1
|
Kamba S, Yamada R, Matsumoto T, Ogino H. Improvement of lipid production from glucose/xylose mixed-sugar by the oleaginous yeast Lipomyces starkeyi through ultra-violet mutagenesis. Enzyme Microb Technol 2025; 183:110551. [PMID: 39591729 DOI: 10.1016/j.enzmictec.2024.110551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/05/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
The oleaginous yeast Lipomyces starkeyi is a promising triacylglycerol (TAG) producer for biodiesel fuel. However, it is necessary to further improve TAG productivity in L. starkeyi from a mixed sugar of glucose and xylose. This study aimed to construct an L. starkeyi mutant with increased TAG productivity from glucose/xylose mixed-sugar and to elucidate the causes underlying increased lipid productivity. Ultra-violet (UV) mutagenesis combined with enrichment culture with ethanol and H2O2 and selection of low-density cells was applied to L. starkeyi to obtain the L. starkeyi mutant strain UMP47, which exhibited higher TAG production from glucose/xylose. Transcriptome analysis revealed high expression of genes involved in transporter activity and carbohydrate metabolism, whereas genes involved in DNA replication exhibited lower expression in the mutant strain UMP47 than in the wild-type strain. Altogether, the lipid productivity of L. starkeyi was successfully improved by UV mutagenesis. Transcriptome analysis suggested the importance of previously unidentified genes in TAG production. This study provides information on potential target genes for improving TAG production through the genetic modification of oleaginous yeast.
Collapse
Affiliation(s)
- Sota Kamba
- Osaka Metropolitan University, Department of Chemical Engineering, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Ryosuke Yamada
- Osaka Metropolitan University, Department of Chemical Engineering, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Takuya Matsumoto
- Osaka Metropolitan University, Department of Chemical Engineering, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hiroyasu Ogino
- Osaka Metropolitan University, Department of Chemical Engineering, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
2
|
Lu T, Liu F, Jiang C, Cao J, Ma X, Su E. Strategies for cultivation, enhancing lipid production, and recovery in oleaginous yeasts. BIORESOURCE TECHNOLOGY 2025; 416:131770. [PMID: 39528033 DOI: 10.1016/j.biortech.2024.131770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
As global consumption of oil increases and environmental pollution worsens, people are becoming more concerned with sustainable energy development and environmental protection. There is an urgent need to find a sustainable and environmentally friendly new source of lipids to produce biodiesel and other products. In recent years, oleaginous yeast has garnered widespread interest due to its high lipid content. Compared with traditional plant oil sources, oleaginous yeast offers several significant advantages. Firstly, its cultivation is not affected by seasonal and climatic conditions. Secondly, yeast cultivation does not require large amounts of arable land. Additionally, oleaginous yeast grows rapidly, has a short production cycle, and can efficiently accumulate lipids. This review introduces several prominent oleaginous yeasts, focusing on the impact of cultivation conditions on lipid production, strategies to enhance lipid yield, and the development of lipid recovery methods.
Collapse
Affiliation(s)
- Tingting Lu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Feixiang Liu
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Department of Biological Science and Food Engineering, Bozhou University, Bozhou 236800, PR China
| | - Chenan Jiang
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jun Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoqiang Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
3
|
Tian J, Wei S, Liang W, Wang G. Enhancing levan biosynthesis by destroying the strongly acidic environment caused by membrane-bound glucose dehydrogenase (mGDH) in Gluconobacter sp. MP2116. Synth Syst Biotechnol 2024; 10:68-75. [PMID: 39263351 PMCID: PMC11388042 DOI: 10.1016/j.synbio.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024] Open
Abstract
Levan produced by Gluconobacter spp. has great potential in biotechnological applications. However, Gluconobacter spp. can synthesize organic acids during fermentation, resulting in environmental acidification. Few studies have focused on the effects of environmental acidification on levan synthesis. This study revealed that the organic acids, mainly gluconic acid (GA) and 2-keto-gluconic acid (2KGA) secreted by Gluconobacter sp. MP2116 created a highly acidic environment (pH < 3) that inhibited levan biosynthesis. The levansucrase derived from strain MP2116 had high enzyme activity at pH 4.0 ∼ pH 6.5. When the ambient pH was less than 3, the enzyme activity decreased by 67 %. Knocking out the mgdh gene of membrane-bound glucose dehydrogenase (mGDH) in the GA and 2KGA synthesis pathway in strain MP2116 eliminated the inhibitory effect of high acid levels on levansucrase function. As a result, the levan yield increased from 7.4 g/l (wild-type) to 18.8 g/l (Δmgdh) during fermentation without pH control. This study provides a new strategy for improving levan production by preventing the inhibition of polysaccharide synthesis by environmental acidification.
Collapse
Affiliation(s)
- Junjie Tian
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Shumin Wei
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Wenxing Liang
- College of Plant Health and Medicine, The Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guangyuan Wang
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| |
Collapse
|
4
|
Tian J, Wei S, Jiao Y, Liang W, Wang G. A strategy to reduce the byproduct glucose by simultaneously producing levan and single cell oil using an engineered Yarrowia lipolytica strain displaying levansucrase on the surface. BIORESOURCE TECHNOLOGY 2024; 395:130395. [PMID: 38301939 DOI: 10.1016/j.biortech.2024.130395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Currently, levan is attracting attention due to its promising applications in the food and biomedical fields. Levansucrase synthesizes levan by polymerizing the fructosyl unit in sucrose. However, a large amount of the byproduct glucose is produced during this process. In this paper, an engineered oleaginous yeast (Yarrowia lipolytica) strain was constructed using a surface display plasmid containing the LevS gene of Gluconobacter sp. MP2116. The levansucrase activity of the engineered yeast strain reached 327.8 U/g of cell dry weight. The maximal levan concentration (58.9 g/l) was achieved within 156 h in the 5-liter fermentation. Over 81.2 % of the sucrose was enzymolyzed by the levansucrase, and the byproduct glucose was converted to 21.8 g/l biomass with an intracellular oil content of 25.5 % (w/w). The obtained oil was comprised of 91.3 % long-chain fatty acids (C16-C18). This study provides new insight for levan production and comprehensive utilization of the byproduct in levan biosynthesis.
Collapse
Affiliation(s)
- Junjie Tian
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao 266109, China
| | - Shumin Wei
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao 266109, China
| | - Yingying Jiao
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao 266109, China
| | - Wenxing Liang
- College of Plant Health and Medicine, The Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangyuan Wang
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao 266109, China.
| |
Collapse
|
5
|
Liu Z, Tian J, Miao Z, Liang W, Wang G. Metabolome and Transcriptome Profiling Reveal Carbon Metabolic Flux Changes in Yarrowia lipolytica Cells to Rapamycin. J Fungi (Basel) 2022; 8:jof8090939. [PMID: 36135664 PMCID: PMC9504542 DOI: 10.3390/jof8090939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/04/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022] Open
Abstract
Yarrowia lipolytica is an oleaginous yeast for the production of oleochemicals and biofuels. Nitrogen deficiency is beneficial to lipids biosynthesis in Y. lipolytica. Target of rapamycin (TOR) regulates the utilization of nutrients, which is inhibited in nitrogen starvation or by rapamycin treatment. However, under nitrogen-rich conditions, the lipids biosynthesis in Y. lipolytica after inhibition of TOR by rapamycin is elusive. Combining metabolomics and transcriptomics analysis, we found that rapamycin altered multiple metabolic processes of Y. lipolytica grown in nitrogen-rich medium, especially the metabolisms of amino acids and lipids. A total of 176 differentially accumulated metabolites were identified after rapamycin treatment. Rapamycin increased the levels of tryptophan, isoleucine, proline, serine, glutamine, histidine, lysine, arginine and glutamic acid, and decreased the levels of threonine, tyrosine and aspartic acid. Two fatty acids in lipid droplets, stearic acid (down-regulated) and stearidonic acid (up-regulated), were identified. The expression of 2224 genes changed significantly after rapamycin treatment. Further analysis revealed that rapamycin reduced carbon flux through lipids biosynthesis, accompanied by increased carbon flux through fatty acids degradation and amino acid (especially glutamic acid, glutamine, proline and arginine) biosynthesis. The dataset provided here is valuable for understanding the molecular mechanisms of amino acid and lipids metabolisms in oleaginous yeast.
Collapse
Affiliation(s)
- Ziyu Liu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Junjie Tian
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhengang Miao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence:
| |
Collapse
|
6
|
Cao M, Tran VG, Qin J, Olson A, Mishra S, Schultz JC, Huang C, Xie D, Zhao H. Metabolic engineering of oleaginous yeast Rhodotorula toruloides for overproduction of triacetic acid lactone. Biotechnol Bioeng 2022; 119:2529-2540. [PMID: 35701887 PMCID: PMC9540541 DOI: 10.1002/bit.28159] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/16/2022] [Accepted: 06/12/2022] [Indexed: 12/19/2022]
Abstract
The plant‐sourced polyketide triacetic acid lactone (TAL) has been recognized as a promising platform chemical for the biorefinery industry. However, its practical application was rather limited due to low natural abundance and inefficient cell factories for biosynthesis. Here, we report the metabolic engineering of oleaginous yeast Rhodotorula toruloides for TAL overproduction. We first introduced a 2‐pyrone synthase gene from Gerbera hybrida (GhPS) into R. toruloides and investigated the effects of different carbon sources on TAL production. We then systematically employed a variety of metabolic engineering strategies to increase the flux of acetyl‐CoA by enhancing its biosynthetic pathways and disrupting its competing pathways. We found that overexpression of ATP‐citrate lyase (ACL1) improved TAL production by 45% compared to the GhPS overexpressing strain, and additional overexpression of acetyl‐CoA carboxylase (ACC1) further increased TAL production by 29%. Finally, we characterized the resulting strain I12‐ACL1‐ACC1 using fed‐batch bioreactor fermentation in glucose or oilcane juice medium with acetate supplementation and achieved a titer of 28 or 23 g/L TAL, respectively. This study demonstrates that R. toruloides is a promising host for the production of TAL and other acetyl‐CoA‐derived polyketides from low‐cost carbon sources.
Collapse
Affiliation(s)
- Mingfeng Cao
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jiansong Qin
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Andrew Olson
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John C Schultz
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chunshuai Huang
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
[Capacity of the oleaginous yeast Clavispora lusitaniae Hi2 to transform agroindustrial residues into lipids]. Rev Iberoam Micol 2021; 39:6-15. [PMID: 34857452 DOI: 10.1016/j.riam.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/29/2021] [Accepted: 07/15/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Single-cell oils obtained from oleaginous microorganisms by using lignocellulosic waste hydrolysates are an alternative for producing biodiesel. AIMS To isolate a yeast strain able to produce lipids from centrifuged nejayote (CN), hydrolyzed nejayote solids (HNS) and hydrolyzed sugarcane bagasse (HSB). METHODS In order to identify the yeasts recovered, 26S ribosomal DNA was sequenced. The metabolic profile was assessed by using API20C AUX strips. The nutritional characterization of CN, HNS and HSB was performed by quantifying reducing sugars, total carbohydrates, starch, protein and total nitrogen. The biomass and lipid production ability were evaluated by performing growth kinetics of Clavispora lusitaniae Hi2 in combined culture media. RESULTS Six oleaginous yeast strains were isolated and identified, selecting C. lusitaniae Hi2 to study its lipids production by using nejayote. The C. lusitaniae Hi2 strain can use glucose, xylose, arabinose, galactose and cellobiose as carbon sources. Cultures of C. lusitaniae Hi2 presented the best biomass (5.6±0.28 g/L) and lipid production (0.99±0.09 g/L) at 20 h of incubation with the CN:HNS media in the 25:75 and 50:50 ratios, respectively. CONCLUSIONS The use of CN, HNS and HSB for the growth of C. lusitaniae Hi2 is an option to take advantage of these agro-industrial residues and generate compounds of biotechnological interest.
Collapse
|
8
|
Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement. J Fungi (Basel) 2021; 7:jof7070548. [PMID: 34356927 PMCID: PMC8307478 DOI: 10.3390/jof7070548] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Among non-conventional yeasts of industrial interest, the dimorphic oleaginous yeast Yarrowia lipolytica appears as one of the most attractive for a large range of white biotechnology applications, from heterologous proteins secretion to cell factories process development. The past, present and potential applications of wild-type, traditionally improved or genetically modified Yarrowia lipolytica strains will be resumed, together with the wide array of molecular tools now available to genetically engineer and metabolically remodel this yeast. The present review will also provide a detailed description of Yarrowia lipolytica strains and highlight the natural biodiversity of this yeast, a subject little touched upon in most previous reviews. This work intends to fill this gap by retracing the genealogy of the main Yarrowia lipolytica strains of industrial interest, by illustrating the search for new genetic backgrounds and by providing data about the main publicly available strains in yeast collections worldwide. At last, it will focus on exemplifying how advances in engineering tools can leverage a better biotechnological exploitation of the natural biodiversity of Yarrowia lipolytica and of other yeasts from the Yarrowia clade.
Collapse
|
9
|
Liu L, Bilal M, Luo H, Zhao Y, Duan X. Studies on Biological Production of Isomaltulose Using Sucrose Isomerase: Current Status and Future Perspectives. Catal Letters 2020. [DOI: 10.1007/s10562-020-03439-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Pham KD, Shida Y, Miyata A, Takamizawa T, Suzuki Y, Ara S, Yamazaki H, Masaki K, Mori K, Aburatani S, Hirakawa H, Tashiro K, Kuhara S, Takaku H, Ogasawara W. Effect of light on carotenoid and lipid production in the oleaginous yeast Rhodosporidium toruloides. Biosci Biotechnol Biochem 2020; 84:1501-1512. [PMID: 32189572 DOI: 10.1080/09168451.2020.1740581] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The oleaginous yeast Rhodosporodium toruloides is receiving widespread attention as an alternative energy source for biofuels due to its unicellular nature, high growth rate and because it can be fermented on a large-scale. In this study, R. toruloides was cultured under both light and dark conditions in order to understand the light response involved in lipid and carotenoid biosynthesis. Our results from phenotype and gene expression analysis showed that R. toruloides responded to light by producing darker pigmentation with an associated increase in carotenoid production. Whilst there was no observable difference in lipid production, slight changes in the fatty acid composition were recorded. Furthermore, a two-step response was found in three genes (GGPSI, CAR1, and CAR2) under light conditions and the expression of the gene encoding the photoreceptor CRY1 was similarly affected.
Collapse
Affiliation(s)
- Khanh Dung Pham
- Department of Bioengineering, Nagaoka University of Technology , Niigata, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology , Niigata, Japan
| | - Atsushi Miyata
- Department of Bioengineering, Nagaoka University of Technology , Niigata, Japan
| | - Takeru Takamizawa
- Department of Bioengineering, Nagaoka University of Technology , Niigata, Japan
| | - Yoshiyuki Suzuki
- Advanced Course, National Institute of Technology, Nagaoka College , Niigata, Japan
| | - Satoshi Ara
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences , Niigata, Japan
| | - Harutake Yamazaki
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences , Niigata, Japan
| | - Kazuo Masaki
- Brewing Technology Division, National Research Institute of Brewing (NRIB) , Hiroshima, Japan
| | - Kazuki Mori
- Advance Course, National Institute of Technology, Kagoshima College , Kagoshima, Japan
| | - Sachiyo Aburatani
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST) , Tokyo, Japan
| | - Hideki Hirakawa
- Facility for Genome Informatics, Kazusa DNA Research Institute , Ibaraki, Japan
| | - Kosuke Tashiro
- Faculty of Agriculture, Kyushu University , Fukuoka, Japan
| | - Satoru Kuhara
- Graduate School of Genetic Resource Technology, Kyushu University , Fukuoka, Japan
| | - Hiroaki Takaku
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences , Niigata, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology , Niigata, Japan
| |
Collapse
|
11
|
Liu ZX, You S, Tang BP, Wang B, Sheng S, Wu FA, Wang J. Inositol as a new enhancer for improving lipid production and accumulation in Schizochytrium sp. SR21. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35497-35508. [PMID: 31410827 DOI: 10.1007/s11356-019-06056-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Lipids produced from agricultural and industrial residues using oleaginous microorganisms for use as biofuels are attracting the attention of researchers due to their environmental benefits. However, low efficiencies and high costs limit their application to a certain extent. The present study is the first to use inositol as an enhancer to improve the production and accumulation of lipids during fermentation by the microalga Schizochytrium sp. SR21. The study aimed to maximize the production of lipids and docosahexaenoic acid (DHA) by optimizing the conditions of inositol addition into the fermentation medium. The corresponding key enzyme and metabolite profiles of SR21 were evaluated. The results indicated that the addition of 120 mg L-1 of inositol to the medium at 48 h improved lipid and DHA production by 13.90 and 20.82%, resulting in total concentrations of 22.86 and 8.53 g/L, respectively. Moreover, the ratio of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs) increased by 23.38% and is consistent with the results of the metabolomic analysis. The activity of enzymes (i.e., PC, G6PDH, NADPH-ME, and ACL) related to fatty acid synthesis in strain SR21 also increased significantly (43.38%, 28.68%, 37.47%, and 19.87%, respectively). Metabolomic analysis also showed that inositol promoted lipid synthesis in SR21 and significantly increased the relative proportion of UFAs by affecting the citrate cycle and SFA and UFA metabolic pathways. Thus, inositol is an ideal enhancer of lipid production and accumulation by oleaginous microorganisms. Graphical abstract.
Collapse
Affiliation(s)
- Zhao-Xin Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Shuai You
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, People's Republic of China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang, 212018, People's Republic of China
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Zhenjiang, 212018, People's Republic of China
| | - Bin-Ping Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Bo Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, People's Republic of China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang, 212018, People's Republic of China
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Zhenjiang, 212018, People's Republic of China
| | - Fu-An Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, People's Republic of China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang, 212018, People's Republic of China
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Zhenjiang, 212018, People's Republic of China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China.
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, People's Republic of China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang, 212018, People's Republic of China.
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Zhenjiang, 212018, People's Republic of China.
| |
Collapse
|
12
|
Zhao SF, Chi Z, Liu GL, Hu Z, Wu LF, Chi ZM. Biosynthesis of some organic acids and lipids in industrially important microorganisms is promoted by pyruvate carboxylases. J Biosci 2019. [DOI: 10.1007/s12038-019-9853-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Zhang P, Wang ZP, Sheng J, Zheng Y, Ji XF, Zhou HX, Liu XY, Chi ZM. High and efficient isomaltulose production using an engineered Yarrowia lipolytica strain. BIORESOURCE TECHNOLOGY 2018; 265:577-580. [PMID: 30056834 DOI: 10.1016/j.biortech.2018.06.081] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 06/08/2023]
Abstract
Isomaltulose is an ideal functional sweetener and has been approved as a safe sucrose substitute. It is produced mainly through sucrose isomerization catalyzed by sucrose isomerase. Here, to produce food-grade isomaltulose and improve its yield, the sucrose isomerase gene from Pantoea dispersa UQ68J was overexpressed in the non-pathogenic yeast Yarrowia lipolytica. When the engineered strain, S47, was fermented on 600 g/L sucrose in a 10-L bioreactor, a maximum isomaltulose concentration of 572.1 g/L was achieved. Sucrose isomerase activity was 7.43 U/mL, and yield reached 0.96 g/g. Moreover, monosaccharide byproducts were simultaneously transformed into intracellular lipids, thus reducing the production of undesirable compounds and resulting in high isomaltulose purity (97.8%) in the final broth. In summary, the bioprocess employed in this study provides an efficient alternative strategy for isomaltulose production.
Collapse
Affiliation(s)
- Peng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Zhi-Peng Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| | - Jun Sheng
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yuan Zheng
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Xiao-Feng Ji
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Hai-Xiang Zhou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, Jiangsu 223300, China
| | - Zhen-Ming Chi
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, China
| |
Collapse
|
14
|
Simultaneous production of single cell oil and fumaric acid by a newly isolated yeast Aureobasidium pullulans var. aubasidani DH177. Bioprocess Biosyst Eng 2018; 41:1707-1716. [DOI: 10.1007/s00449-018-1994-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/29/2018] [Indexed: 01/24/2023]
|
15
|
Tang RR, Chi Z, Jiang H, Liu GL, Xue SJ, Hu Z, Chi ZM. Overexpression of a pyruvate carboxylase gene enhances extracellular liamocin and intracellular lipid biosynthesis by Aureobasidium melanogenum M39. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Xue SJ, Chi Z, Zhang Y, Li YF, Liu GL, Jiang H, Hu Z, Chi ZM. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications. Crit Rev Biotechnol 2018; 38:1049-1060. [DOI: 10.1080/07388551.2018.1428167] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Si-Jia Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yan-Feng Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Wang G, Guo L, Liang W, Chi Z, Liu L. Systematic analysis of the lysine acetylome reveals diverse functions of lysine acetylation in the oleaginous yeast Yarrowia lipolytica. AMB Express 2017; 7:94. [PMID: 28497289 PMCID: PMC5427063 DOI: 10.1186/s13568-017-0393-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/26/2017] [Indexed: 01/24/2023] Open
Abstract
Lysine acetylation of proteins, a major post-translational modification, plays a critical regulatory role in almost every aspects in both eukaryotes and prokaryotes. Yarrowia lipolytica, an oleaginous yeast, is considered as a model for bio-oil production due to its ability to accumulate a large amount of lipids. However, the function of lysine acetylation in this organism is elusive. Here, we performed a global acetylproteome analysis of Y. lipolytica ACA-DC 50109. In total, 3163 lysine acetylation sites were identified in 1428 proteins, which account for 22.1% of the total proteins in the cell. Fifteen conserved acetylation motifs were detected. The acetylated proteins participate in a wide variety of biological processes. Notably, a total of 65 enzymes involved in lipid biosynthesis were found to be acetylated. The acetylation sites are distributed in almost every type of conserved domains in the multi-enzymatic complexes of fatty acid synthetases. The provided dataset probably illuminates the crucial role of reversible acetylation in oleaginous microorganisms, and serves as an important resource for exploring the physiological role of lysine acetylation in eukaryotes.
Collapse
|
18
|
Yamada R, Yamauchi A, Kashihara T, Ogino H. Evaluation of lipid production from xylose and glucose/xylose mixed sugar in various oleaginous yeasts and improvement of lipid production by UV mutagenesis. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Bracharz F, Beukhout T, Mehlmer N, Brück T. Opportunities and challenges in the development of Cutaneotrichosporon oleaginosus ATCC 20509 as a new cell factory for custom tailored microbial oils. Microb Cell Fact 2017; 16:178. [PMID: 29070039 PMCID: PMC5657120 DOI: 10.1186/s12934-017-0791-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/14/2017] [Indexed: 12/21/2022] Open
Abstract
Cutaneotrichosporon oleaginosus ATCC 20509, previously known as Trichosporon oleaginosus, Cryptococcus curvatus, Apiotrichum curvatum or Candida curvata D is an oleaginous yeast with several favorable qualities: it is fast growing, accumulates high amounts of lipid and has a very broad substrate spectrum. Its resistance to hydrolysis byproducts and genetic accessibility make it a promising cell factory for custom tailored microbial oils. However, literature about this organism is of varying degree of quality. Moreover, due to numerous changes of the species name, reports are highly scattered and poorly cited. This led to a poor integration of the findings into a unified body of knowledge. Particularly, errors in strain name usage and consequently citation are found even in most recent literature. To simplify future work, this review provides an overview of published studies and main findings regarding the metabolic capacities of C. oleaginosus.
Collapse
Affiliation(s)
- Felix Bracharz
- Technische Universität München, Division of Industrial Biocatalysis, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Teun Beukhout
- Westerdijk Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Norbert Mehlmer
- Technische Universität München, Division of Industrial Biocatalysis, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Thomas Brück
- Technische Universität München, Division of Industrial Biocatalysis, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
20
|
Wang G, Li D, Miao Z, Zhang S, Liang W, Liu L. Comparative transcriptome analysis reveals multiple functions for Mhy1p in lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:81-90. [PMID: 29055818 DOI: 10.1016/j.bbalip.2017.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/24/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
Yarrowia lipolytica is considered as a promising microbial cell factory for bio-oil production due to its ability to accumulate a large amount of lipid. However, the regulation of lipid metabolism in this oleaginous yeast is elusive. In this study, the MHY1 gene was disrupted, and 43.1% (w/w) intracellular oil based on cell dry weight was obtained from the disruptant M-MHY1, while only 30.2% (w/w) lipid based on cell dry weight was obtained from the reference strain. RNA-seq was then performed to analyze transcriptional changes during lipid biosynthesis after MHY1 gene inactivation. The expression of 1597 genes, accounting for 24.7% of annotated Y. lipolytica genes, changed significantly in the disruptant M-MHY1 during lipid biosynthesis. Differential gene expression analysis indicated that Mhy1p performs multiple functions and participates in a wide variety of biological processes, including lipid, amino acid and nitrogen metabolism. Notably, data analysis revealed increased carbon flux through lipid biosynthesis following MHY1 gene inactivation, accompanied by decreased carbon flux through amino acid biosynthesis. Moreover, Mhy1p regulates the cell cycle, and the cell cycle rate was enhanced in the disruptant M-MHY1. These results suggest that Mhy1p plays critical regulatory roles in diverse aspects of various biological processes, especially in lipid biosynthesis, amino acid and nitrogen metabolism and cell cycle. Our dataset appears to elucidate the crucial role of Mhy1p in lipid biosynthesis and serves as a resource for exploring physiological dimorphic growth in Y. lipolytica.
Collapse
Affiliation(s)
- Guangyuan Wang
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Delong Li
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Zhengang Miao
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Shanshan Zhang
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liang
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Lin Liu
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
21
|
Single Cell Oil Production from Hydrolysates of Inulin by a Newly Isolated Yeast Papiliotrema laurentii AM113 for Biodiesel Making. Appl Biochem Biotechnol 2017; 184:168-181. [PMID: 28656552 DOI: 10.1007/s12010-017-2538-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022]
Abstract
Microbial oils are among the most attractive alternative feedstocks for biodiesel production. In this study, a newly isolated yeast strain, AM113 of Papiliotrema laurentii, was identified as a potential lipid producer, which could accumulate a large amount of intracellular lipids from hydrolysates of inulin. P. laurentii AM113 was able to produce 54.6% (w/w) of intracellular oil in its cells and 18.2 g/l of dry cell mass in a fed-batch fermentation. The yields of lipid and biomass were 0.14 and 0.25 g per gram of consumed sugar, respectively. The lipid productivity was 0.092 g of oil per hour. Compositions of the fatty acids produced were C14:0 (0.9%), C16:0 (10.8%), C16:1 (9.7%), C18:0 (6.5%), C18:1 (60.3%), and C18:2 (11.8%). Biodiesel obtained from the extracted lipids could be burnt well. This study not only provides a promising candidate for single cell oil production, but will also probably facilitate more efficient biodiesel production.
Collapse
|
22
|
Cui Z, Gao C, Li J, Hou J, Lin CSK, Qi Q. Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH. Metab Eng 2017. [PMID: 28627452 DOI: 10.1016/j.ymben.2017.06.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Yarrowia lipolytica is considered as a potential candidate for succinic acid production because of its innate ability to accumulate citric acid cycle intermediates and its tolerance to acidic pH. Previously, a succinate-production strain was obtained through the deletion of succinate dehydrogenase subunit encoding gene Ylsdh5. However, the accumulation of by-product acetate limited further improvement of succinate production. Meanwhile, additional pH adjustment procedure increased the downstream cost in industrial application. In this study, we identified for the first time that acetic acid overflow is caused by CoA-transfer reaction from acetyl-CoA to succinate in mitochondria rather than pyruvate decarboxylation reaction in SDH negative Y. lipolytica. The deletion of CoA-transferase gene Ylach eliminated acetic acid formation and improved succinic acid production and the cell growth. We then analyzed the effect of overexpressing the key enzymes of oxidative TCA, reductive carboxylation and glyoxylate bypass on succinic acid yield and by-products formation. The best strain with phosphoenolpyruvate carboxykinase (ScPCK) from Saccharomyces cerevisiae and endogenous succinyl-CoA synthase beta subunit (YlSCS2) overexpression improved succinic acid titer by 4.3-fold. In fed-batch fermentation, this strain produced 110.7g/L succinic acid with a yield of 0.53g/g glycerol without pH control. This is the highest succinic acid titer achieved at low pH by yeast reported worldwide, to date, using defined media. This study not only revealed the mechanism of acetic acid overflow in SDH negative Y. lipolytica, but it also reported the development of an efficient succinic acid production strain with great industrial prospects.
Collapse
Affiliation(s)
- Zhiyong Cui
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Cuijuan Gao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China; School of Life Science, Linyi University, Linyi 276000, China
| | - Jiaojiao Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China.
| |
Collapse
|
23
|
Fakas S. Lipid biosynthesis in yeasts: A comparison of the lipid biosynthetic pathway between the model nonoleaginous yeast Saccharomyces cerevisiae and the model oleaginous yeast Yarrowia lipolytica. Eng Life Sci 2016; 17:292-302. [PMID: 32624775 DOI: 10.1002/elsc.201600040] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/20/2016] [Accepted: 06/09/2016] [Indexed: 01/08/2023] Open
Abstract
Lipid biosynthesis and its regulation have been studied mostly in the nonoleaginous yeast Saccharomyces cerevisiae that serves as a model for eukaryotic cells. On the other hand, the yeast Yarrowia lipolytica has been put forward as a model for oleaginous microorganisms because its genetics is known and tools for its genetic manipulation are becoming increasingly available. A comparison of the lipid biosynthetic pathways that function in these two microorganisms shows many similarities in key biosynthetic and regulatory steps. An example is the enzyme phosphatidic acid phosphatase that controls the synthesis of triacylglycerol (TAG) in both yeasts. Controlling the TAG synthesis is crucial for metabolic engineering efforts that aim to increase the production of microbial lipids (i.e. single cell oils) because TAG comprises the final product of these processes. At the same time the comparison reveals fundamental differences (e.g. in the generation of acetyl-CoA for lipid biosynthesis) stemming from the oleaginous nature of Y. lipolytica. These differences warranty more studies in Y. lipolytica where the biochemistry and molecular biology of oleaginicity can be further explored.
Collapse
Affiliation(s)
- Stylianos Fakas
- Department of Food and Animal Sciences Alabama A&M University Normal AL USA
| |
Collapse
|
24
|
Enhanced citric acid production by a yeast Yarrowia lipolytica over-expressing a pyruvate carboxylase gene. Bioprocess Biosyst Eng 2016; 39:1289-96. [PMID: 27100721 DOI: 10.1007/s00449-016-1607-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/10/2016] [Indexed: 10/21/2022]
Abstract
In this study, after the expression of a pyruvate carboxylase gene (PYC) cloned from Meyerozyma guilliermondii in a marine-derived yeast Yarrowia lipolytica SWJ-1b, a transformant PG86 obtained had much higher PYC activity than Y. lipolytica SWJ-1b. At the same time, the PYC gene expression and citric acid (CA) production by the transformant PG86 were also greatly enhanced. When glucose concentration in the medium was 60.0 g L(-1), CA concentration formed by the transformant PG86 was 34.02 g L(-1), leading to a CA yield of 0.57 g g(-1) of glucose. During a 10-L fed-batch fermentation, the final concentration of CA was 101.0 ± 1.3 g L(-1), the yield was 0.89 g g(-1) of glucose, the productivity was 0.42 g L(-1) h(-1) and only 5.93 g L(-1) reducing sugar was left in the fermented medium within 240 h of the fed-batch fermentation. HPLC analysis showed that most of the fermentation products were CA.
Collapse
|
25
|
Fu GY, Lu Y, Chi Z, Liu GL, Zhao SF, Jiang H, Chi ZM. Cloning and Characterization of a Pyruvate Carboxylase Gene from Penicillium rubens and Overexpression of the Genein the Yeast Yarrowia lipolytica for Enhanced Citric Acid Production. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:1-14. [PMID: 26470708 DOI: 10.1007/s10126-015-9665-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/12/2015] [Indexed: 06/05/2023]
Abstract
In this study, a pyruvate carboxylase gene (PYC1) from a marine fungus Penicillium rubens I607 was cloned and characterized. ORF of the gene (accession number: KM397349.1) had 3534 bp encoding 1177 amino acids with a molecular weight of 127.531 kDa and a PI of 6.20. The promoter of the gene was located at -1200 bp and contained a TATAA box, several CAAT boxes and a sequence 5'-SYGGRG-3'. The PYC1 deduced from the gene had no signal peptide, was a homotetramer (α4), and had the four functional domains. After expression of the PYC1 gene from the marine fungus in the marine-derived yeast Yarrowia lipolytica SWJ-1b, the transformant PR32 obtained had much higher specific pyruvate carboxylase activity (0.53 U/mg) than Y. lipolytica SWJ-1b (0.07 U/mg), and the PYC1 gene expression (133.8%) and citric acid production (70.2 g/l) by the transformant PR32 were also greatly enhanced compared to those (100 % and 27.3 g/l) by Y. lipolytica SWJ-1b. When glucose concentration in the medium was 60.0 g/l, citric acid (CA) concentration formed by the transformant PR32 was 36.1 g/l, leading to conversion of 62.1% of glucose into CA. During a 10-l fed-batch fermentation, the final concentration of CA was 111.1 ± 1.3 g/l, the yield was 0.93 g/g, the productivity was 0.46 g/l/h, and only 1.72 g/l reducing sugar was left in the fermented medium within 240 h. HPLC analysis showed that most of the fermentation products were CA. However, minor malic acid and other unknown products also existed in the culture.
Collapse
|
26
|
Zhu Q, Jackson EN. Metabolic engineering of Yarrowia lipolytica for industrial applications. Curr Opin Biotechnol 2015; 36:65-72. [DOI: 10.1016/j.copbio.2015.08.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/18/2015] [Accepted: 08/09/2015] [Indexed: 01/01/2023]
|
27
|
Janthanomsuk P, Verduyn C, Chauvatcharin S. Improved docosahexaenoic acid production in Aurantiochytrium by glucose limited pH-auxostat fed-batch cultivation. BIORESOURCE TECHNOLOGY 2015; 196:592-599. [PMID: 26298403 DOI: 10.1016/j.biortech.2015.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 06/04/2023]
Abstract
Fed-batch, pH auxostat cultivation of the docosahexaenoic acid (DHA)-producing microorganism Aurantiochytrium B072 was performed to obtain high cell density and record high productivity of both total fatty acid (TFA) and DHA. Using glucose feeding by carbon excess (C-excess) and by C-limitation at various feeding rates (70%, 50% or 20% of C-excess), high biomass density was obtained and DHA/TFA content (w/w) was improved from 30% to 37% with a 50% glucose feed rate when compared with C-excess. To understand the biochemistry behind these improvements, lipogenic enzyme assays and in silico metabolic flux calculations were used and revealed that enzyme activity and C-fluxes to TFA were reduced with C-limited feeding but that the carbon flux to the polyketide synthase pathway increased relative to the fatty acid synthase pathway. As a result, a new strategy to improve the DHA to TFA content while maintaining relatively high DHA productivity is proposed.
Collapse
Affiliation(s)
- Panyawut Janthanomsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Cornelis Verduyn
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Somchai Chauvatcharin
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
28
|
Optimization of lipid production with a genome-scale model of Yarrowia lipolytica. BMC SYSTEMS BIOLOGY 2015; 9:72. [PMID: 26503450 PMCID: PMC4623914 DOI: 10.1186/s12918-015-0217-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/07/2015] [Indexed: 12/19/2022]
Abstract
Background Yarrowia lipolytica is a non-conventional yeast that is extensively investigated for its ability to excrete citrate or to accumulate large amounts of storage lipids, which is of great significance for single cell oil production. Both traits are thus of interest for basic research as well as for biotechnological applications but they typically occur simultaneously thus lowering the respective yields. Therefore, engineering of strains with high lipid content relies on novel concepts such as computational simulation to better understand the two competing processes and to eliminate citrate excretion. Results Using a genome-scale model (GSM) of baker's yeast as a scaffold, we reconstructed the metabolic network of Y. lipolytica and optimized it for use in flux balance analysis (FBA), with the aim to simulate growth and lipid production phases of this yeast. We validated our model and found the predictions of the growth behavior of Y. lipolytica in excellent agreement with experimental data. Based on these data, we successfully designed a fed-batch strategy to avoid citrate excretion during the lipid production phase. Further analysis of the network suggested that the oxygen demand of Y. lipolytica is reduced upon induction of lipid synthesis. According to this finding we hypothesized that a reduced aeration rate might induce lipid accumulation. This prediction was indeed confirmed experimentally. In a fermentation combining these two strategies lipid content of the biomass was increased by 80 %, and lipid yield was improved more than four-fold, compared to standard conditions. Conclusions Genome scale network reconstructions provide a powerful tool to predict the effects of genetic modifications and the metabolic response to environmental conditions. The high accuracy and the predictive value of a newly reconstructed GSM of Y. lipolytica to optimize growth conditions for lipid accumulation are demonstrated. Based on these findings, further strategies for engineering Y. lipolytica towards higher efficiency in single cell oil production are discussed. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0217-4) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Fu WJ, Chi Z, Ma ZC, Zhou HX, Liu GL, Lee CF, Chi ZM. Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. Appl Microbiol Biotechnol 2015; 99:7481-94. [PMID: 26231137 DOI: 10.1007/s00253-015-6840-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 12/11/2022]
Abstract
It is generally regarded that the petroleum cannot be renewable. However, in recent years, it has been found that many marine cyanobacteria, some eubacteria, engineered Escherichia coli, some endophytic fungi, engineered yeasts, some marine yeasts, plants, and insects can synthesize hydrocarbons with different carbon lengths. If the organisms, especially some native microorganisms and engineered bacteria and yeasts, can synthesize and secret a large amount of hydrocarbons within a short period, alkanes in the petroleum can be renewable. It has been documented that there are eight pathways for hydrocarbon biosynthesis in different organisms. Unfortunately, most of native microorganisms, engineered E. coli and engineered yeasts, only synthesize a small amount of intracellular and extracellular hydrocarbons. Recently, Aureobasidium pullulans var. melanogenum isolated from a mangrove ecosystem has been found to be able to synthesize and secret over 21.5 g/l long-chain hydrocarbons with a yield of 0.275 g/g glucose and a productivity of 0.193 g/l/h within 5 days. The yeast may have highly potential applications in alkane production.
Collapse
Affiliation(s)
- Wen-Juan Fu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | | | | | | | | | | | | |
Collapse
|