidates were selected taking into account homology and conserved motifs criteria, as well as, phylogeny and 3D model analyses. The most promising candidate (PlicB) presented interesting structural properties. PlicB was expressed in a heterologous host, purified and partially characterized. Further experiments will allow finding novel catalytic properties with biotechnological interest.
Collapse
Affiliation(s)
- Maria E. Vaquero
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Laura I. de Eugenio
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Maria J. Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
14
|
Zavala-Moreno A, Arreguin-Espinosa R, Pardo JP, Romero-Aguilar L, Guerra-Sánchez G. Nitrogen Source Affects Glycolipid Production and Lipid Accumulation in the Phytopathogen Fungus <i>Ustilago maydis</i>. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aim.2014.413104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|