1
|
Li Y, Wang T, Jing H, Xiao Y. Evolutionary ecology of denitrifying methanotrophic NC10 bacteria in the deep-sea biosphere. Mol Ecol 2024; 33:e17372. [PMID: 38709214 DOI: 10.1111/mec.17372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
The NC10 phylum links anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophic pathway. Although numerous amplicon-based studies revealed the distribution of this phylum, comprehensive genomic insights and niche characterization in deep-sea environments were still largely unknown. In this study, we extensively surveyed the NC10 bacteria across diverse deep-sea environments, including waters, sediments, cold seeps, biofilms, rocky substrates, and subseafloor aquifers. We then reconstructed and analysed 38 metagenome-assembled genomes (MAGs), and revealed the extensive distribution of NC10 bacteria and their intense selective pressure in these harsh environments. Isotopic analyses combined with gene expression profiling confirmed that active nitrite-dependent anaerobic methane oxidation (n-DAMO) occurs within deep-sea sediments. In addition, the identification of the Wood-Ljungdahl (WL) and 3-hydroxypropionate/4-hydroxybutyrat (3HB/4HP) pathways in these MAGs suggests their capability for carbon fixation as chemoautotrophs in these deep-sea environments. Indeed, we found that for their survival in the oligotrophic deep-sea biosphere, NC10 bacteria encode two branches of the WL pathway, utilizing acetyl-CoA from the carbonyl branch for citric acid cycle-based energy production and methane from the methyl branch for n-DAMO. The observed low ratios of non-synonymous substitutions to synonymous substitutions (pN/pS) in n-DAMO-related genes across these habitats suggest a pronounced purifying selection that is critical for the survival of NC10 bacteria in oligotrophic deep-sea environments. These findings not only advance our understanding of the evolutionary adaptations of NC10 bacteria but also underscore the intricate coupling between the carbon and nitrogen cycles within deep-sea ecosystems, driven by this bacterial phylum.
Collapse
Affiliation(s)
- Yingdong Li
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Ting Wang
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Yao Xiao
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Zhang M, Huang W, Zhang L, Feng Z, Zuo Y, Xie Z, Xing W. Nitrite-dependent anaerobic methane oxidation (N-DAMO) in global aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171081. [PMID: 38387583 DOI: 10.1016/j.scitotenv.2024.171081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
The vast majority of processes in the carbon and nitrogen cycles are driven by microorganisms. The nitrite-dependent anaerobic oxidation of methane (N-DAMO) process links carbon and nitrogen cycles, offering a novel approach for the simultaneous reduction of methane emissions and nitrite pollution. However, there is currently no comprehensive summary of the current status of the N-DAMO process in natural aquatic environments. Therefore, our study aims to fill this knowledge gap by conducting a comprehensive review of the global research trends in N-DAMO processes in various aquatic environments (excluding artificial bioreactors). Our review mainly focused on molecular identification, global study sites, and their interactions with other elemental cycling processes. Furthermore, we performed a data integration analysis to unveil the effects of key environmental factors on the abundance of N-DAMO bacteria and the rate of N-DAMO process. By combining the findings from the literature review and data integration analysis, we proposed future research perspectives on N-DAMO processes in global aquatic environments. Our overarching goal is to advance the understanding of the N-DAMO process and its role in synergistically reducing carbon emissions and removing nitrogen. By doing so, we aim to make a significant contribution to the timely achievement of China's carbon peak and carbon neutrality targets.
Collapse
Affiliation(s)
- Miao Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China
| | - Wenmin Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan 430074, China
| | - Lei Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zixuan Feng
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yanxia Zuo
- Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuoming Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Wei Xing
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan 430074, China.
| |
Collapse
|
3
|
Wang Y, Xie X, Chen H, Zhang K, Zhao B, Qiu R. Selenium-Induced Enhancement in Growth and Rhizosphere Soil Methane Oxidation of Prickly Pear. PLANTS (BASEL, SWITZERLAND) 2024; 13:749. [PMID: 38592767 PMCID: PMC10974067 DOI: 10.3390/plants13060749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Abstract
As an essential element for plants, animals, and humans, selenium (Se) has been shown to participate in microbial methane oxidation. We studied the growth response and rhizosphere methane oxidation of an economic crop (prickly pear, Rosa roxburghii Tratt) through three treatments (Se0.6 mg/kg, Se2.0 mg/kg, and Se10 mg/kg) and a control (Se0 mg/kg) in a two-month pot experiment. The results showed that the height, total biomass, root biomass, and leaf biomass of prickly pear were significantly increased in the Se0.6 and Se2.0 treatments. The root-to-shoot ratio of prickly pear reached a maximum value in the Se2 treatment. The leaf carotenoid contents significantly increased in the three treatments. Antioxidant activities significantly increased in the Se0.6 and Se2 treatments. Low Se contents (0.6, 2 mg/kg) promoted root growth, including dry weight, length, surface area, volume, and root activity. There was a significant linear relationship between root and aboveground Se contents. The Se translocation factor increased as the soil Se content increased, ranging from 0.173 to 0.288. The application of Se can improve the state of rhizosphere soil's organic C and soil nutrients (N, P, and K). Se significantly promoted the methane oxidation rate in rhizosphere soils, and the Se10 treatment showed the highest methane oxidation rate. The soil Se gradients led to differentiation in the growth, rhizosphere soil properties, and methane oxidation capacity of prickly pear. The root Se content and Se translocation factor were significantly positively correlated with the methane oxidation rate. Prickly pear can accumulate Se when grown in Se-enriched soil. The 2 mg/kg Se soil treatment enhanced growth and methane oxidation in the rhizosphere soil of prickly pear.
Collapse
Affiliation(s)
- Yiming Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (X.X.); (H.C.); (K.Z.); (R.Q.)
| | - Xuechong Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (X.X.); (H.C.); (K.Z.); (R.Q.)
| | - Huijie Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (X.X.); (H.C.); (K.Z.); (R.Q.)
| | - Kai Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (X.X.); (H.C.); (K.Z.); (R.Q.)
| | - Benliang Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (X.X.); (H.C.); (K.Z.); (R.Q.)
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (X.X.); (H.C.); (K.Z.); (R.Q.)
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China
| |
Collapse
|
4
|
He T, Yin Q, Li X. Effects of Antibiotics on the DAMO Process and Microbes in Cattle Manure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3883-3894. [PMID: 38347804 DOI: 10.1021/acs.est.3c07135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Denitrifying anaerobic methane oxidation (DAMO) can mitigate methane emissions; however, this process has not been studied in cattle manure, an important source of methane emissions in animal agriculture. The objective of this study was to investigate the occurrence of DAMO microbes in cattle manure and examine the impacts of veterinary antibiotics on the DAMO process in cattle manure. Results show that DAMO archaea and bacteria consistently occur at high concentrations in beef cattle manure. During the long-term operation of a sequencing batch reactor seeded with beef cattle manure, the DAMO activities intensified, and DAMO microbial biomass increased. Exposure to chlortetracycline at initial concentrations up to 5000 μg L-1 did not inhibit DAMO activities or affect the concentrations of the 16S rRNA gene and functional genes of DAMO microbes. In contrast, exposure to tylosin at initial concentrations of 50 and 500 μg L-1 increased the activities of the DAMO microbes. An initial concentration of 5000 μg L-1 TYL almost entirely halted DAMO activities and reduced the concentrations of DAMO microbes. These results show the occurrence of DAMO microbes in cattle manure and reveal that elevated concentrations of dissolved antibiotics could inhibit the DAMO process, potentially affecting net methane emissions from cattle manure.
Collapse
Affiliation(s)
- Ting He
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Institute of Chemistry, Henan Academy of Sciences, Zheng Zhou 450002, Henan, P. R. China
| | - Qidong Yin
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
5
|
Wang W, Zhang Y, Yin TM, Zhao L, Xu XJ, Xing DF, Zhang RC, Lee DJ, Ren NQ, Chen C. Prospect of denitrifying anaerobic methane oxidation (DAMO) application on wastewater treatment and biogas recycling utilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167142. [PMID: 37722432 DOI: 10.1016/j.scitotenv.2023.167142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Old-fashioned wastewater treatments for nitrogen depend on heterotrophic denitrification process. It would utilize extra organic carbon source as electron donors when the C/N of domestic wastewater was too low to ensure heterotrophic denitrification process. It would lead to non-compliance with carbon reduction targets and impose an economic burden on wastewater treatment. Denitrifying anaerobic methane oxidation (DAMO), which could utilize methane serving as electron donors to replace traditional organic carbon (methanol or sodium acetate), supplies a novel approach for wastewater treatment. As the primary component of biogas, methane is an inexpensive carbon source. With anaerobic digestion becoming increasingly popular for sludge reduction in wastewater treatment plants (WWTPs), efficient biogas utilization through DAMO can offer an environmentally friendly option for in-situ biogas recycling. Here, we reviewed the metabolic principle and relevant research for DAMO and biogas recycling utilization, outlining the prospect of employing DAMO for wastewater treatment and biogas recycling utilization in WWTPs. The application of DAMO provides a new focal point for enhancing efficiency and sustainability in WWTPs.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Tian-Ming Yin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Ruo-Chen Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
6
|
Jiang Q, Jing H, Li X, Wan Y, Chou IM, Hou L, Dong H, Niu Y, Gao D. Active pathways of anaerobic methane oxidization in deep-sea cold seeps of the South China Sea. Microbiol Spectr 2023; 11:e0250523. [PMID: 37916811 PMCID: PMC10715046 DOI: 10.1128/spectrum.02505-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Cold seeps occur in continental margins worldwide and are deep-sea oases. Anaerobic oxidation of methane is an important microbial process in the cold seeps and plays an important role in regulating methane content. This study elucidates the diversity and potential activities of major microbial groups in dependent anaerobic methane oxidation and sulfate-dependent anaerobic methane oxidation processes and provides direct evidence for the occurrence of nitrate-/nitrite-dependent anaerobic methane oxidation (Nr-/N-DAMO) as a previously overlooked microbial methane sink in the hydrate-bearing sediments of the South China Sea. This study provides direct evidence for occurrence of Nr-/N-DAMO as an important methane sink in the deep-sea cold seeps.
Collapse
Affiliation(s)
- Qiuyun Jiang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Xuegong Li
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ye Wan
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - I-Ming Chou
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai, China
| | - Yuhui Niu
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai, China
| |
Collapse
|
7
|
Jiang Q, Jing H, Liu H, Du M. Biogeographic distributions of microbial communities associated with anaerobic methane oxidation in the surface sediments of deep-sea cold seeps in the South China Sea. Front Microbiol 2022; 13:1060206. [PMID: 36620029 PMCID: PMC9822730 DOI: 10.3389/fmicb.2022.1060206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Cold seeps are oasis for the microbes in the deep-sea ecosystems, and various cold seeps are located along the northern slope of the South China Sea (SCS). However, by far most microbial ecological studies were limited to specific cold seep in the SCS, and lack of comparison between different regions. Here, the surface sediments (0-4 cm) from the Site F/Haima cold seeps and the Xisha trough in the SCS were used to elucidate the biogeography of microbial communities, with particular interest in the typical functional groups involved in the anaerobic oxidation of methane (AOM) process. Distinct microbial clusters corresponding to the three sampling regions were formed, and significantly higher gene abundance of functional groups were present in the cold seeps than the trough. This biogeographical distribution could be explained by the geochemical characteristics of sediments, such as total nitrogen (TN), total phosphorus (TP), nitrate (NO3 -), total sulfur (TS) and carbon to nitrogen ratios (C/N). Phylogenetic analysis demonstrated that mcrA and pmoA genotypes were closely affiliated with those from wetland and mangroves, where denitrifying anaerobic methane oxidation (DAMO) process frequently occurred; and highly diversified dsrB genotypes were revealed as well. In addition, significantly higher relative abundance of NC10 group was found in the Xisha trough, suggesting that nitrite-dependent DAMO (N-DAMO) process was more important in the hydrate-bearing trough, although its potential ecological contribution to AOM deserves further investigation. Our study also further demonstrated the necessity of combining functional genes and 16S rRNA gene to obtain a comprehensive picture of the population shifts of natural microbial communities among different oceanic regions.
Collapse
Affiliation(s)
- Qiuyun Jiang
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,University of Chinese Academy of Sciences, Beijing, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China,*Correspondence: Hongmei Jing,
| | - Hao Liu
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Mengran Du
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
8
|
Cheng H, Yang Y, Shen L, Liu Y, Zhan X, Hu Z, Huang H, Jin J, Ren B, He Y, Jin Y, Su Z. Spatial variations of activity and community structure of nitrite-dependent anaerobic methanotrophs in river sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158288. [PMID: 36030855 DOI: 10.1016/j.scitotenv.2022.158288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Rivers are an important site for methane emissions and reactive nitrogen removal. The process of nitrite-dependent anaerobic methane oxidation (n-damo) links the global carbon cycle and the nitrogen cycle, but its role in methane mitigation and nitrogen removal in rivers is poorly known. In the present study, we investigated the activity, abundance, and community composition of n-damo bacteria in sediment of the upper, middle, and lower reaches of Wuxijiang River (Zhejiang Province, China). The 13CH4 stable isotope experiments showed that the methane oxidation activity of n-damo was 0.11-1.88 nmol CO2 g-1 (dry sediment) d-1, and the activity measured from the middle reaches was significantly higher than that from the remaining regions. It was estimated that 3.27 g CH4 m-2 year-1 and 8.72 g N m-2 year-1 could be consumed via n-damo. Quantitative PCR confirmed the presence of n-damo bacteria, and their 16S rRNA gene abundance varied between 5.45 × 105 and 5.86 × 106 copies g-1 dry sediment. Similarly, the abundance of n-damo bacteria was significantly higher in the middle reaches. High-throughput sequencing showed a high n-damo bacterial diversity, with totally 152 operational taxonomic units being detected at 97 % sequence similarity cut-off. In addition, the n-damo bacterial community composition also varied spatially. The inorganic nitrogen (NH4+, NO2-, NO3-) level was found to be the key environmental factor controlling the n-damo activity and bacterial community composition. Overall, our results showed the spatial variations and environmental regulation of the activity and community structure of n-damo bacteria in river sediment, which expanded our understanding of the quantitative importance of n-damo in both methane oxidation and reactive nitrogen removal in riverine systems.
Collapse
Affiliation(s)
- Haixiang Cheng
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, China
| | - Yuling Yang
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Lidong Shen
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Yan Liu
- Wuxi River Drinking Water Source Protection and Management Center, Quzhou 324000, China
| | - Xugang Zhan
- Quzhou Bureau of Ecology and Environment, Quzhou 324000, China
| | - Zhengfeng Hu
- Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Hechen Huang
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jinghao Jin
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Bingjie Ren
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yefan He
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yuhan Jin
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhenfa Su
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
9
|
Chen J, Zhou Z, Gu JD. Distribution pattern of N-damo bacteria along an anthropogenic nitrogen input gradient from the coastal mangrove wetland to the South China sea sediments. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105739. [PMID: 36084374 DOI: 10.1016/j.marenvres.2022.105739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Microbial nitrite-dependent anaerobic methane oxidation (n-damo) process is important for mitigating methane emission and anthropogenic nitrogen inputs in the marine environment. However, the distribution pattern of n-damo bacteria along an anthropogenic N-input gradient from the coastal wetland to the pristine South China Sea is poorly understood. This study investigated the diversity and abundance of n-damo bacteria in samples collected along a N-input gradient from Mai Po (MP) mangrove wetland sediments of the Pearl River Estuary (PRE) to the deep ocean sediments of the South China Sea (SCS). Retrieved 16S rDNA sequences showed a shift of n-damo community composition of complex structures with both freshwater and marine n-damo lineages in MP intertidal sediments to marine dominated characteristic in SCS sediments. The observed variation of Shannon and Chao1 indexes of n-damo bacteria shared a similar trend of a decrease at first followed by an increase along the targeting gradient with previously investigated methanogens, anaerobic methanotrophic archaea, ammonia-oxidizing archaea and ammonia-oxidizing bacteria, but had a reverse pattern with anammox bacteria. The community structure of pmoA gene sequences contained freshwater lineages only in SCS continental shelf sediments closer to the PRE, and turned to group with other marine samples in deeper and pristine sediments. Results suggested that n-damo bacteria might be a major contributor to anaerobic denitrification in the SCS sediments because their abundances were much higher than previously studied anammox bacteria in the same sample set. The distribution pattern of n-damo bacterial diversity, richness and abundance along the anthropogenic N-input gradient implies that they could be used as a bio-indicator for monitoring the anthropogenic/terrestrial inputs in marine environments.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, PR China; Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Zhichao Zhou
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China.
| |
Collapse
|
10
|
Li C, Ding A, Guo J, Song F, Lu P. Response of denitrifying anaerobic methane oxidation enrichment to salinity stress: Process and microbiology. ENVIRONMENTAL RESEARCH 2022; 214:114069. [PMID: 35964668 DOI: 10.1016/j.envres.2022.114069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Denitrifying anaerobic methane oxidation (DAMO) is a novel biological process which could decrease nitrogen pollution and methane emission simultaneously in wastewater treatment. Salinity as a key environmental factor has important effects on microbial community and activity, however, it remains unclear for DAMO microorganisms. In this study, response of the enrichment of DAMO archaea and bacteria to different salinity was investigated from the aspect of process and microbiology. The results showed that the increasing salinity from 0.14% to 25% evidently deteriorated DAMO process, with the average removal rate of nitrate and methane decreased from 1.91 mg N/(L·d) to 0.07 mg N/(L·d) and 3.22 μmol/d to 0.59 μmol/d, respectively. The observed IC50 value of salinity on the DAMO culture was 1.73%. Further microbial analyses at the gene level suggested that the relative abundance of DAMO archaea in the enrichment decreased to 46%, 39%, 38% and 33% of the initial value. However, DAMO bacteria suffered less impact with the relative abundance maintaining over 75% of the initial value (except 1% salinity). In functional genes of DAMO bacteria, pmoA, decreased gradually from 100% to 86%, 43%, 15% and 2%, while mcrA (DAMO archaea) maintained at 67%-97%. This difference probably indicated DAMO bacteria appeared functional inhibition prior to community inhibition, which was opposite for the DAMO archaea. Results above-mentioned concluded that, though the process of nitrate-dependent anaerobic methane oxidation was driven by the couple of DAMO archaea and bacteria, they individually featured different response to high salinity stress. These findings could be helpful for the application of DAMO-based process in high salinity wastewater treatment, and also the understanding to DAMO microorganisms.
Collapse
Affiliation(s)
- Chaoyang Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region 's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Aqiang Ding
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region 's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Junliang Guo
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fuzhong Song
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region 's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region 's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
11
|
Sun W, Jiao L, Wu J, Ye J, Wei M, Hong Y. Existence and distribution of novel phylotypes of Nitrospira in water columnsof the South China Sea. iScience 2022; 25:104895. [PMID: 36039301 PMCID: PMC9418846 DOI: 10.1016/j.isci.2022.104895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
In the biological nitrogen cycle, nitrite oxidation is performed by nitrite oxidation bacteria, of which Nitrospira is widespread and diverse. Communities of Nitrospira were collected at 25-1500 m depths in the South China Sea. Phylogenetic diversity, community composition, and environmental factors were investigated using high-throughput sequencing targeting the nxrB gene and statistical analyses. The community composition of Nitrospira varied spatially and by depth. Among the 24 OTUs with relatively high abundance, 70% were unclassified and not affiliated with the known Nitrospira genus, suggesting a previously unrecognized high diversity of marine Nitrospira. Five known Nitrospira genera were detected, of which the common marine Nitrospira marina was not the dominant species, whereas Candidatus Nitrospira lenta and Candidatus Nitrospira defluvii dominated in shallow habitats. Comammox Candidatus Nitrospira nitrosa was discovered in the marine ecosystem. The niche differentiation of versatile Nitrospira species was mainly shaped by nitrate, temperature, and DO.
Collapse
Affiliation(s)
- Wei Sun
- Guangdong University of Petrochemical Technology, Maoming 525000, P.R.China.,Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, P.R. China.,Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Lijing Jiao
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, P.R. China.,Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, P.R. China.,Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Jiaqi Ye
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, P.R. China.,Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Mingken Wei
- Guangdong University of Petrochemical Technology, Maoming 525000, P.R.China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, P.R. China.,Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| |
Collapse
|
12
|
Wang W, Zhao L, Ni BJ, Yin TM, Zhang RC, Yu M, Shao B, Xu XJ, Xing DF, Lee DJ, Ren NQ, Chen C. A novel sulfide-driven denitrification methane oxidation (SDMO) system: Operational performance and metabolic mechanisms. WATER RESEARCH 2022; 222:118909. [PMID: 35917671 DOI: 10.1016/j.watres.2022.118909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Microbial denitrification is a crucial biological process for the treatment of nitrogen-polluted water. Traditional denitrification process consumes external organic carbon leading to an increase in treatment costs. We developed a novel sulfide-driven denitrification methane oxidation (SDMO) system that integrates autotrophic denitrification (AD) and denitrification anaerobic methane oxidation (DAMO) for cost-effective denitrification and biogas utilization in situ. Two SDMO systems were operated for 735 days, with nitrate and nitrite serving as electron acceptors, to explore the performance of sewage denitrification and characterize metabolic mechanisms. Results showed SDMO system could reach as high as 100% efficiency of nitrogen removal and biogas desulfurization without an external carbon source when HRT was 10 days and inflow nitrogen concentrations were 50-100 mgN·L-1. Besides, nitrate was a preferable electron acceptor for SDMO system. Biogas not only enhanced nitrogen removal but also intensified the DAMO, nitrogen removed through DAMO contribution doubled as original period from 2.9 mgN·(L·d)-1 to 6.2 mgN·(L·d)-1, and the ratio of nitrate removal through AD to DAMO was 1.2:1 with nitrate as electron acceptor. While nitrogen removed almost all through AD contribution and DAMO was weaken as before, the ratio of nitrate removal through AD to DAMO was 21.2:1 with nitrite as electron acceptor. Biogas introduced into SDMO system with nitrate inspired the growth of DAMO bacteria Candidatus Methylomirabilis from 0.3% to 19.6% and motivated its potentiality to remove nitrate without ANME archaea participation accompanying with gene mfnE upregulating ∼100 times. According to the reconstructed genome from binning analysis, the dramatically upregulated gene mfnE was derived from Candidatus Methylomirabilis, which may represent a novel metabolism pathway for DAMO bacteria to replace the role of archaea for nitrate reduction.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| | - Bing-Jie Ni
- Center for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia
| | - Tian-Ming Yin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Ruo-Chen Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Miao Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Bo Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
13
|
Wang Z, Li J, Xu X, Li K, Chen Q. Denitrifying anaerobic methane oxidation and mechanisms influencing it in Yellow River Delta coastal wetland soil, China. CHEMOSPHERE 2022; 298:134345. [PMID: 35307384 DOI: 10.1016/j.chemosphere.2022.134345] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 05/16/2023]
Abstract
Methane oxidation coupled to denitrification is mediated by Candidatus "Methylomirabilis oxyfera" (M. oxyfera), which belongs to the candidate phylum NC10, and plays a crucial role in the global carbon and nitrogen cycle. Using the Yellow River Delta coastal wetland as the study area, molecular biology technology and laboratory incubation were used to determine the abundance of NC10 bacteria and the denitrifying anaerobic methane oxidation (DAMO) rate in soils from different vegetation areas. The results of the electrophoresis detection show that M. oxyfera-like bacteria can be found in the four types of soils, according to the growth analysis by the system, OTU1 (SA) has been found the highest similarity to first-discovered Candidatus Methylomir-abilis oxyfera (FP565575) (over 98%); Vegetation cover significantly increased the abundance of M. oxyfera-like bacteria compared to beach areas, which abundance was significantly higher in deeper layers than in surface ones. Nitrate, nitrite, total nitrogen, and conductivity were identified as the main environmental factors affecting the DAMO rate. This study showed that both groups A and B of Candidatus M. oxyfera-like bacteria exist in the coastal wetland of the Yellow River Delta, which provides molecular biological evidence for the existence of the DAMO process therein. Moreover, it was revealed the influence mechanism of physical and chemical characteristics of each region on the DAMO rate. This is of significance for furthering our understanding of the coupled effect of the global carbon and nitrogen cycle.
Collapse
Affiliation(s)
- Zihao Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Jinye Li
- College of Resource & Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiaoya Xu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Kun Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
14
|
Zhou Z, Meng H, Gu W, Li J, Deng M, Gu JD. High-throughput sequencing reveals the main drivers of niche-differentiation of bacterial community in the surface sediments of the northern South China sea. MARINE ENVIRONMENTAL RESEARCH 2022; 178:105641. [PMID: 35594805 DOI: 10.1016/j.marenvres.2022.105641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 05/16/2023]
Abstract
Studies on marine bacterial communities have revealed endemism in local communities, yet the underlying mechanisms remained elusive. Environmental gradient settings can benefit the straightaway study of community composition changes and the mechanisms explaining them. Here, MiSeq-based 16S rRNA gene sequencing was performed on 12 surface sediment samples from the northern South China Sea (nSCS) revealing that shallow-sea samples had a higher alpha diversity than deep-sea samples, and were differentiated from them significantly based on beta diversity. Temperature, seawater depth, and salinity were the top three influential factors. Bacterial 16S rRNA gene abundance was positively correlated with temperature, and negatively correlated with salinity. Sulfate-reducing bacteria including Desulfobacteraceae, Desulfobulbaceae, and Syntrophobacteraceae were enriched in shallow-sea sediments, co-abundant with nitrite-oxidizing Nitrospira and potential sulfur-oxidizing shallow-sea specific Woeseiaceae/JTB255 clade. Meanwhile, the co-existing and co-abundant of marine anammox and n-damo bacteria were enriched in deep-sea sediments, which was firstly evidenced in this study. The global deep-sea cosmopolitans, OM1 clade, and deep-sea specific Woeseiaceae/JTB255 clade were also found enriched in deep-sea sediments of nSCS. The discovery of novel taxa which were differentially enriched in shallow-/deep-sea sediments not only shed light on enigmatic physiological properties and the natural selection mechanism, but also provided the potential ecological-functional links which invoked further genomics-based metabolic characteristics.
Collapse
Affiliation(s)
- Zhichao Zhou
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Han Meng
- School of Environment, Nanjing Normal University, 122 Ninghai Road, Nanjing, Jiangsu, 210023, China
| | - Wenjie Gu
- Insitute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, 66 Jinying Road, Guangzhou, Guangdong, 510640, China
| | - Jing Li
- Department of Food and Bioengineering, Guangdong Industry Polytechnic, Guangzhou, Guangdong, 510300, China
| | - Maocheng Deng
- Department of Food and Bioengineering, Guangdong Industry Polytechnic, Guangzhou, Guangdong, 510300, China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China.
| |
Collapse
|
15
|
Niu Y, Zheng Y, Hou L, Gao D, Chen F, Pei C, Dong H, Liang X, Liu M. Microbial dynamics and activity of denitrifying anaerobic methane oxidizers in China's estuarine and coastal wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150425. [PMID: 34560448 DOI: 10.1016/j.scitotenv.2021.150425] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Estuarine and coastal wetlands, which act as large sources of methane (CH4) and undergo substantial loading of anthropogenic nitrogen (N), provide ideal conditions for denitrifying anaerobic methane oxidation (DAMO) to occur. Yet the microbial mechanisms governing DAMO and the main driving factors in estuarine and coastal ecosystems remain unclear. This study investigated the spatiotemporal distribution and associated activity of DAMO microorganisms along a wide swath of China's coastline (latitudinal range: 22-41°N) using molecular assays and isotope tracing techniques. We uncovered significant spatial and seasonal variation in DAMO bacterial community structure, whereas DAMO archaeal community structure exhibited no seasonal differences. The abundance of DAMO bacterial pmoA gene (2.2 × 105-1.0 × 107 copies g-1) was almost one order of magnitude higher than that of DAMO archaeal mcrA gene (8.7 × 104 -1.8 × 106 copies g-1). A significant positive correlation between pmoA and mcrA gene abundances (p < 0.01) was observed, indicating that DAMO bacteria and archaea may cooperate closely and thus complete nitrate elimination. Potential DAMO rates, in the range of 0.09-23.4 nmol 13CO2 g-1 day-1 for nitrite-DAMO and 0.03-43.7 nmol 13CO2 g-1 day-1 for nitrate-DAMO, tended to be greater in the relatively warmer low-latitudes. Potential DAMO rates were weakly positively correlated with gene abundances, suggesting that DAMO microbial activity could not be predicted directly by gene abundance alone. The heterogeneous variability of DAMO was shaped by interactions among key environmental characteristics (sediment texture, N availability, TOC, Fe3+, salinity of water, and temperature). On a broader continental scale, potential N removal rates of 0.1-11.2 g N m-2 yr-1 were estimated via nitrite-DAMO activity in China's coastal wetlands. Overall, our results highlight the widespread distribution of DAMO microbes and their potential role in eliminating excess N inputs and reducing CH4 emissions in estuarine and coastal ecosystems, which could help mitigate global warming.
Collapse
Affiliation(s)
- Yuhui Niu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chenya Pei
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
16
|
Ren L, Wu X, Ma D, Liu L, Li X, Song D. Nitrite-dependent anaerobic methane oxidation bacteria and potential in permafrost region of Daxing'an Mountains. Appl Microbiol Biotechnol 2022; 106:743-754. [PMID: 34982194 DOI: 10.1007/s00253-021-11739-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 11/02/2022]
Abstract
Nitrite-dependent anaerobic methane oxidation (n-damo) acts as a crucial link between biogeochemical carbon and nitrogen cycles. Nevertheless, very few studies have characterized n-damo microorganisms in high-latitude permafrost regions. Therefore, this study investigated the vertical distribution and diversity of n-damo bacterial communities in soil from three forest types in the permafrost regions of the Daxing'an Mountains. A total of 11 and 8 operational taxonomic units (OTUs) of n-damo 16S rRNA and pmoA genes were observed, respectively. Remarkable spatial variations in n-damo bacteria community richness, diversity, and structure were observed at different soil depths. Moreover, the abundances of n-damo bacteria (16S rRNA and pmoA genes) varied between 1.55 × 104 to 1.47 × 105 and 1.31 × 103 to 3.11 × 104 copies g-1 dry soil (ds), as demonstrated by quantitative PCR analyses. 13CH4 stable isotope tracer assays indicated that the potential n-damo rates varied from 0 to 1.26 nmol g-1 day-1, with the middle layers (20-40 cm and 40-60 cm) exhibiting significantly higher values than the upper (0-20 cm) and deeper layers (80-100 cm) in all three forest types. Redundancy analyses (RDA) indicated that total organic carbon (TOC), nitrate (NO3--N), and nitrite (NO2--N) were key modulators of the distribution of n-damo bacterial communities. This study thus demonstrated the widespread occurrence of n-damo bacteria in cold and high-latitude regions of forest ecosystems and provided important insights into the global distribution of these bacteria. KEY POINTS: • This study detected n-damo bacteria in soil samples obtained from the permafrost region of three forest types in the Daxing'an Mountains. • The community composition of n-damo bacteria was mainly affected by soil depth and not forest type. • The abundances of n-damo bacteria first increased and then decreased at higher soil depths.
Collapse
Affiliation(s)
- Lu Ren
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China
| | - Xiangwen Wu
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China
| | - Dalong Ma
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China. .,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China.
| | - Lin Liu
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China
| | - Xin Li
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China
| | - Dandan Song
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China
| |
Collapse
|
17
|
Guerrero-Cruz S, Vaksmaa A, Horn MA, Niemann H, Pijuan M, Ho A. Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications. Front Microbiol 2021; 12:678057. [PMID: 34054786 PMCID: PMC8163242 DOI: 10.3389/fmicb.2021.678057] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Methane is the final product of the anaerobic decomposition of organic matter. The conversion of organic matter to methane (methanogenesis) as a mechanism for energy conservation is exclusively attributed to the archaeal domain. Methane is oxidized by methanotrophic microorganisms using oxygen or alternative terminal electron acceptors. Aerobic methanotrophic bacteria belong to the phyla Proteobacteria and Verrucomicrobia, while anaerobic methane oxidation is also mediated by more recently discovered anaerobic methanotrophs with representatives in both the bacteria and the archaea domains. The anaerobic oxidation of methane is coupled to the reduction of nitrate, nitrite, iron, manganese, sulfate, and organic electron acceptors (e.g., humic substances) as terminal electron acceptors. This review highlights the relevance of methanotrophy in natural and anthropogenically influenced ecosystems, emphasizing the environmental conditions, distribution, function, co-existence, interactions, and the availability of electron acceptors that likely play a key role in regulating their function. A systematic overview of key aspects of ecology, physiology, metabolism, and genomics is crucial to understand the contribution of methanotrophs in the mitigation of methane efflux to the atmosphere. We give significance to the processes under microaerophilic and anaerobic conditions for both aerobic and anaerobic methane oxidizers. In the context of anthropogenically influenced ecosystems, we emphasize the current and potential future applications of methanotrophs from two different angles, namely methane mitigation in wastewater treatment through the application of anaerobic methanotrophs, and the biotechnological applications of aerobic methanotrophs in resource recovery from methane waste streams. Finally, we identify knowledge gaps that may lead to opportunities to harness further the biotechnological benefits of methanotrophs in methane mitigation and for the production of valuable bioproducts enabling a bio-based and circular economy.
Collapse
Affiliation(s)
- Simon Guerrero-Cruz
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Annika Vaksmaa
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, ’t Horntje, Netherlands
| | - Marcus A. Horn
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Helge Niemann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, ’t Horntje, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
- Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Maite Pijuan
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Adrian Ho
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
- Division of Applied Life Sciences, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
18
|
Chang J, Wu Q, Liang P, Huang X. Enhancement of nitrite-dependent anaerobic methane oxidation via Geobacter sulfurreducens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144230. [PMID: 33418257 DOI: 10.1016/j.scitotenv.2020.144230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Nitrite-dependent anaerobic methane-oxidation (n-damo) is a potential novel technology for nitrogen removal in anaerobic wastewater treatment. In this study, Geobacter sulfurreducens (G) was applied to stimulate n-damo activity. Conductive materials such as nano-magnetite (M) or aggregating agents such as hydroxylapatite (H) were co-added with G. sulfurreducens to further investigate the enhancement effect. Results showed that the nitrite reduction activity of the n-damo culture was promoted by G. sulfurreducens, with 1.71-2.38 times higher in treatment G, G + M, and G + H than that in the control, but was inhibited by the single addition of hydroxylapatite. N-damo bacterial abundances based on the qPCR of the n-damo-specific pmoA gene increased in treatments with G. sulfurreducens, compared with that of the control. High-throughput sequencing analysis revealed the enrichment of uncultured phylum WPS-2 in treatments with G. sulfurreducens. Fluorescence in situ hybridization verified the co-occurrence pattern of n-damo bacteria (NC10), G. sulfurreducens, and type-I aerobic methanotrophs (Methylomonas spp.). The above results corroborated the microbial interspecies electron transfer (MIET) potentiality of the n-damo enrichment. Our study provides a novel pathway for enhancing MIET to stimulate n-damo process.
Collapse
Affiliation(s)
- Jiali Chang
- Division of Environmental Engineering, School of Chemistry, Resources and Environment, Leshan Normal University, Sichuan 614000, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Nitrogen has a greater influence than phosphorus on the diazotrophic community in two successive crop seasons in Northeast China. Sci Rep 2021; 11:6303. [PMID: 33737649 PMCID: PMC7973567 DOI: 10.1038/s41598-021-85829-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/08/2021] [Indexed: 12/01/2022] Open
Abstract
Fertilizer-induced changes in soil nutrients regulate nitrogen (N) fixation in the terrestrial biosphere, but the influences of N and phosphorus (P) fertilization on the diazotroph communities in successive crop seasons were unclear. In this study, we assessed the effects of N and P (high vs. low doses) on the abundance and structure of N2-fixation communities after wheat and soybean harvest in a long-term (34 and 35 years) fertilization experiment. In both seasons, long-term N addition significantly decreased the abundance of nifH genes and 16S rDNA; in addition, high doses of N and P fertilizer decreased the richness of diazotrophs, whereas low doses did not. The proportion of the dominant genus, Bradyrhizobium, in the soybean season (86.0%) was higher than that in the wheat season (47.9%). Fertilization decreased diazotroph diversity and the relative abundance of Bradyrhizobium in the wheat season, but had insignificant effects in the soybean season. The addition of N, but not P, significantly changed the communities of both diazotrophs (at the genus level) and rhizobia (at the species level) in the two seasons. Soil pH was positively associated with nifH abundance and diazotrophic richness; soil NO3− content was negatively correlated with diazotrophic richness and positively correlated with diversity. Soil pH and NO3− content were the two main drivers shaping the soil diazotrophic community. Overall, long-term inorganic N had a greater influence than P on both diazotrophic abundance and community composition, and diazotrophic diversity was more clearly affected by fertilization in the wheat season than in the soybean season.
Collapse
|
20
|
Ding J, Zeng RJ. Fundamentals and potential environmental significance of denitrifying anaerobic methane oxidizing archaea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143928. [PMID: 33316511 DOI: 10.1016/j.scitotenv.2020.143928] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/01/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Many properties of denitrifying anaerobic methane oxidation (DAMO) bacteria have been explored since their first discovery, while DAMO archaea have attracted less attention. Since nitrate is more abundant than nitrite not only in wastewater but also in the natural environment, in depth investigations of the nitrate-DAMO process should be conducted to determine its environmental significance in the global carbon and nitrogen cycles. This review summarizes the status of research on DAMO archaea and the catalyzed nitrate-dependent anaerobic methane oxidation, including such aspects as laboratory enrichment, environmental distribution, and metabolic mechanism. It is shown that appropriate inocula and enrichment parameters are important for the culture enrichment and thus the subsequent DAMO activity, but there are still relatively few studies on the environmental distribution and physiological metabolism of DAMO archaea. Finally, some hypotheses and directions for future research on DAMO archaea, anaerobic methanotrophic archaea, and even anaerobically metabolizing archaea are also discussed.
Collapse
Affiliation(s)
- Jing Ding
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; CAS Key Laboratory for Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
21
|
Nie WB, Ding J, Xie GJ, Yang L, Peng L, Tan X, Liu BF, Xing DF, Yuan Z, Ren NQ. Anaerobic Oxidation of Methane Coupled with Dissimilatory Nitrate Reduction to Ammonium Fuels Anaerobic Ammonium Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1197-1208. [PMID: 33185425 DOI: 10.1021/acs.est.0c02664] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) is critical for mitigating methane emission and returning reactive nitrogen to the atmosphere. The genomes of n-DAMO archaea show that they have the potential to couple anaerobic oxidation of methane to dissimilatory nitrate reduction to ammonium (DNRA). However, physiological details of DNRA for n-DAMO archaea were not reported yet. This work demonstrated n-DAMO archaea coupling the anaerobic oxidation of methane to DNRA, which fueled Anammox in a methane-fed membrane biofilm reactor with nitrate as only electron acceptor. Microelectrode analysis revealed that ammonium accumulated where nitrite built up in the biofilm. Ammonium production and significant upregulation of gene expression for DNRA were detected in suspended n-DAMO culture with nitrite exposure, indicating that nitrite triggered DNRA by n-DAMO archaea. 15N-labeling batch experiments revealed that n-DAMO archaea produced ammonium from nitrate rather than from external nitrite. Localized gradients of nitrite produced by n-DAMO archaea in biofilms induced ammonium production via the DNRA process, which promoted nitrite consumption by Anammox bacteria and in turn helped n-DAMO archaea resist stress from nitrite. As biofilms predominate in various ecosystems, anaerobic oxidation of methane coupled with DNRA could be an important link between the global carbon and nitrogen cycles that should be investigated in future research.
Collapse
Affiliation(s)
- Wen-Bo Nie
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Jie Ding
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Guo-Jun Xie
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Lu Yang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
| | - Lai Peng
- School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xin Tan
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Bing-Feng Liu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - De-Feng Xing
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Nan-Qi Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| |
Collapse
|
22
|
Jing H, Wang R, Jiang Q, Zhang Y, Peng X. Anaerobic methane oxidation coupled to denitrification is an important potential methane sink in deep-sea cold seeps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142459. [PMID: 33113688 DOI: 10.1016/j.scitotenv.2020.142459] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/13/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Microbes play a crucial role in mediating the methane flux in deep-sea cold seep ecosystems, where only methane-related microbes have been well studied, while the whole microbial community and their ecological functions were still largely unknown. Here, we utilized metagenomic data to investigate how the structure and metabolism of microbial community shift in the reduced sediment habitats along the spatial scales. Microbial communities in cold seeps and troughs formed two distinct clades likely driven by environmental factors, such as total sulfur, total phosphate and NO3-, rather than geographical proximity. The predominance of Methanosarcinales reflected a high potential for methane production. In addition to the already well-reported ANME-1/SRB consortia, prevalence of bacterial Methylomirabilis and archaeal Methanoperedens as important performers in the n-damo process with respective of nitrite and nitrate as respective electron acceptor was observed in deep-sea hydrate-bearing regions as well. Aerobic methane oxidization was conducted mainly by type I methanotrophs at Site F (Formosa Ridge), but also via the n-damo process by Methanoperedens and Methylomirabilis in the Haima seep and Xisha Trough, respectively. Based on the high abundance of those denitrifying-dependent methane oxidizers and their related functional genes, we concluded that the previously overlooked n-damo process might be a major methane sink in cold seeps or in gas hydrate-bearing sediments if nitrate is available in the anoxic zones. The signature of isotopic labeling would be essential to confirm the contribution of different anaerobic methane oxidizing pathways in deep-sea cold seep ecosystems.
Collapse
Affiliation(s)
- Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Southern Marine Science and Engineering Guangdong Laboratory, ZhuHai, China.
| | - Ruonan Wang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Qiuyun Jiang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yue Zhang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xiaotong Peng
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
| |
Collapse
|
23
|
Zhong Q, Xue D, Chen H, Liu L, He Y, Zhu D, He Z. Structure and distribution of nitrite-dependent anaerobic methane oxidation bacteria vary with water tables in Zoige peatlands. FEMS Microbiol Ecol 2020; 96:5800981. [PMID: 32149349 DOI: 10.1093/femsec/fiaa039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/06/2020] [Indexed: 11/12/2022] Open
Abstract
The recently discovered nitrite-dependent anaerobic methane oxidation (n-damo) is an important methane sink in natural ecosystems performed by NC10 phylum bacteria. However, the effect of water table (WT) gradient due to global change on n-damo bacterial communities is not well studied in peatlands. Here, we analysed the vertical distribution (0-100 cm) of n-damo bacterial communities at three sites with different WTs of the Zoige peatlands in the Qinghai-Tibetan Plateau. Using an n-damo bacterial specific 16S rRNA gene clone library, we obtained 25 operational taxonomic units (OTUs) that could be divided into Groups A, B, C, D and E (dominated by A and B). The dominant group was Group B at the high (OTU14 and OTU20) and intermediate (OTU7 and OTU8) WT sites and Group A was dominant at the low WT site (OTU6 and OTU5). Using high-throughput sequencing, we observed that n-damo bacteria mainly distributed in subsurface soils (50-60 and 20-30 cm), and their relative abundances were higher at the low WT site than at the other two sites. In addition, we found that pH and nitrate were positively correlated with Group A, while total organic carbon, total nitrogen and ammonia were positively associated with Group B. Our study provides new insights into our understanding of the response of n-damo bacteria to WT gradient in peatlands, with important implications for global change.
Collapse
Affiliation(s)
- Qiuping Zhong
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.,Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China
| | - Dan Xue
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China
| | - Huai Chen
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
| | - Liangfeng Liu
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China
| | - Yixin He
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China
| | - Dan Zhu
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
24
|
Li X, Lai DYF, Gao D. Anaerobic oxidation of methane with denitrification in sediments of a subtropical estuary: Rates, controlling factors and environmental implications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111151. [PMID: 32758912 DOI: 10.1016/j.jenvman.2020.111151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic oxidation of methane with denitrification (DAMO), as an important microbial process regulating methane emission, has been widely reported in freshwater ecosystems. However, the DAMO process and associated biogeochemical controls in estuaries remain poorly understood. Here, we used 13C- and 15N-labelling experiments to quantify the potential rates of DAMO and determined the crucial factors controlling the DAMO rates in the sediment of Yangtze Estuary. Potential rates of DAMO varied greatly across the estuary, ranging from 0.07 to 0.28 nmol CO2 g-1 d-1. Salinity negatively affected the DAMO and also showed an indirectly negative influence on DAMO process by high salinity inhibition on NO3- availability and denitrification. Nitrate concentrations were significantly correlated with the DAMO rates. Denitrification rates showed positive correlation with DAMO rates, implying that nitrate reduction drives the DAMO process. Sediment total organic carbon and NH4+ had important effects on DAMO rates. These results together indicate that DAMO process can occur and the DAMO rates were mainly controlled by sediment NO3- and denitrification in estuary. We further conclude that increasing NO3- load can drive the DAMO process with more important implications on methane sink in estuarine ecosystems.
Collapse
Affiliation(s)
- Xiaofei Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China.
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Dengzhou Gao
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
25
|
Pan H, Qin Y, Wang Y, Liu S, Yu B, Song Y, Wang X, Zhu G. Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) pathway dominates nitrate reduction processes in rhizosphere and non-rhizosphere of four fertilized farmland soil. ENVIRONMENTAL RESEARCH 2020; 186:109612. [PMID: 32668552 DOI: 10.1016/j.envres.2020.109612] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Nitrate (NO3-) reduction partitioning between denitrification, anaerobic ammonium oxidation (anammox), denitrifying anaerobic methane oxidation (DAMO), and dissimilatory nitrate reduction to ammonium (DNRA), can influence the nitrogen (N) use efficiency and crop production in arid farmland. The microbial structure, function and potential rates of denitrification, anammox, DAMO and DNRA, and their respective contributions to total NO3- reduction were investigated in rhizosphere and non-rhizosphere soil of four typical crops in north China by functional gene amplification, high-throughput sequencing, network analysis and isotopic tracing technique. The measured denitrification and DNRA rate varied from 0.0294 to 20.769 nmol N g-1 h-1and 2.4125-58.682 nmol N g-1 h-1, respectively, based on which DNRA pathway contributed to 84.44 ± 14.40% of dissimilatory NO3- reduction, hence dominated NO3- reduction processes compared to denitrification. Anammox and DAMO were not detected. High-throughput sequencing analysis on DNRA nrfA gene, and denitrification nirS and nirK genes demonstrated that these two processes did not correlate to corresponding gene abundance or dominant genus. RDA and Pearson's correlation analysis illustrated that DNRA rate was significantly correlated with the abundance of Chthiniobacter, as well as total organic matter (TOM); denitrification rate was significantly correlated with the abundance of Lautropia, so did TOM. Network analysis showed that the genus performed DNRA was the key connector in the microbial community of dissimilatory nitrate reducers. This study simultaneously investigated the dissimilatory nitrate reduction processes in rhizosphere and non-rhizosphere soils in arid farmland, highlighting that DNRA dominated NO3- reduction processes against denitrification. As denitrification results in N loss, whereas DNRA contributes to N retention, the relative contributions of DNRA versus denitrification activities should be considered appropriately when assessing N transformation processes and N fertilizer management in arid farmland fields.
Collapse
Affiliation(s)
- Huawei Pan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yu Qin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuantao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shiguang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bin Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiping Song
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaomin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
26
|
Wang J, Hua M, Li Y, Ma F, Zheng P, Hu B. Achieving high nitrogen removal efficiency by optimizing nitrite-dependent anaerobic methane oxidation process with growth factors. WATER RESEARCH 2019; 161:35-42. [PMID: 31176104 DOI: 10.1016/j.watres.2019.05.101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/05/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Nitrite-dependent anaerobic methane oxidation (N-DAMO) is a newly discovered bioprocess which uses methane as electron donor to reduce nitrite into dinitrogen. It is a promising clean bioprocess for denitrification in wastewater treatment. However, the low reaction rate and slow growth rate of N-DAMO bacteria within NC10 phylum limit the application of the process. In this study, we chose vitamin, heme, nucleobase and betaine to investigate their short- and long-term effects on N-DAMO bacteria. The concentrations of the growth factors of medium were improved according to the short-term experiments. The results were subsequently verified via long-term inoculations and were applied in a magnetically stirred gas lift reactor (MSGLR). The results indicated that nucleobase and betaine (5.0 and 200 μg L-1, respectively) significantly stimulated the N-DAMO activity, whereas vitamin and heme had no significant effects in the tested concentration ranges. During the long-term incubation, N-DAMO bacteria continuously increased and finally achieved a relative abundance of 14.4% on day 300. Notably, larger aggregates of N-DAMO bacteria were observed at the end of the long-term incubation. And the nitrogen removal rate of the MSGLR increased to 70 mg N L-1 day-1, with the total nitrogen removal efficiency over 99.0%. However, the addition of betaine introduced methyl into the reactors and this made methylotrophs account a considerable part of the bacterial community, which limited the enrichment degree of N-DAMO bacteria. This work will contribute to the engineering application and enrichment of N-DAMO bacteria.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Miaolian Hua
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yufen Li
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Guerrero-Cruz S, Stultiens K, van Kessel MAHJ, Versantvoort W, Jetten MSM, Op den Camp HJM, Kartal B. Key Physiology of a Nitrite-Dependent Methane-Oxidizing Enrichment Culture. Appl Environ Microbiol 2019; 85:e00124-19. [PMID: 30770408 PMCID: PMC6450021 DOI: 10.1128/aem.00124-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/11/2019] [Indexed: 11/20/2022] Open
Abstract
Nitrite-dependent methane-oxidizing bacteria couple the reduction of nitrite to the oxidation of methane via a unique oxygen-producing pathway. This process is carried out by members of the genus Methylomirabilis that belong to the NC10 phylum. Contrary to other known anaerobic methane oxidizers, they do not employ the reverse methanogenesis pathway for methane activation but instead a canonical particulate methane monooxygenase similar to those used by aerobic methanotrophs. Methylomirabilis-like bacteria are detected in many natural and manmade ecosystems, but their physiology is not well understood. Here, using continuous cultivation techniques, batch activity assays, and state-of-the-art membrane-inlet mass spectrometry, we determined growth rate, doubling time, and methane and nitrite affinities of the nitrite-dependent methane-oxidizing bacterium "Candidatus Methylomirabilis lanthanidiphila." Our results provide insight into understanding the interactions of these microorganisms with methanotrophs and other nitrite-reducing microorganisms, such as anaerobic ammonium-oxidizing bacteria. Furthermore, our data can be used in modeling studies as well as wastewater treatment plant design.IMPORTANCE Methane is an important greenhouse gas with a radiative forcing 28 times that of carbon dioxide over a 100-year time scale. The emission of methane to the atmosphere is controlled by aerobic and anaerobic methanotrophs, which are microorganisms that are able to oxidize methane to conserve energy. While aerobic methanotrophs have been studied for over a century, knowledge on the physiological characteristics of anaerobic methanotrophs is scarce. Here, we describe kinetic properties of "Candidatus Methylomirabilis lanthanidiphila," a nitrite-dependent methane-oxidizing microorganism, which is ecologically important and can be applied in wastewater treatment.
Collapse
Affiliation(s)
- Simon Guerrero-Cruz
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Karin Stultiens
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | | | - Wouter Versantvoort
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Mike S M Jetten
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Nijmegen, the Netherlands
| | | | - Boran Kartal
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
28
|
Wang J, Cai C, Li Y, Hua M, Wang J, Yang H, Zheng P, Hu B. Denitrifying Anaerobic Methane Oxidation: A Previously Overlooked Methane Sink in Intertidal Zone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:203-212. [PMID: 30457852 DOI: 10.1021/acs.est.8b05742] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The intertidal zone is an open ecosystem rich in organic matter and plays an important role in global biogeochemical cycles. It was previously considered that methane was mainly removed by sulfate-dependent anaerobic methane oxidation (sulfate-AOM) process in marine ecosystems while other anaerobic methane oxidation processes were ignored. Recent researches have demonstrated that denitrifying anaerobic methane oxidation (DAMO), consisting of nitrite-dependent anaerobic methane oxidation (nitrite-AOM) and nitrate-dependent anaerobic methane oxidation (nitrate-AOM), can also oxidize methane. In this work, the community structure, quantity and potential methane oxidizing rate of DAMO archaea and bacteria in the intertidal zone were studied by high-throughput sequencing, qPCR and stable isotope tracing method. The results showed that nitrate-AOM and nitrite-AOM were both active in the intertidal zone and showed approximate methane oxidation rates. The copy number of 16S rRNA gene of DAMO archaea and DAMO bacteria were 104 ∼ 105 copies g-1 (dry sediment), whereas NC10 bacteria were slightly higher. The contribution rate of DAMO process to total anaerobic methane removal in the intertidal zone reached 65.6% ∼ 100%, which indicates that DAMO process is an important methane sink in intertidal ecosystem. Laboratory incubations also indicated that DAMO archaea were more sensitive to oxygen and preferred a more anoxic environment. These results help us draw a more complete picture of methane and nitrogen cycles in natural habitats.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Chaoyang Cai
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Yufen Li
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Miaolian Hua
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Junren Wang
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Hongrui Yang
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Ping Zheng
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Baolan Hu
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety , Hangzhou , China
| |
Collapse
|
29
|
Wang B, Huang S, Zhang L, Zhao J, Liu G, Hua Y, Zhou W, Zhu D. Diversity of NC10 bacteria associated with sediments of submerged Potamogeton crispus (Alismatales: Potmogetonaceae). PeerJ 2018; 6:e6041. [PMID: 30533317 PMCID: PMC6284450 DOI: 10.7717/peerj.6041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
Background The nitrite-dependent anaerobic methane oxidation (N-DAMO) pathway, which plays an important role in carbon and nitrogen cycling in aquatic ecosystems, is mediated by “Candidatus Methylomirabilis oxyfera” (M. oxyfera) of the NC10 phylum. M. oxyfera-like bacteria are widespread in nature, however, the presence, spatial heterogeneity and genetic diversity of M. oxyfera in the rhizosphere of aquatic plants has not been widely reported. Method In order to simulate the rhizosphere microenvironment of submerged plants, Potamogeton crispus was cultivated using the rhizobox approach. Sediments from three compartments of the rhizobox: root (R), near-rhizosphere (including five sub-compartments of one mm width, N1–N5) and non-rhizosphere (>5 mm, Non), were sampled. The 16S rRNA gene library was used to investigate the diversity of M. oxyfera-like bacteria in these sediments. Results Methylomirabilis oxyfera-like bacteria were found in all three sections, with all 16S rRNA gene sequences belonging to 16 operational taxonomic units (OTUs). A maximum of six OTUs was found in the N1 sub-compartment of the near-rhizosphere compartment and a minimum of four in the root compartment (R) and N5 near-rhizosphere sub-compartment. Indices of bacterial community diversity (Shannon) and richness (Chao1) were 0.73–1.16 and 4–9, respectively. Phylogenetic analysis showed that OTU1-11 were classified into group b, while OTU12 was in a new cluster of NC10. Discussion Our results confirmed the existence of M. oxyfera-like bacteria in the rhizosphere microenvironment of the submerged plant P. crispus. Group b of M. oxyfera-like bacteria was the dominant group in this study as opposed to previous findings that both group a and b coexist in most other environments. Our results indicate that understanding the ecophysiology of M. oxyfera-like bacteria group b may help to explain their existence in the rhizosphere sediment of aquatic plant.
Collapse
Affiliation(s)
- Binghan Wang
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Huang
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Liangmao Zhang
- Laboratory of Environmental Planning and Management, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jianwei Zhao
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Guanglong Liu
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yumei Hua
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Wenbing Zhou
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Duanwei Zhu
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
30
|
Jiang L, Hu Z, Wang Y, Ru D, Li J, Fan J. Effect of trace elements on the development of co-cultured nitrite-dependent anaerobic methane oxidation and methanogenic bacteria consortium. BIORESOURCE TECHNOLOGY 2018; 268:190-196. [PMID: 30077879 DOI: 10.1016/j.biortech.2018.07.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
The aim of this work was to study the effects of key trace elements (i.e., iron, copper and molybdenum) on the development of co-cultured n-damo and methanogenic bacteria consortium, which could realize in situ CH4 production and utilization. The results showed that rational dosage, which was 50 mg/L of Fe, 1 mg/L of Cu and 5 mg/L of Mo, significantly stimulated the removal of NO2-. However, the activity of microbes was noticeably inhibited at 5 mg/L of Cu and 1 mg/L of Mo. Microbial community analysis indicated that the abundances of n-damo bacteria and methanogens showed a positive response to the rational dosage. Furthermore, the expression of key functional genes was enhanced under the rational dosage condition.
Collapse
Affiliation(s)
- Liping Jiang
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Zhen Hu
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, China.
| | - Yinan Wang
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Dongyun Ru
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Jianwei Li
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Jinlin Fan
- National Engineering Laboratory of Coal-Fired Pollutants Emission Reduction, Shandong University, Jinan, Shandong, China
| |
Collapse
|
31
|
Chen J, Gu JD. Faunal Burrows Alter the Diversity, Abundance, and Structure of AOA, AOB, Anammox and n-Damo Communities in Coastal Mangrove Sediments. MICROBIAL ECOLOGY 2017; 74:140-156. [PMID: 28130576 DOI: 10.1007/s00248-017-0939-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
In the present work, the diversity, community structures, and abundances of aerobic ammonia-oxidizing archaea (AOA) and bacteria (AOB), anaerobic ammonium-oxidizing (anammox) bacteria, and denitrifying anaerobic methane oxidization (n-damo) bacteria were unraveled in the bioturbated areas of the coastal Mai Po mangrove sediments. Results indicated that the bioturbation by burrowing in mangrove sediments was associated with higher concentration of NH4+ but lower concentrations of both NO2- and NO3-, and increase in diversity and richness of both AOA and AOB, but relatively lower diversity and richness of n-damo bacteria. The phylotypes of anammox bacterial community were significantly increased while their phylogenetic lineages observed in the less bioturbated areas were also maintained. Infauna also showed a great impact on the composition of n-damo bacterial phylotypes and burrowing activity altered the n-damo community structure profoundly in the sampled areas. The communities of n-damo bacteria in the surrounding bulk sediments showed similar structures to marine n-damo communities, but those on the burrow wall and in the ambient surface layer had a freshwater pattern, which was different from previous findings in Mai Po wetland. On the other hand, the abundances of AOA, AOB, and n-damo bacteria were greatly stimulated on burrow walls while the abundance of anammox bacteria remained unchanged. Infaunal burrows and mangrove roots affected the relative abundance of AOA and AOB. The benthic infauna stimulated the abundances of AOA, AOB, anammox, and n-damo bacteria. Furthermore, NH4+ and NO2- were important environmental factors changing the structure of each group. The communities of anammox and n-damo bacteria in bioturbated areas showed a competitive relationship.
Collapse
Affiliation(s)
- Jing Chen
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
32
|
Chronopoulou PM, Shelley F, Pritchard WJ, Maanoja ST, Trimmer M. Origin and fate of methane in the Eastern Tropical North Pacific oxygen minimum zone. THE ISME JOURNAL 2017; 11:1386-1399. [PMID: 28244978 PMCID: PMC5437358 DOI: 10.1038/ismej.2017.6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/06/2016] [Accepted: 01/09/2017] [Indexed: 11/23/2022]
Abstract
Oxygen minimum zones (OMZs) contain the largest pools of oceanic methane but its origin and fate are poorly understood. High-resolution (<15 m) water column profiles revealed a 300 m thick layer of elevated methane (20-105 nM) in the anoxic core of the largest OMZ, the Eastern Tropical North Pacific. Sediment core incubations identified a clear benthic methane source where the OMZ meets the continental shelf, between 350 and 650 m, with the flux reflecting the concentration of methane in the overlying anoxic water. Further incubations characterised a methanogenic potential in the presence of both porewater sulphate and nitrate of up to 88 nmol g-1day-1 in the sediment surface layer. In these methane-producing sediments, the majority (85%) of methyl coenzyme M reductase alpha subunit (mcrA) gene sequences clustered with Methanosarcinaceae (⩾96% similarity to Methanococcoides sp.), a family capable of performing non-competitive methanogenesis. Incubations with 13C-CH4 showed potential for both aerobic and anaerobic methane oxidation in the waters within and above the OMZ. Both aerobic and anaerobic methane oxidation is corroborated by the presence of particulate methane monooxygenase (pmoA) gene sequences, related to type I methanotrophs and the lineage of Candidatus Methylomirabilis oxyfera, known to perform nitrite-dependent anaerobic methane oxidation (N-DAMO), respectively.
Collapse
Affiliation(s)
| | - Felicity Shelley
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - William J Pritchard
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Susanna T Maanoja
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Mark Trimmer
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
33
|
Long Y, Liu C, Lin H, Li N, Guo Q, Xie S. Vertical and horizontal distribution of sediment nitrite-dependent methane-oxidizing organisms in a mesotrophic freshwater reservoir. Can J Microbiol 2017; 63:525-534. [DOI: 10.1139/cjm-2016-0585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present study, we investigated the spatial change of sediment nitrite-dependent anaerobic methane-oxidizing (n-damo) organisms in the mesotrophic freshwater Gaozhou Reservoir (6 different sampling locations and 2 sediment depths (0–5 cm, 5–10 cm)), one of the largest drinking water reservoirs in China. The abundance of sediment n-damo bacteria was quantified using quantitative polymerase chain reaction assay, while the richness, diversity, and composition of n-damo pmoA gene sequences were characterized using clone library analysis. Vertical and horizontal changes in sediment n-damo bacterial abundance occurred in Gaozhou Reservoir, with 1.37 × 105 to 8.24 × 105 n-damo 16S rRNA gene copies per gram of dry sediment. Considerable horizontal and vertical variations of n-damo pmoA gene diversity (Shannon index = 0.32–2.50) and composition also occurred in this reservoir. Various types of sediment n-damo pmoA genes existed in Gaozhou Reservoir. A small proportion of n-damo pmoA gene sequences (19.1%) were related to those recovered from “Candidatus Methylomirabilis oxyfera”. Our results suggested that sediment n-damo pmoA gene diversity might be regulated by nitrite, while n-damo pmoA gene richness might be governed by multiple environmental factors, including total organic carbon, total phosphorus, nitrite, and total nitrogen.
Collapse
Affiliation(s)
- Yan Long
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Changbao Liu
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Hengliang Lin
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Ningning Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Qingwei Guo
- South China Institute of Environmental Sciences, Ministry of Environment Protection, Guangzhou 510655, People’s Republic of China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
34
|
Long Y, Guo Q, Li N, Li B, Tong T, Xie S. Spatial change of reservoir nitrite-dependent methane-oxidizing microorganisms. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1247-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
35
|
Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJM, Jetten MSM, Lüke C, Reimann J. Nitrate- and nitrite-dependent anaerobic oxidation of methane. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:941-955. [PMID: 27753265 DOI: 10.1111/1758-2229.12487] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microbial methane oxidation is an important process to reduce the emission of the greenhouse gas methane. Anaerobic microorganisms couple the oxidation of methane to the reduction of sulfate, nitrate and nitrite, and possibly oxidized iron and manganese minerals. In this article, we review the recent finding of the intriguing nitrate- and nitrite-dependent anaerobic oxidation of methane (AOM). Nitrate-dependent AOM is catalyzed by anaerobic archaea belonging to the ANME-2d clade closely related to Methanosarcina methanogens. They were named 'Candidatus Methanoperedens nitroreducens' and use reverse methanogenesis with the key enzyme methyl-coenzyme M (methyl-CoM) reductase for methane activation. Their major end product is nitrite which can be taken up by nitrite-dependent methanotrophs. Nitrite-dependent AOM is performed by the NC10 bacterium 'Candidatus Methylomirabilis oxyfera' that probably utilizes an intra-aerobic pathway through the dismutation of NO to N2 and O2 for aerobic methane activation by methane monooxygenase, yet being a strictly anaerobic microbe. Environmental distribution, physiological and biochemical aspects are discussed in this article as well as the cooperation of the microorganisms involved.
Collapse
Affiliation(s)
- Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Olivia Rasigraf
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Netherlands Earth Systems Science Center, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Annika Vaksmaa
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Wouter Versantvoort
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Arslan Arshad
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Netherlands Earth Systems Science Center, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Claudia Lüke
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Joachim Reimann
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| |
Collapse
|
36
|
Chen J, Dick R, Lin JG, Gu JD. Current advances in molecular methods for detection of nitrite-dependent anaerobic methane oxidizing bacteria in natural environments. Appl Microbiol Biotechnol 2016; 100:9845-9860. [DOI: 10.1007/s00253-016-7853-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 11/29/2022]
|
37
|
Long Y, Jiang X, Guo Q, Li B, Xie S. Sediment nitrite-dependent methane-oxidizing microorganisms temporally and spatially shift in the Dongjiang River. Appl Microbiol Biotechnol 2016; 101:401-410. [DOI: 10.1007/s00253-016-7888-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/07/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022]
|
38
|
He Z, Cai C, Wang J, Xu X, Zheng P, Jetten MSM, Hu B. A novel denitrifying methanotroph of the NC10 phylum and its microcolony. Sci Rep 2016; 6:32241. [PMID: 27582299 PMCID: PMC5007514 DOI: 10.1038/srep32241] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/02/2016] [Indexed: 12/03/2022] Open
Abstract
The NC10 phylum is a candidate phylum of prokaryotes and is considered important in biogeochemical cycles and evolutionary history. NC10 members are as-yet-uncultured and are difficult to enrich, and our knowledge regarding this phylum is largely limited to the first species ‘Candidatus Methylomirabilis oxyfera’ (M. oxyfera). Here, we enriched NC10 members from paddy soil and obtained a novel species of the NC10 phylum that mediates the anaerobic oxidation of methane (AOM) coupled to nitrite reduction. By comparing the new 16S rRNA gene sequences with those already in the database, this new species was found to be widely distributed in various habitats in China. Therefore, we tentatively named it ‘Candidatus Methylomirabilis sinica’ (M. sinica). Cells of M. sinica are roughly coccus-shaped (0.7–1.2 μm), distinct from M. oxyfera (rod-shaped; 0.25–0.5 × 0.8–1.1 μm). Notably, microscopic inspections revealed that M. sinica grew in honeycomb-shaped microcolonies, which was the first discovery of microcolony of the NC10 phylum. This finding opens the possibility to isolate NC10 members using microcolony-dependent isolation strategies.
Collapse
Affiliation(s)
- Zhanfei He
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Chaoyang Cai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Shen LD, Hu BL, Liu S, Chai XP, He ZF, Ren HX, Liu Y, Geng S, Wang W, Tang JL, Wang YM, Lou LP, Xu XY, Zheng P. Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments. Appl Microbiol Biotechnol 2016; 100:7171-80. [PMID: 27225473 DOI: 10.1007/s00253-016-7627-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/01/2016] [Accepted: 05/07/2016] [Indexed: 12/14/2022]
Abstract
In the current study, we investigated nitrite-dependent anaerobic methane oxidation (N-DAMO) as a potential methane sink in the Hangzhou Bay and the adjacent Zhoushan sea area. The potential activity of the N-DAMO process was primarily observed in Hangzhou Bay by means of (13)C-labeling experiments, whereas very low or no potential N-DAMO activity could be detected in the Zhoushan sea area. The measured potential N-DAMO rates ranged from 0.2 to 1.3 nmol (13)CO2 g(-1) (dry sediment) day(-1), and the N-DAMO potentially contributed 2.0-9.4 % to the total microbial methane oxidation in the examined sediments. This indicated that the N-DAMO process may be an alternative pathway in the coastal methane cycle. Phylogenetic analyses confirmed the presence of Candidatus Methylomirabilis oxyfera-like bacteria in all the examined sediments, while the group A members (the dominant bacteria responsible for N-DAMO) were found mainly in Hangzhou Bay. Quantitative PCR showed that the 16S rRNA gene abundance of Candidatus M. oxyfera-like bacteria varied from 5.4 × 10(6) to 5.0 × 10(7) copies g(-1) (dry sediment), with a higher abundance observed in Hangzhou Bay. In addition, the overlying water NO3 (-) concentration and salinity were identified as the most important factors influencing the abundance and potential activity of Candidatus M. oxyfera-like bacteria in the examined sediments. This study showed the evidence of N-DAMO in coastal environments and indicated the importance of N-DAMO as a potential methane sink in coastal environments.
Collapse
Affiliation(s)
- Li-Dong Shen
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Bao-Lan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Shuai Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Ping Chai
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, 316021, China
| | - Zhan-Fei He
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hong-Xing Ren
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yan Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Sha Geng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jing-Liang Tang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, 316021, China
| | - Yi-Ming Wang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, 316021, China
| | - Li-Ping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Yang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
40
|
Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils. Appl Microbiol Biotechnol 2016; 100:7727-39. [DOI: 10.1007/s00253-016-7585-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/24/2016] [Accepted: 04/27/2016] [Indexed: 01/01/2023]
|
41
|
Shen LD, Wu HS, Gao ZQ, Liu X, Li J. Comparison of community structures of Candidatus Methylomirabilis oxyfera-like bacteria of NC10 phylum in different freshwater habitats. Sci Rep 2016; 6:25647. [PMID: 27157928 PMCID: PMC4860643 DOI: 10.1038/srep25647] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/20/2016] [Indexed: 12/26/2022] Open
Abstract
Methane oxidation coupled to nitrite reduction is mediated by 'Candidatus Methylomirabilis oxyfera' (M. oxyfera), which belongs to the NC10 phylum. In this study, the community composition and diversity of M. oxyfera-like bacteria of NC10 phylum were examined and compared in four different freshwater habitats, including reservoir sediments (RS), pond sediments (PS), wetland sediments (WS) and paddy soils (PAS), by using Illumina-based 16S rRNA gene sequencing. The recovered NC10-related sequences accounted for 0.4-2.5% of the 16S rRNA pool in the examined habitats, and the highest percentage was found in WS. The diversity of NC10 bacteria were the highest in RS, medium in WS, and lowest in PS and PAS. The observed number of OTUs (operational taxonomic unit; at 3% cut-off) were 97, 46, 61 and 40, respectively, in RS, PS, WS and PAS. A heterogeneous distribution of NC10 bacterial communities was observed in the examined habitats, though group B members were the dominant bacteria in each habitat. The copy numbers of NC10 bacterial 16S rRNA genes ranged between 5.8 × 10(6) and 3.2 × 10(7) copies g(-1) sediment/soil in the examined habitats. These results are helpful for a systematic understanding of NC10 bacterial communities in different types of freshwater habitats.
Collapse
Affiliation(s)
- Li-Dong Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.,Department of Agricultural Resource and Environment, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hong-Sheng Wu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.,Department of Agricultural Resource and Environment, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhi-Qiu Gao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China.,College of Geophysics and Remote Sensing, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xu Liu
- Department of Agricultural Resource and Environment, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ji Li
- Department of Agricultural Resource and Environment, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
42
|
Shen LD, Wu HS, Gao ZQ, Li J, Liu X. Presence of diverse Candidatus Methylomirabilis oxyfera
-like bacteria of NC10 phylum in agricultural soils. J Appl Microbiol 2016; 120:1552-60. [DOI: 10.1111/jam.13119] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/02/2016] [Accepted: 02/23/2016] [Indexed: 12/26/2022]
Affiliation(s)
- L.-d. Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Jiangsu Key Laboratory of Agricultural Meteorology; College of Applied Meteorology; Nanjing University of Information Science and Technology; Nanjing China
| | - H.-s. Wu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Jiangsu Key Laboratory of Agricultural Meteorology; College of Applied Meteorology; Nanjing University of Information Science and Technology; Nanjing China
| | - Z.-q. Gao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry; Institute of Atmospheric Physics; Chinese Academy of Science; Beijing China
- College of Geophysics and Remote Sensing; Nanjing University of Information Science and Technology; Nanjing China
| | - J. Li
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Jiangsu Key Laboratory of Agricultural Meteorology; College of Applied Meteorology; Nanjing University of Information Science and Technology; Nanjing China
| | - X. Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Jiangsu Key Laboratory of Agricultural Meteorology; College of Applied Meteorology; Nanjing University of Information Science and Technology; Nanjing China
| |
Collapse
|
43
|
Nitrite-dependent anaerobic methane oxidizing bacteria along the water level fluctuation zone of the Three Gorges Reservoir. Appl Microbiol Biotechnol 2015; 100:1977-1986. [PMID: 26515563 DOI: 10.1007/s00253-015-7083-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
The nitrite-dependent anaerobic methane oxidation (n-damo) mediated by "Candidatus Methylomirabilis oxyfera" connects the biogeochemical carbon and nitrogen cycles in a novel way. Many environments have been reported to harbor such organism being slow-growing and oxygen-sensitive anaerobes. Here, we focused on the population of n-damo bacteria in a fluctuating habitat being the wetland in the water level fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR) in China. A molecular approach demonstrated positive amplifications when targeting the functional pmoA gene only in the lower sites which endured longer flooding time in an elevation gradient. Only 1 operational taxonomic unit (OTU) in the lower elevation zone targeting the 16S ribosomal RNA (rRNA) gene was clustering into the NC-10 group a, which is presumed to be the true n-damo group. Moreover, a relatively low level of diversity was observed in this study. The abundances were as low as 4.7 × 10(2) to 1.5 × 10(3) copies g(-1) dry soil (ds) in the initial stage, which were almost the lowest reported. However, an increase was observed (3.2 × 10(3) to 5.3 × 10(4) copies g(-1) ds) after nearly 6 months of flooding. Intriguingly, the abundance of n-damo bacteria correlated positively with the accumulated flooding time (AFT). The current study revealed that n-damo bacteria can be detected in a fluctuating environment and the sites with longer flooding time seem to be preferred habitats. The water flooding may be the principal factor in this ecosystem by creating anoxic condition. The wide range of such habitats suggests a high potential of n-damo bacteria to play a key role in natural CH4 consumption.
Collapse
|
44
|
Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field. Appl Microbiol Biotechnol 2015; 100:439-46. [DOI: 10.1007/s00253-015-6986-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/20/2015] [Accepted: 09/02/2015] [Indexed: 01/04/2023]
|
45
|
Yan P, Li M, Wei G, Li H, Gao Z. Molecular Fingerprint and Dominant Environmental Factors of Nitrite-Dependent Anaerobic Methane-Oxidizing Bacteria in Sediments from the Yellow River Estuary, China. PLoS One 2015; 10:e0137996. [PMID: 26368535 PMCID: PMC4569144 DOI: 10.1371/journal.pone.0137996] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/25/2015] [Indexed: 11/18/2022] Open
Abstract
Nitrite-dependent anaerobic methane oxidation (n-damo) is performed by “Candidatus Methylomirabilis oxyfera” (M. oxyfera), which connects the carbon and nitrogen global nutrient cycles. In the present study, M. oxyfera-like bacteria sequences were successfully recovered from Yellow River Estuary sediments using specific primers for 16S rRNA and pmoA genes. A M. oxyfera-like sequences analysis based on the 16S rRNA gene revealed greater diversity compared with the pmoA gene; the 16S rRNA gene sequences retrieved from the Yellow River Estuary sediments belong to groups A as well as B and were mainly found in freshwater habitats. Quantitative PCR showed that 16S rRNA gene abundance varied from 9.28±0.11×103 to 2.10±0.13×105 copies g-1 (dry weight), and the pmoA gene abundance ranged from 8.63±0.50×103 to 1.83±0.18×105 copies g-1 (dry weight). A correlation analysis showed that the total organic carbon (TOC) and ammonium (NH4+) as well as the ratio of total phosphorus to total nitrogen (TP/TN) influenced the M. oxyfera-like bacteria distribution in the Yellow River Estuary sediments. These findings will aid in understanding the n-damo bacterial distribution pattern as well as their correlation with surrounding environmental factors in temperate estuarine ecosystems.
Collapse
Affiliation(s)
- Pengze Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Mingcong Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Guangshan Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
- * E-mail: (ZG); (HL)
| | - Zheng Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
- * E-mail: (ZG); (HL)
| |
Collapse
|
46
|
He Z, Wang J, Zhang X, Cai C, Geng S, Zheng P, Xu X, Hu B. Nitrogen removal from wastewater by anaerobic methane-driven denitrification in a lab-scale reactor: heterotrophic denitrifiers associated with denitrifying methanotrophs. Appl Microbiol Biotechnol 2015; 99:10853-60. [PMID: 26342737 DOI: 10.1007/s00253-015-6939-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/06/2015] [Accepted: 08/11/2015] [Indexed: 11/24/2022]
Abstract
Nitrite-dependent anaerobic methane oxidation (n-damo) is a newly discovered bioprocess that reduces nitrite to dinitrogen with methane as electron donor, which has promising potential to remove nitrogen from wastewater. In this work, a lab-scale sequencing batch reactor (SBR) was operated for 609 days with methane as the sole external electron donor. In the SBR, nitrite in synthetic wastewater was removed continuously; the final volumetric nitrogen removal rate was 12.22±0.02 mg N L(-1) day(-1) and the percentage of nitrogen removal was 98.5 ± 0.2 %. Microbial community analysis indicated that denitrifying methanotrophs dominated (60-70 %) the population of the final sludge. Notably, activity testing and microbial analysis both suggested that heterotrophic denitrifiers existed in the reactor throughout the operation period. After 609 days, the activity testing indicated the nitrogen removal percentage of heterotrophic denitrification was 17 ± 2 % and that of n-damo was 83 ± 2 %. A possible mutualism may be developed between the dominated denitrifying methanotrophs and the associated heterotrophs through cross-feed. Heterotrophs may live on the microbial products excreted by denitrifying methanotrophs and provide growth factors that are required by denitrifying methanotrophs.
Collapse
Affiliation(s)
- Zhanfei He
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xu Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Chaoyang Cai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Sha Geng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
47
|
Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria. Appl Environ Microbiol 2015; 81:5538-45. [PMID: 26048927 DOI: 10.1128/aem.00984-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/30/2015] [Indexed: 11/20/2022] Open
Abstract
Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite.
Collapse
|
48
|
He Z, Geng S, Shen L, Lou L, Zheng P, Xu X, Hu B. The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction. WATER RESEARCH 2015; 68:554-562. [PMID: 25462761 DOI: 10.1016/j.watres.2014.09.055] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/24/2014] [Accepted: 09/28/2014] [Indexed: 06/04/2023]
Abstract
Anaerobic oxidation of methane coupled to nitrite reduction (n-damo) plays an important role in global carbon and nitrogen cycles and also is a potential bioprocess in wastewater treatment. In this work, the effects of environmental conditions – temperature, pH and salinity – on the metabolic activity and growth rate of n-damo bacteria were investigated by short-term batch test and long-term bacterial incubation. Quantitative PCR and 16S rRNA and pmoA gene sequencing were applied to detect the microbial community in the long-term incubation. The results indicated that all the three environmental factors significantly affected the metabolic activity and growth rate of n-damo bacteria and the optimum temperature, pH and salinity were 35 °C, 7.6 and 0 g NaCl L⁻¹, respectively. Notably, salinity adaption of n-damo bacteria was first observed under salinity stress of 20 g NaCl L⁻¹. It's predicted that n-damo process might occur in saline environments and future work could focus on this.
Collapse
Affiliation(s)
- Zhanfei He
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Shen LD, He ZF, Wu HS, Gao ZQ. Nitrite-Dependent Anaerobic Methane-Oxidising Bacteria: Unique Microorganisms with Special Properties. Curr Microbiol 2014; 70:562-70. [DOI: 10.1007/s00284-014-0762-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
|
50
|
Shen LD, Wu HS, Gao ZQ. Distribution and environmental significance of nitrite-dependent anaerobic methane-oxidising bacteria in natural ecosystems. Appl Microbiol Biotechnol 2014; 99:133-42. [DOI: 10.1007/s00253-014-6200-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 11/30/2022]
|