1
|
Li Z, Tian SY. A new alkaline pectin lyase with novel thermal and pH stability from Bacilus velezensis. Protein Expr Purif 2024; 224:106564. [PMID: 39111349 DOI: 10.1016/j.pep.2024.106564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024]
Abstract
Pectin lyases are important in various industries, including tobacco leaves processing. In this paper, a novel pectin lyase Pel04 from Bacillus velezensis was characterized. Pel04 molecular weight (Mw) and isoelectric point (pI) of the protein sequence after removing the signal peptide are 43.0 kDa. The optimal temperature and pH of Pel04 is 50 °C and 9.0, respectively. Pel04 was stable in the range of 30-50 °C, and pH 9.5-11. Ca2+ can significantly stimulate the enzyme activity, while Cu2+, Co2+, Fe3+, and Mn2+ have inhibitory effects on Pel04. By Pel04 treatment, the overall content of acids, alcohols, esters and other aromas in tobacco leaves increased, while the contents of phenolic and heterocyclic substances decreased. Pel04 has important potential for industrial application particularly in improving quality of tobacco leaves.
Collapse
Affiliation(s)
- Ze Li
- College of Ecological and Environmental Protection, Linyi Vocational University of Science and Technology, Linyi, China.
| | - Su-Yan Tian
- College of Ecological and Environmental Protection, Linyi Vocational University of Science and Technology, Linyi, China.
| |
Collapse
|
2
|
Li PW, Ma J, Wei XF, Zhang ZY, Wang RM, Xiao J, Wang JQ. Modification and application of highly active alkaline pectin lyase. AMB Express 2022; 12:130. [PMID: 36210372 PMCID: PMC9548460 DOI: 10.1186/s13568-022-01472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Alkaline pectate lyase has developmental prospects in the textile, pulp, paper, and food industries. In this study, we selected BacPelA, the pectin lyase with the highest expression activity from Bacillus clausii, modified and expressed in Escherichia coli BL21(DE3). Through fragment replacement, the catalytic activity of the enzyme was significantly improved. The optimum pH and temperature of the modified pectin lyase (PGLA-rep4) were 11.0 and 70 °C, respectively. It also exhibited a superior ability to cleave methylated pectin. The enzyme activity of PGLA-rep4, measured at 235 nm with 0.2% apple pectin as the substrate, was 554.0 U/mL, and the specific enzyme activity after purification using a nickel column was 822.9 U/mg. After approximately 20 ns of molecular dynamics simulation, the structure of the pectin lyase PGLA-rep4 tended to be stable. The root mean square fluctuation (RMSF) values at the key catalytically active site, LYS168, were higher than those of the wildtype PGLA. In addition, PGLA-rep4 was relatively stable in the presence of metal ions. PGLA-rep4 has good enzymatic properties and activities and maintains a high pH and temperature. This study provides a successful strategy for enhancing the catalytic activity of PGLA-rep4, making it the ultimate candidate for degumming and various uses in the pulp, paper, and textile industries.
Collapse
|
3
|
Suzuki H, Morishima T, Handa A, Tsukagoshi H, Kato M, Shimizu M. Biochemical Characterization of a Pectate Lyase AnPL9 from Aspergillus nidulans. Appl Biochem Biotechnol 2022; 194:5627-5643. [PMID: 35802235 DOI: 10.1007/s12010-022-04036-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Pectinolytic enzymes have diverse industrial applications. Among these, pectate lyases act on the internal α-1,4-linkage of the pectate backbone, playing a critical role in pectin degradation. While most pectate lyases characterized thus far are of bacterial origin, fungi can also be excellent sources of pectinolytic enzymes. In this study, we performed biochemical characterization of the pectate lyase AnPL9 belonging to the polysaccharide lyase family 9 (PL9) from the filamentous fungus Aspergillus nidulans. Recombinant AnPL9 was produced using a Pichia pastoris expression system and purified. AnPL9 exhibited high activity on homogalacturonan (HG), pectin from citrus peel, pectin from apple, and the HG region in rhamnogalacturonan-I. Although digalacturonic acid and trigalacturonic acid were not degraded by AnPL9, tetragalacturonic acid was converted to 4,5-unsaturated digalacturonic acid and digalacturonic acid. These results indicate that AnPL9 degrades HG oligosaccharides with a degree of polymerization > 4. Furthermore, AnPL9 was stable within a neutral-to-alkaline pH range (pH 6.0-11.0). Our findings suggest that AnPL9 is a candidate pectate lyase for biotechnological applications in the food, paper, and textile industries. This is the first report on a fungal pectate lyase belonging to the PL9 family.
Collapse
Affiliation(s)
- Hiromitsu Suzuki
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-0073, Japan
| | - Toshiki Morishima
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-0073, Japan
| | - Atsuya Handa
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-0073, Japan
| | | | - Masashi Kato
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-0073, Japan
| | - Motoyuki Shimizu
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-0073, Japan.
| |
Collapse
|
4
|
Sharma N, Sahoo D, Rai AK, Singh SP. A highly alkaline pectate lyase from the Himalayan hot spring metagenome and its bioscouring applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Andjelković U, Gudelj I, Klarić T, Hinneburg H, Vinković M, Wittine K, Dovezenski N, Vikić-Topić D, Lauc G, Vujčić Z, Josić D. Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase. Electrophoresis 2020; 42:2626-2636. [PMID: 33026663 DOI: 10.1002/elps.202000092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 11/10/2022]
Abstract
Invertases are glycosidases applied for synthesis of alkyl glycosides that are important and effective surfactants. Stability of invertases in the environment with increased content of organic solvent is crucial for increase of productivity of glycosidases. Their stability is significantly influenced by N-glycosylation. However, yeast N-glycosylation pathways may synthesize plethora of N-glycan structures. A total natural crude mixture of invertase glycoforms (EINV) extracted from Saccharomyces cerevisiae was subfractionated by anion-exchange chromatography on industrial monolithic supports to obtain different glycoforms (EINV1-EINV3). Separated glycoforms exhibited different stabilities in water-alcohol solutions that are in direct correlation with the amount of phosphate bound to N-glycans. Observed differences in stability of different invertase glycoforms were used to improve productivity of methyl β-d-fructofuranoside (MF) synthesis. The efficiency and yield of MF synthesis were improved more than 50% when the most stabile glycoform bearing the lowest amount of phosphorylated N-glycans is selected and utilized. These data underline the importance of analysis of glycan structures attached to glycoproteins, demonstrate different impact of N-glycans on the surface charge and enzyme stability in regard to particular reaction environment, and provide a platform for improvement of yield of industrial enzymatic synthesis by chromatographic selection of glycoforms on monolithic supports.
Collapse
Affiliation(s)
- Uroš Andjelković
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy-National Institute of the Republic of Serbia, Belgrade, Serbia.,Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Thomas Klarić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Hannes Hinneburg
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | - Karlo Wittine
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Nebojša Dovezenski
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Dražen Vikić-Topić
- NMR Centre, Ruđer Bošković Institute, Zagreb, Croatia.,Department of Natural and Health Sciences, Juraj Dobrila University of Pula, Pula, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Zoran Vujčić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Djuro Josić
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
6
|
Wu P, Yang S, Zhan Z, Zhang G. Origins and features of pectate lyases and their applications in industry. Appl Microbiol Biotechnol 2020; 104:7247-7260. [PMID: 32666183 DOI: 10.1007/s00253-020-10769-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/12/2020] [Accepted: 07/02/2020] [Indexed: 11/25/2022]
Abstract
Pectate lyase treatment can be an alternative strategy of the chemical processing, which causes severe environmental pollution, and has been broadly studied and applied for diverse industrial applications including textile industry, beverage industry, pulp processing, pectic wastewater pretreatment, and oil extraction. This review gave a brief description of the origins, enzymatic characterizations, structure, and applications of pectate lyases (Pels). Most of the reported pectate lyases are originated from microorganisms with a small number of them from plants and animals. Due to the diverse environments that these microorganisms exist, Pels present diversified features, especially for the range of optimal pH and temperature. The diversified biochemical properties of Pels define their applications in different industries, and the applications of alkaline Pels on cotton bioscouring and ramie degumming in textile industry were focused in this review. This review also discussed the perspectives of the development and applications of Pels. KEY POINTS: • The first review on pectate lyase focusing on biotechnological applications. • Origins, features, structures, applications of pectate lyases reviewed. • Applications of alkaline Pels in textile industry demonstrated. • Perspectives on future development and applications of Pels discussed.
Collapse
Affiliation(s)
- Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Wuhan Sunhy Biology Co., Ltd., Wuhan, 430206, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhichun Zhan
- Wuhan Sunhy Biology Co., Ltd., Wuhan, 430206, China
| | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
7
|
Kamijo J, Sakai K, Suzuki H, Suzuki K, Kunitake E, Shimizu M, Kato M. Identification and characterization of a thermostable pectate lyase from Aspergillus luchuensis var. saitoi. Food Chem 2019; 276:503-510. [DOI: 10.1016/j.foodchem.2018.10.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/06/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
|
8
|
Tang J, Long L, Cao Y, Ding S. Expression and characterization of two glucuronoyl esterases from Thielavia terrestris and their application in enzymatic hydrolysis of corn bran. Appl Microbiol Biotechnol 2019; 103:3037-3048. [DOI: 10.1007/s00253-019-09662-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/08/2019] [Accepted: 01/22/2019] [Indexed: 01/13/2023]
|
9
|
Screening of a Novel Polysaccharide Lyase Family 10 Pectate Lyase from Paenibacillus polymyxa KF-1: Cloning, Expression and Characterization. Molecules 2018; 23:molecules23112774. [PMID: 30373112 PMCID: PMC6278402 DOI: 10.3390/molecules23112774] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 01/23/2023] Open
Abstract
Pectate lyase (EC 4.2.2.2) catalyzes the cleavage of α-1,4-glycosidic bonds of pectin polymers, and it has potential uses in the textile industry. In this study, a novel pectate lyase belonging to polysaccharide lyase family 10 was screened from the secreted enzyme extract of Paenibacillus polymyxa KF-1 and identified by liquid chromatography-MS/MS. The gene was cloned from P. polymyxa KF-1 genomic DNA and expressed in Escherichia coli. The recombinant enzyme PpPel10a had a predicted Mr of 45.2 kDa and pI of 9.41. Using polygalacturonic acid (PGA) as substrate, the optimal conditions for PpPel10a reaction were determined to be 50 °C and pH 9.0, respectively. The Km, vmax and kcat values of PpPel10a with PGA as substrate were 0.12 g/L, 289 μmol/min/mg, and 202.3 s−1, respectively. Recombinant PpPel10a degraded citrus pectin, producing unsaturated mono- and oligogalacturonic acids. PpPel10a reduced the viscosity of PGA, and weight loss of ramie (Boehmeria nivea) fibers was observed after treatment with the enzyme alone (22.5%) or the enzyme in combination with alkali (26.3%). This enzyme has potential for use in plant fiber processing.
Collapse
|
10
|
Wang Z, Guo C, Liu L, Huang H. Effects of N-glycosylation on the biochemical properties of recombinant bEKL expressed in Pichia pastoris. Enzyme Microb Technol 2018; 114:40-47. [DOI: 10.1016/j.enzmictec.2018.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/10/2018] [Accepted: 03/16/2018] [Indexed: 12/30/2022]
|
11
|
Zhou M, Wu J, Wang T, Gao L, Yin H, Lü X. The purification and characterization of a novel alkali-stable pectate lyase produced by Bacillus subtilis PB1. World J Microbiol Biotechnol 2017; 33:190. [PMID: 28975516 DOI: 10.1007/s11274-017-2357-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 09/23/2017] [Indexed: 10/18/2022]
Abstract
Pectinase is an important kind of enzyme with many industrial applications, among which pectinases produced by bacteria were scarce compared with fungal sources. In this study, a novel bacterium which produced extracellular pectinase was firstly isolated from flue-cured tobacco leaves and identified as Bacillus subtilis PB1 according to its 16S rRNA gene. The pectinolytic enzyme was purified by ammonium sulfate precipitation, ion-exchange and gel filtration chromatography, after which molecular weight was determined as 43.1 ± 0.5 kDa by SDS-PAGE. Peptide mass fingerprinting of the pectinase by MALDI-TOF MS showed that the purified enzyme shared homology with pectate lyase and was designated as BsPel-PB1. The optimal temperature for BsPel-PB1 was 50 °C. The optimal pH was pH 9.5 for BsPel-PB1 while it had a broad pH stability from 5 to 11. The values of K m and V max were 0.312 mg/mL and 1248 U/mL, respectively. Accordingly, the BsPel-PB1 was a novel alkaline pectate lyase which could find potential application as a commercial candidate in the pectinolytic related industries.
Collapse
Affiliation(s)
- Man Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Jingli Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Lina Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Huijun Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China.
| |
Collapse
|