1
|
Yan H, Xin Z, Sang Z, Li X, Xie J, Wu J, Pang S, Wen Y, Wang W. A rational multi-target combination strategy for synergistic improvement of non-ribosomal peptide production. Nat Commun 2025; 16:1883. [PMID: 39987186 PMCID: PMC11847002 DOI: 10.1038/s41467-025-57073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025] Open
Abstract
Non-ribosomal peptides (NRPs) are pharmaceutically important natural products that include numerous clinical drugs. However, the biosynthesis of these NRPs is intricately regulated and improving production through manipulation of multiple regulatory targets remains largely empirical. We here develop a screening-based, multi-target rational combination strategy and demonstrate its effectiveness in enhancing the titers of three NRP drugs - daptomycin, thaxtomin A and surfactin. Initially, we devise a reliable colorimetric analog co-expression and co-biosynthesis reporter system for screening high-yielding phenotypes. Subsequently, through coupling CRISPR interference to induce genome-wide differential expression, we identify dozens of repressors that inhibit the biosynthesis of these NRPs. To address the challenge of multi-target combination, we further developed a dual-target screen approach and introduced an interplay map based on the synergy coefficient of each pairwise interaction. Employing this strategy, we engineer the final strains with multi-target synergistic combination and achieve the titer improvement of the three NRPs. Our work provides a rational multi-target combination strategy for production improvement of NRPs.
Collapse
Affiliation(s)
- Hao Yan
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Genetic Element Biosourcing & Intelligent Design for Biomanufacturing, Beijing, China
| | - Zhenguo Xin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ziwei Sang
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xingwang Li
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jia Xie
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiale Wu
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shen Pang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ying Wen
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Beijing Key Laboratory of Genetic Element Biosourcing & Intelligent Design for Biomanufacturing, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Duan Y, Liu Z, Huang X, Xu L, Wang X, Liu H, Xie Z. Mitigating genetic instability caused by the excision activity of the phiC31 integrase in Streptomyces. Appl Environ Microbiol 2025; 91:e0181224. [PMID: 39704534 PMCID: PMC11784100 DOI: 10.1128/aem.01812-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Over the past three decades, the integrase (Int) from Streptomyces phage phiC31 has become a valuable genome engineering tool across various species. phiC31 Int was thought to mediate unidirectional site-specific integration (attP × attB to attL and attR) in the absence of the phage-encoded recombination directionality factor (RDF). However, we have shown in this study that Int can also catalyze reverse excision (attL × attR to attP and attB) at low frequencies in Streptomyces lividans and Escherichia coli, causing genetic instability in engineered strains. To address this issue, we developed a two-plasmid co-conjugation (TPC) system. This system consists of an attP-containing integration vector and an Int expression suicide plasmid, both carrying oriT to facilitate efficient conjugation transfer from E. coli to Streptomyces. Using the TPC system, genetically stable integrants free of Int can be generated quickly and easily. The indigoidine-producing strains generated by the TPC system exhibited higher genetic stability and production efficiency compared to the indigoidine-producing strain generated by the conventional integration system, further demonstrating the utility of the TPC system in the field of biotechnology. We anticipate that the strategies presented here will be widely adopted for stable genetic engineering of industrial microbes using phage integrase-based integration systems.IMPORTANCELarge serine recombinases (LSRs), including the bacteriophage phiC31 integrase, were previously thought to allow only unidirectional site-specific integration (attP × attB to attL and attR). Our study is the first to show that the phiC31 integrase can also catalyze a low-efficiency reverse excision reaction in Streptomyces and E. coli without the involvement of the phage-encoded recombination directionality factor (RDF). The genetic instability caused by the low in vivo excisionase activity of the phiC31 integrase is a major challenge for biotechnological applications. Our study addresses this issue by developing a two-plasmid co-conjugation (TPC) system that facilitates the construction of Int-deficient genomic engineering strains. The Int-deficient integrants produced by this TPC system exhibit strong genetic stability for introduced genes and maintain stable production traits even in the absence of selection pressure, making them highly valuable for industrial applications.
Collapse
Affiliation(s)
- Yadan Duan
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhangliang Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaofang Huang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Lu Xu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xianxue Wang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, China
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
3
|
Li X, Sang Z, Zhao X, Wen Y. Metabolic engineering of Streptomyces roseosporus for increased production of clinically important antibiotic daptomycin. Microb Biotechnol 2024; 17:e70038. [PMID: 39487765 PMCID: PMC11530997 DOI: 10.1111/1751-7915.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024] Open
Abstract
Daptomycin (DAP), a novel cyclic lipopeptide antibiotic produced by Streptomyces roseosporus, is clinically important for treatment of infections caused by multidrug-resistant Gram-positive pathogens, but the low yield hampers its large-scale industrial production. Here, we describe a combination metabolic engineering strategy for constructing a DAP high-yielding strain. Initially, we enhanced aspartate (Asp) precursor supply in S. roseosporus wild-type (WT) strain by separately inhibiting Asp degradation and competitive pathway genes using CRISPRi and overexpressing Asp synthetic pathway genes using strong promoter kasOp*. The resulting strains all showed increased DAP titre. Combined inhibition of acsA4, pta, pyrB, and pyrC increased DAP titre to 167.4 μg/mL (73.5% higher than WT value). Co-overexpression of aspC, gdhA, ppc, and ecaA led to DAP titre 168 μg/mL (75.7% higher than WT value). Concurrently, we constructed a chassis strain favourable for DAP production by abolishing by-product production (i.e., deleting a 21.1 kb region of the red pigment biosynthetic gene cluster (BGC)) and engineering the DAP BGC (i.e., replacing its native dptEp with kasOp*). Titre for the resulting chassis strain reached 185.8 μg/mL. Application of our Asp precursor supply strategies to the chassis strain further increased DAP titre to 302 μg/mL (2.1-fold higher than WT value). Subsequently, we cloned the engineered DAP BGC and duplicated it in the chassis strain, leading to DAP titre 274.6 μg/mL. The above strategies, in combination, resulted in maximal DAP titre 350.7 μg/mL (2.6-fold higher than WT value), representing the highest reported DAP titre in shake-flask fermentation. These findings provide an efficient combination strategy for increasing DAP production and can also be readily applied in the overproduction of other Asp-related antibiotics.
Collapse
Affiliation(s)
- Xingwang Li
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ziwei Sang
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xuejin Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Ying Wen
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
4
|
Wang D, Mao H, Zhao Z, Liu L, Chen Y, Li P. Reprogramming of the Aurantinin Polyketide Assembly Line to Synthesize Auritriacids by Excising an Atypical Enoyl-CoA Hydratase Domain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401708. [PMID: 38995095 PMCID: PMC11425284 DOI: 10.1002/advs.202401708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/14/2024] [Indexed: 07/13/2024]
Abstract
Modular polyketide synthases (PKSs) are capable of synthesizing diverse natural products with fascinating bioactivities. Canonical enoyl-CoA hydratases (ECHs) are components of the β-branching cassette that modifies the polyketide chain by adding a β-methyl branch. Herein, it is demonstrated that the deletion of an atypical ECHQ domain (featuring a Q280 residue) of Art21, a didomain protein contains an ECHQ domain and a thioesterase (TE) domain, reprograms the polyketide assembly line from synthesizing tetracyclic aurantinins (ARTs) to bicyclic auritriacids (ATAs) with much lower antibacterial activities. Genes encoding the ECHQ-TE didomain proteins distribute in many PKS gene clusters from different bacteria. Significantly, the ART PKS machinery can be directed to make ARTs, ATAs, or both of them by employing appropriate ECHQ-TE proteins, implying a great potential for using this reprogramming strategy in polyketide structure diversification.
Collapse
Affiliation(s)
- Dacheng Wang
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Huijin Mao
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zelian Zhao
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- School of Life SciencesYunnan UniversityKunming650500China
| | - Lilu Liu
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Yihua Chen
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Pengwei Li
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| |
Collapse
|
5
|
Yue XJ, Wang JR, Zhao JN, Pan Z, Li YZ. Determination of the chromosomal position effects for plug-and-play application in the Myxococcus xanthus chassis cells. Synth Syst Biotechnol 2024; 9:540-548. [PMID: 38680947 PMCID: PMC11046052 DOI: 10.1016/j.synbio.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
The chromosomal position effect can significantly affect the transgene expression, which may provide an efficient strategy for the inauguration of alien genes in new hosts, but has been less explored rationally. The bacterium Myxococcus xanthus harbors a large circular high-GC genome, and the position effect in this chassis may result in a thousand-fold expression variation of alien natural products. In this study, we conducted transposon insertion at TA sites on the M. xanthus genome, and used enrichment and dilution indexes to respectively appraise high and low expression potentials of alien genes at insertion sites. The enrichment sites are characteristically distributed along the genome, and the dilution sites are overlapped well with the horizontal transfer genes. We experimentally demonstrated the enrichment sites as high expression integration sites (HEISs), and the dilution sites unsuitable for gene integration expression. This work highlights that HEISs are the plug-and-play sites for efficient expression of integrated genes.
Collapse
Affiliation(s)
- Xin-jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, PR China
| | - Jia-rui Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, PR China
| | - Jun-ning Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, PR China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, PR China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, PR China
| |
Collapse
|
6
|
Hao Y, Liu W, Li X, Wen Y. Streptomyces global regulators AfsR and AfsS interact to co-regulate antibiotic production and morphological development. Microb Biotechnol 2024; 17:e14319. [PMID: 37986689 PMCID: PMC10832544 DOI: 10.1111/1751-7915.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 11/22/2023] Open
Abstract
Streptomyces species have a complex life cycle and are the producers of ~70% of commercial antibiotics. Global regulators AfsR and AfsS are widespread among Streptomyces and have been identified as key activators of antibiotic production in several species. However, their roles as repressors of antibiotic production are unclear; in particular, nothing is known regarding the regulatory mechanism of AfsS, despite many decades of research, because it has no DNA-binding domain. Here, we demonstrate that AfsR and AfsS negatively regulate avermectin production and morphological development in the industrially important species S. avermitilis. AfsR directly represses ave structural genes (aveA1, aveA4), cluster-situated activator gene aveR, and eight key developmental genes, whereas it directly activates afsS, aco (for autoregulator avenolide biosynthesis), and avaR1 (encoding avenolide receptor). GST pull-down, microscale thermophoresis, co-immunoprecipitation, and chromatin immunoprecipitation-quantitative PCR assays demonstrated that AfsS interacts with AfsR to co-regulate target genes involved in avermectin production and development and that this interaction requires intact AfsS repeated sequences and enhances the binding affinity of AfsR to target promoters. AfsR/AfsS interaction also occurs in model species S. coelicolor and S. roseosporus (producer of daptomycin, a cyclic lipopeptide antibiotic widely used for the treatment of human infections), suggesting that such interaction is conserved in Streptomyces species. The master developmental repressor BldD acts as a direct activator of both afsR and afsS. Deletion of afsR or afsS strongly enhances avermectin production in wild-type and industrial S. avermitilis strains. Our findings demonstrate novel regulatory roles and mechanisms of AfsR and AfsS in Streptomyces and facilitate methods for antibiotic overproduction.
Collapse
Affiliation(s)
- Yi Hao
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Wenshuai Liu
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xingwang Li
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ying Wen
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
7
|
Wang R, Zhao J, Chen L, Ye J, Wu H, Zhang H. LcbR1, a newly identified GntR family regulator, represses lincomycin biosynthesis in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2023; 107:7501-7514. [DOI: doi.org/10.1007/s00253-023-12756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 10/09/2023]
|
8
|
Wang R, Zhao J, Chen L, Ye J, Wu H, Zhang H. LcbR1, a newly identified GntR family regulator, represses lincomycin biosynthesis in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2023; 107:7501-7514. [PMID: 37768348 DOI: 10.1007/s00253-023-12756-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
The Actinomycetes Streptomyces lincolnensis is the producer of lincosamide-type antibiotic lincomycin, a widely utilized drug against Gram-positive bacteria and protozoans. In this work, through gene knockout, complementation, and overexpression experiments, we identified LcbR1 (SLINC_1595), a GntR family transcriptional regulator, as a repressor for lincomycin biosynthesis. Deletion of lcbR1 boosted lincomycin production by 3.8-fold, without obvious change in morphological development or cellular growth. The homologues of LcbR1 are widely distributed in Streptomyces. Heterologous expression of SCO1410 from Streptomyces coelicolor resulted in the reduction of lincomycin yield, implying that the function of LcbR1 is conserved across different species. Alignment among sequences upstream of lcbR1 and their homologues revealed a conserved 16-bp palindrome (-TTGAACGATCCTTCAA-), which was further proven to be the recognition motif of LcbR1 by electrophoretic mobility shift assays (EMSAs). Via this motif, LcbR1 suppressed the transcription of lcbR1 and SLINC_1596 sharing the same bi-directional promoter. SLINC_1596, one important target of LcbR1, exerted a positive effect on lincomycin production. As detected by quantitative real-time PCR (qRT-PCR) analyses, the expressions of all selected structural (lmbA, lmbC, lmbJ, lmbV, and lmbW), resistance (lmrA and lmrB) and regulatory genes (lmrC and lmbU) from lincomycin biosynthesis cluster were upregulated in deletion strain ΔlcbR1 at 48 h of fermentation, while the mRNA amounts of bldD, glnR, ramR, SLCG_Lrp, and SLCG_2919, previously characterized as the regulators on lincomycin production, were decreased in strain ΔlcbR1, although the regulatory effects of LcbR1 on the above differential expression genes seemed to be indirect. Besides, indicated by EMSAs, the expression of lcbR1 might be regulated by GlnR, SLCG_Lrp, and SLCG_2919, which shows the complexity of the regulatory network on lincomycin biosynthesis. KEY POINTS: • LcbR1 is a novel and conservative GntR family regulator regulating lincomycin production. • LcbR1 modulates the expressions of lcbR1 and SLINC_1596 through a palindromic motif. • GlnR, SLCG_Lrp, and SLCG_2919 can control the expression of lcbR1.
Collapse
Affiliation(s)
- Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaqi Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
9
|
Zhou JY, Ma BB, Zhao QW, Mao XM. Development of a native-locus dual reporter system for the efficient screening of the hyper-production of natural products in Streptomyces. Front Bioeng Biotechnol 2023; 11:1225849. [PMID: 37456716 PMCID: PMC10343952 DOI: 10.3389/fbioe.2023.1225849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Streptomyces is renowned for its abundant production of bioactive secondary metabolites, but most of these natural products are produced in low yields. Traditional rational network refactoring is highly dependent on the comprehensive understanding of regulatory mechanisms and multiple manipulations of genome editing. Though random mutagenesis is fairly straightforward, it lacks a general and effective strategy for high throughput screening of the desired strains. Here in an antibiotic daptomycin producer S. roseosporus, we developed a dual-reporter system at the native locus of the daptomycin gene cluster. After elimination of three enzymes that potentially produce pigments by genome editing, a gene idgS encoding the indigoidine synthetase and a kanamycin resistant gene neo were integrated before and after the non-ribosomal peptidyl synthetase genes for daptomycin biosynthesis, respectively. After condition optimization of UV-induced mutagenesis, strains with hyper-resistance to kanamycin along with over-production of indigoidine were efficiently obtained after one round of mutagenesis and target screening based on the dual selection of the reporter system. Four mutant strains showed increased production of daptomycin from 1.4 to 6.4 folds, and significantly improved expression of the gene cluster. Our native-locus dual reporter system is efficient for targeting screening after random mutagenesis and would be widely applicable for the effective engineering of Streptomyces species and hyper-production of these invaluable natural products for pharmaceutical development.
Collapse
Affiliation(s)
- Jing-Yi Zhou
- Department of Clinical Pharmacy, The First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Bin-Bin Ma
- Department of Clinical Pharmacy, The First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Qing-Wei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou, China
| | - Xu-Ming Mao
- Department of Clinical Pharmacy, The First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| |
Collapse
|
10
|
Je HW, Ji CH, Kim JY, Kang HS. CaExTun: Mitigating Cas9-Related Toxicity in Streptomyces through Species-Specific Expression Tuning with Randomized Constitutive Promoters. ACS Synth Biol 2023; 12:61-70. [PMID: 36516042 DOI: 10.1021/acssynbio.2c00539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The CRISPR/Cas9 system provides an efficient tool for engineering genomes. However, its application to Streptomyces genome engineering has been hampered by excessive toxicity associated with overexpression of Cas9 protein. As the level of Cas9 toxicity varies significantly between Streptomyces species, species-specific optimization of Cas9 expression is a strategy to mitigate its toxicity while maintaining sufficient double-strand break (DSB) activity for genome engineering. Using a pool of randomized constitutive promoters and a blue pigment indigoidine biosynthetic gene (IndC) as a reporter, we developed the CaExTun (Cas9 Expression Tuning) platform, which enables rapid screening of a large pool of promoter-Cas9 constructs to quickly recover the one with high DSB activity and no apparent toxicity. We demonstrate the utility of CaExTun using four model Streptomyces species. We also show that CaExTun can be applied to the CRISPRi system by allowing the construction of a library of promoter-dCas9 constructs that confer a wide range of gene repression levels. As demonstrated here, CaExTun is a versatile tool for the rapid optimization of the CRISPR/Cas9 system in a species-specific manner and thus will facilitate CRISPR/Cas9-based genome engineering efforts in Streptomyces.
Collapse
Affiliation(s)
- Hyun-Woo Je
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Chang-Hun Ji
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jun-Yong Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
11
|
Liu X, Li J, Li Y, Li J, Sun H, Zheng J, Zhang J, Tan H. A visualization reporter system for characterizing antibiotic biosynthetic gene clusters expression with high-sensitivity. Commun Biol 2022; 5:901. [PMID: 36056143 PMCID: PMC9440138 DOI: 10.1038/s42003-022-03832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
The crisis of antibiotic resistance has become an impending global problem. Genome sequencing reveals that streptomycetes have the potential to produce many more bioactive compounds that may combat the emerging pathogens. The existing challenge is to devise sensitive reporter systems for mining valuable antibiotics. Here, we report a visualization reporter system based on Gram-negative bacterial acyl-homoserine lactone quorum-sensing (VRS-bAHL). AHL synthase gene (cviI) of Chromobacterium violaceum as reporter gene is expressed in Gram-positive Streptomyces to synthesize AHL, which is detected with CV026, an AHL deficient mutant of C. violaceum, via its violacein production upon AHL induction. Validation assays prove that VRS-bAHL can be widely used for characterizing gene expression in Streptomyces. With the guidance of VRS-bAHL, a novel oxazolomycin derivative is discovered to the best of our knowledge. The results demonstrate that VRS-bAHL is a powerful tool for advancing genetic regulation studies and discovering valuable active metabolites in microorganisms. A quorum sensing based visualization reporter system is presented for the characterization of promoters in Gram-positive bacteria, utilizing violacein production, especially for use in the identification of secondary metabolites.
Collapse
Affiliation(s)
- Xiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jine Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Junyue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huiying Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiazhen Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Zhang Z, Li P, Wang M, Zhang Y, Wu B, Tao Y, Pan G, Chen Y. ( S)-3-aminopiperidine-2,6-dione is a biosynthetic intermediate of microbial blue pigment indigoidine. MLIFE 2022; 1:146-155. [PMID: 38817675 PMCID: PMC10989907 DOI: 10.1002/mlf2.12023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 06/01/2024]
Abstract
The biosynthetic investigations of microbial natural products continuously provide powerful biocatalysts for the preparation of valuable chemicals. Practical methods for preparing (S)-3-aminopiperidine-2,6-dione (2), the pharmacophore of thalidomide (1) and its analog drugs, are highly desired. To develop a biocatalyst for producing (S)-2, we dissected the domain functions of IdgS, which is responsible for the biosynthesis of indigoidine (3), a microbial blue pigment that consists of two 2-like moieties. Our data supported that the L-glutamine tethered to the indigoidine assembly line is first offloaded and cyclized by the thioesterase domain to form (S)-2, which is then dehydrogenated by the oxidation (Ox) domain and finally dimerized to yield 3. Based on this, we developed an IdgS-derived enzyme biocatalyst, IdgS-Ox* R539A, for preparing enantiomerically pure (S)-2. As a proof of concept, one-pot chemoenzymatic synthesis of 1 was achieved by combining the biocatalytic and chemical approaches.
Collapse
Affiliation(s)
- Zhilong Zhang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pengwei Li
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Min Wang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High‐Efficiency, School of Pharmaceutical Science and TechnologyTianjin UniversityTianjinChina
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong Tao
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
13
|
Liu J, Wang X, Dai G, Zhang Y, Bian X. Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnol Adv 2022; 59:107966. [PMID: 35487394 DOI: 10.1016/j.biotechadv.2022.107966] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
Abstract
The cryptic secondary metabolite biosynthetic gene clusters (BGCs) far outnumber currently known secondary metabolites. Heterologous production of secondary metabolite BGCs in suitable chassis facilitates yield improvement and discovery of new-to-nature compounds. The two juxtaposed conventional model microorganisms, Escherichia coli, Saccharomyces cerevisiae, have been harnessed as microbial chassis to produce a bounty of secondary metabolites with the help of certain host engineering. In last decade, engineering non-model microbes to efficiently biosynthesize secondary metabolites has received increasing attention due to their peculiar advantages in metabolic networks and/or biosynthesis. The state-of-the-art synthetic biology tools lead the way in operating genetic manipulation in non-model microorganisms for phenotypic optimization or yields improvement of desired secondary metabolites. In this review, we firstly discuss the pros and cons of several model and non-model microbial chassis, as well as the importance of developing broader non-model microorganisms as alternative programmable heterologous hosts to satisfy the desperate needs of biosynthesis study and industrial production. Then we highlight the lately advances in the synthetic biology tools and engineering strategies for optimization of non-model microbial chassis, in particular, the successful applications for efficient heterologous production of multifarious complex secondary metabolites, e.g., polyketides, nonribosomal peptides, as well as ribosomally synthesized and post-translationally modified peptides. Lastly, emphasis is on the perspectives of chassis cells development to access the ideal cell factory in the artificial intelligence-driven genome era.
Collapse
Affiliation(s)
- Jiaqi Liu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China; Present address: Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Xue Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Guangzhi Dai
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
14
|
Dong J, Wei J, Li H, Zhao S, Guan W. An Efficient Markerless Deletion System Suitable for the Industrial Strains of Streptomyces. J Microbiol Biotechnol 2021; 31:1722-1731. [PMID: 34489377 PMCID: PMC9705919 DOI: 10.4014/jmb.2106.06083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022]
Abstract
The genus Streptomyces is intensively studied due to its excellent ability to produce secondary metabolites with diverse bioactivities. In particular, adequate precursors of secondary metabolites as well as sophisticated post modification systems make some high-yield industrial strains of Streptomyces the promising chassis for the heterologous production of natural products. However, lack of efficient genetic tools for the manipulation of industrial strains, especially the episomal vector independent tools suitable for large DNA fragment deletion, makes it difficult to remold the metabolic pathways and streamline the genomes in these strains. In this respect, we developed an efficient deletion system independent of the episomal vector for large DNA fragment deletion. Based on this system, four large segments of DNA, ranging in length from 10 kb to 200 kb, were knocked out successfully from three industrial Streptomyces strains without any marker left. Notably, compared to the classical deletion system used in Streptomyces, this deletion system takes about 25% less time in our cases. This work provides a very effective tool for further genetic engineering of the industrial Streptomyces.
Collapse
Affiliation(s)
- Jianxin Dong
- Institute of Pharmaceutical Biotechnology and The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310027, P.R. China
| | - Jiaxiu Wei
- Institute of Pharmaceutical Biotechnology and The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310027, P.R. China
| | - Han Li
- Institute of Pharmaceutical Biotechnology and The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310027, P.R. China
| | - Shiyao Zhao
- Institute of Pharmaceutical Biotechnology and The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310027, P.R. China
| | - Wenjun Guan
- Institute of Pharmaceutical Biotechnology and The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310027, P.R. China,Corresponding author Phone: +86-0571-88206477 E-mail:
| |
Collapse
|
15
|
Heat Shock Repressor HspR Directly Controls Avermectin Production, Morphological Development, and H 2O 2 Stress Response in Streptomyces avermitilis. Appl Environ Microbiol 2021; 87:e0047321. [PMID: 34160269 DOI: 10.1128/aem.00473-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heat shock response (HSR) is a universal cellular response that promotes survival following temperature increase. In filamentous Streptomyces, which accounts for ∼70% of commercial antibiotic production, HSR is regulated by transcriptional repressors; in particular, the widespread MerR-family regulator HspR has been identified as a key repressor. However, functions of HspR in other biological processes are unknown. The present study demonstrates that HspR pleiotropically controls avermectin production, morphological development, and heat shock and H2O2 stress responses in the industrially important species Streptomyces avermitilis. HspR directly activated ave structural genes (aveA1 and aveA2) and H2O2 stress-related genes (katA1, catR, katA3, oxyR, ahpC, and ahpD), whereas it directly repressed heat shock genes (HSGs) (the dnaK1-grpE1-dnaJ1-hspR operon, clpB1p, clpB2p, and lonAp) and developmental genes (wblB, ssgY, and ftsH). HspR interacted with PhoP (response regulator of the widespread PhoPR two-component system) at dnaK1p to corepress the important dnaK1-grpE1-dnaJ1-hspR operon. PhoP exclusively repressed target HSGs (htpG, hsp18_1, and hsp18_2) different from those of HspR (clpB1p, clpB2p, and lonAp). A consensus HspR-binding site, 5'-TTGANBBNNHNNNDSTSHN-3', was identified within HspR target promoter regions, allowing prediction of the HspR regulon involved in broad cellular functions. Taken together, our findings demonstrate a key role of HspR in the coordination of a variety of important biological processes in Streptomyces species. IMPORTANCE Our findings are significant to clarify the molecular mechanisms underlying HspR function in Streptomyces antibiotic production, development, and H2O2 stress responses through direct control of its target genes associated with these biological processes. HspR homologs described to date function as transcriptional repressors but not as activators. The results of the present study demonstrate that HspR acts as a dual repressor/activator. PhoP cross talks with HspR at dnaK1p to coregulate the heat shock response (HSR), but it also has its own specific target heat shock genes (HSGs). The novel role of PhoP in the HSR further demonstrates the importance of this regulator in Streptomyces. Overexpression of hspR strongly enhanced avermectin production in Streptomyces avermitilis wild-type and industrial strains. These findings provide new insights into the regulatory roles and mechanisms of HspR and PhoP and facilitate methods for antibiotic overproduction in Streptomyces species.
Collapse
|
16
|
Li P, Chen M, Tang W, Guo Z, Zhang Y, Wang M, Horsman GP, Zhong J, Lu Z, Chen Y. Initiating polyketide biosynthesis by on-line methyl esterification. Nat Commun 2021; 12:4499. [PMID: 34301953 PMCID: PMC8302727 DOI: 10.1038/s41467-021-24846-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/09/2021] [Indexed: 12/04/2022] Open
Abstract
Aurantinins (ARTs) are antibacterial polyketides featuring a unique 6/7/8/5-fused tetracyclic ring system and a triene side chain with a carboxyl terminus. Here we identify the art gene cluster and dissect ART’s C-methyl incorporation patterns to study its biosynthesis. During this process, an apparently redundant methyltransferase Art28 was characterized as a malonyl-acyl carrier protein O-methyltransferase, which represents an unusual on-line methyl esterification initiation strategy for polyketide biosynthesis. The methyl ester bond introduced by Art28 is kept until the last step of ART biosynthesis, in which it is hydrolyzed by Art9 to convert inactive ART 9B to active ART B. The cryptic reactions catalyzed by Art28 and Art9 represent a protecting group biosynthetic logic to render the ART carboxyl terminus inert to unwanted side reactions and to protect producing organisms from toxic ART intermediates. Further analyses revealed a wide distribution of this initiation strategy for polyketide biosynthesis in various bacteria. Aurantinins are polyketides with unusual connectivities and broad antibacterial activity. Here the authors show the biosynthesis of aurantinins, which proceeds via an on-line methyl esterification at the terminus that enables the iterative chain elongations prior to condensation and cyclization.
Collapse
Affiliation(s)
- Pengwei Li
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Meng Chen
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Tang
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhengyan Guo
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuwei Zhang
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, China
| | - Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Jin Zhong
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Li N, Wang M, Yu S, Zhou J. Optimization of CRISPR-Cas9 through promoter replacement and efficient production of L-homoserine in Corynebacterium glutamicum. Biotechnol J 2021; 16:e2100093. [PMID: 34018325 DOI: 10.1002/biot.202100093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Corynebacterium glutamicum is an important chassis for industrial applications. The low efficiency of commonly used genome editing methods for C. glutamicum limits the rapid multiple engineering of the bacterium. MAIN METHODS AND MAJOR RESULTS In this study, chromosome-borne expression of cas9 and recET from Escherichia coli K12-MG1655 was achieved to avoid toxicity to the strain, increase the probability of homologous recombination, and reduce loss of viability caused by double-strand breaks. Constitutive strong promoters, such as P45 , Ptrc , and PH36 , were used to replace PglyA and to expand the application of the CRISPR-Cas9 system. By using this system, a C. glutamicum strain producing L-homoserine to 22.1 g per L in a 5-L bioreactor after 96 h was obtained. CONCLUSIONS AND IMPLICATIONS Through the application of visualized fluorescent protein, the process of plasmid curing was optimized, obtain a continuous and rapid CRISPR-Cas9 genome editing system. The method described here could be useful to construct C. glutamicum mutant rapidly.
Collapse
Affiliation(s)
- Ning Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China.,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Miao Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
18
|
Ding Y, Li X, Horsman GP, Li P, Wang M, Li J, Zhang Z, Liu W, Wu B, Tao Y, Chen Y. Construction of an Alternative NAD + De Novo Biosynthesis Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004632. [PMID: 33977072 PMCID: PMC8097395 DOI: 10.1002/advs.202004632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a life essential molecule involved in versatile biological processes. To date, only two de novo biosynthetic routes to NAD+ are described, both of which start from a proteinogenic amino acid and are tightly controlled. Here, a de novo quinolinic acid pathway starting from chorismate, which provides an alternative route (named as the C3N pathway) to NAD+ biosynthesis, is established. Significantly, the C3N pathway yields extremely high cellular concentrations of NAD(H) in E. coli. Its utility in cofactor engineering is demonstrated by introducing the four-gene C3N module to cell factories to achieve higher production of 2,5-dimethylpyrazine and develop an efficient C3N-based whole-cell bioconversion system for preparing chiral amines. The wide distribution and abundance of chorismate in most kingdoms of life implies a general utility of the C3N pathway for modulating cellular levels of NAD(H) in versatile organisms.
Collapse
Affiliation(s)
- Yong Ding
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xinli Li
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing100049China
| | - Geoff P. Horsman
- Department of Chemistry and BiochemistryWilfrid Laurier UniversityWaterlooONN2L3C5Canada
| | - Pengwei Li
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Min Wang
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jine Li
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Zhilong Zhang
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing100049China
| | - Weifeng Liu
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Bian Wu
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yong Tao
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
19
|
Candicidin Isomer Production Is Essential for Biocontrol of Cucumber Rhizoctonia Rot by Streptomyces albidoflavus W68. Appl Environ Microbiol 2021; 87:AEM.03078-20. [PMID: 33608297 DOI: 10.1128/aem.03078-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/13/2021] [Indexed: 01/10/2023] Open
Abstract
Diseases caused by soilborne fungal pathogens result in significant crop yield losses and quality reduction. Streptomyces albidoflavus strain W68 is effective in controlling several soilborne fungal diseases. To identify antifungal substances critical for biocontrol activity of W68, the genome of W68 was sequenced and a linear chromosome of 6.80 Mb was assembled. A total of 21 secondary metabolite biosynthesis gene clusters (BGCs), accounting for 12.27% of the genome, were identified. Core gene deletion mutants for each of all 8 BGCs for nonribosomal peptide synthetases and polyketide synthases were created. Among them, only the mutant lacking ctg1-5755 (the gene was renamed as fscD W68) in BGC 19, which shares 100% sequence similarity with the BGC for candicidin synthesis, showed obvious reduction in antifungal activity. A pot experiment revealed that biocontrol effects of the ΔfscD W68 mutant in Rhizoctonia rot of cucumber were also significantly compromised relative to W68. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that W68 but not the ΔfscD W68 mutant can produce candicidin isomers, indicating that the production of candicidin isomers is key for antifungal activity and biocontrol activity of S. albidoflavus W68.IMPORTANCE This study reports that candicidin-like secondary metabolites produced by microbial cells in natural soil environments can effectively control soilborne fungal diseases, revealing a novel mechanism of microbial biocontrol agents. We demonstrated that the main antifungal activity and biocontrol activity of Streptomyces albidoflavus strain W68 are attributable to the production of candicidin isomers, suggesting that gene clusters for candicidin-like compound biosynthesis might be used as molecular markers to screen and breed microbial strains for biocontrol agent development.
Collapse
|
20
|
Li Z, Li S, Du L, Zhang X, Jiang Y, Liu W, Zhang W, Li S. Engineering Bafilomycin High-Producers by Manipulating Regulatory and Biosynthetic Genes in the Marine Bacterium Streptomyces lohii. Mar Drugs 2021; 19:md19010029. [PMID: 33440628 PMCID: PMC7827423 DOI: 10.3390/md19010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/25/2020] [Accepted: 01/08/2021] [Indexed: 11/16/2022] Open
Abstract
Bafilomycin A1 is the representative compound of the plecomacrolide natural product family. This 16-membered ring plecomacrolide has potent antifungal and vacuolar H+-ATPase inhibitory activities. In our previous work, we identified a bafilomycin biosynthetic gene cluster (baf) from the marine bacterium Streptomyces lohii ATCC BAA-1276, wherein a luxR family regulatory gene orf1 and an afsR family regulatory gene bafG were revealed based on bioinformatics analysis. In this study, the positive regulatory roles of orf1 and bafG for bafilomycin biosynthesis are characterized through gene inactivation and overexpression. Compared to the wild-type S. lohii strain, the knockout of either orf1 or bafG completely abolished the production of bafilomycins. The overexpression of orf1 or bafG led to 1.3- and 0.5-fold increased production of bafilomycins, respectively. A genetically engineered S. lohii strain (SLO-08) with orf1 overexpression and inactivation of the biosynthetic genes orf2 and orf3, solely produced bafilomycin A1 with the titer of 535.1 ± 25.0 mg/L in an optimized fermentation medium in shaking flasks. This recombinant strain holds considerable application potential in large-scale production of bafilomycin A1 for new drug development.
Collapse
Affiliation(s)
- Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
| | - Yuanyuan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
21
|
Ge Y, Wang G, Jin J, Liu T, Ma X, Zhang Z, Geng T, Song J, Ma X, Zhang Y, Yang D, Ma M. Discovery and Biosynthesis of Pepticinnamins G-M Featuring Three Enzymes-Catalyzed Nonproteinogenic Amino Acid Formation. J Org Chem 2020; 85:8673-8682. [PMID: 32489098 DOI: 10.1021/acs.joc.0c01113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since pepticinnamin E was discovered almost 30 years ago, no other pepticinnamin family of natural products has been reported to date. Here, we report the discovery of pepticinnamins G-I (1-3) from a marine Streptomyces sp. PKU-MA01144 and pepticinnamins J-M (4-7) from several mutants, and these new compounds contain different N-methyl-l-alanine and l-tyrosine residues compared to pepticinnamin E. Genome sequencing, heterologous expression, gene deletion, and reconstitution of enzymatic reaction in vitro identified the biosynthetic gene cluster of 1-7 and first experimentally established the biosynthesis of the nonproteinogenic 2-chloro-3-hydroxy-4-methoxy-l-phenylalanine residue by a biopterin-dependent hydroxylase Pep10, an O-methyltransferase Pep9, and a flavin-dependent halogenase Pep1. The biosynthetic research and heterologous expression system in this study set the stage for pathway engineering for more pepticinnamins generation in the future.
Collapse
Affiliation(s)
- Yuanjie Ge
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Guiyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jing Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Tan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xueyang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhongyi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Tongtong Geng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Juan Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiaojie Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yingtao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
22
|
Yuan B, Liu D, Guan X, Yan Y, Zhang J, Zhang Y, Yang D, Ma M, Lin W. Piperazine ring formation by a single-module NRPS and cleavage by an α-KG-dependent nonheme iron dioxygenase in brasiliamide biosynthesis. Appl Microbiol Biotechnol 2020; 104:6149-6159. [PMID: 32436033 DOI: 10.1007/s00253-020-10678-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022]
Abstract
Brasiliamides are a class of piperazine-containing alkaloids produced by Penicillium brasilianum with a range of pharmaceutical activities. The mechanism of brasiliamide biosynthesis, including piperazine ring formation and multiple tailoring modifications, still remains unclear. In this study, the biosynthetic gene cluster of brasiliamides, brs, was identified from the marine-derived fungal strain Penicillium brasilianum WZXY-M122-9. Deletion of a histone deacetylase-encoding gene using a CRISPR/Cas9 gene editing system led to the production of a new compound, namely brasiliamide I (1). The brs-encoded single-module nonribosomal peptide synthetase (NRPS) BrsA is involved in the formation of the piperazine skeleton of brasiliamides. Full-length BrsA protein (113.6 kDa) was purified, and reconstitution of enzymatic activity in vitro confirmed that BrsA stereoselectively accepts L-phenylalanine as the substrate. Multiple deletion of tailoring genes and analysis of purified proteins in vitro enabled us to propose a brasiliamide biosynthetic pathway. In the tailoring steps, an α-ketoglutarate (KG)-dependent nonheme iron dioxygenase, BrsJ, was identified to catalyze piperazine ring cleavage during biosynthesis of brasiliamide A (2). KEY POINTS: The gene cluster encoding brasiliamide biosynthesis, brs, is identified. Deletion of a histone deacetylase-encoding gene produces brasiliamide I. BrsA catalyzes brasiliamide piperazine skeleton formation. BrsJ catalyzes piperazine ring cleavage to produce brasiliamide A. Graphical abstract.
Collapse
Affiliation(s)
- Bochuan Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Xin Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Yunchen Yan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Jianping Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Yiping Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, MNR, Xiamen, 361005, People's Republic of China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China. .,Institute of Ocean Research, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
23
|
Vickery CR, McCulloch IP, Sonnenschein EC, Beld J, Noel JP, Burkart MD. Dissecting modular synthases through inhibition: A complementary chemical and genetic approach. Bioorg Med Chem Lett 2020; 30:126820. [PMID: 31812466 DOI: 10.1016/j.bmcl.2019.126820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 01/23/2023]
Abstract
Modular synthases, such as fatty acid, polyketide, and non-ribosomal peptide synthases (NRPSs), are sophisticated machineries essential in both primary and secondary metabolism. Various techniques have been developed to understand their genetic background and enzymatic abilities. However, uncovering the actual biosynthetic pathways remains challenging. Herein, we demonstrate a pipeline to study an assembly line synthase by interrogating the enzymatic function of each individual enzymatic domain of BpsA, a NRPS that produces the blue 3,3'-bipyridyl pigment indigoidine. Specific inhibitors for each biosynthetic domain of BpsA were obtained or synthesized, and the enzymatic performance of BpsA upon addition of each inhibitor was monitored by pigment development in vitro and in living bacteria. The results were verified using genetic mutants to inactivate each domain. Finally, the results complemented the currently proposed biosynthetic pathway of BpsA.
Collapse
Affiliation(s)
- Christopher R Vickery
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA; Howard Hughes Medical Institute, The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ian P McCulloch
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Eva C Sonnenschein
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Joseph P Noel
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| |
Collapse
|
24
|
Activation of paulomycin production by exogenous γ-butyrolactone signaling molecules in Streptomyces albidoflavus J1074. Appl Microbiol Biotechnol 2020; 104:1695-1705. [PMID: 31900559 DOI: 10.1007/s00253-019-10329-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
Abstract
The interspecies communication roles of γ-butyrolactones (GBLs) have been described for a long time but are still poorly understood. Herein, we analyzed more than 1000 Streptomyces strains and noticed a big quantitative gap between the strains with GBL biosynthetic genes and the strains with GBL receptor genes, which implies the wide-spread of GBLs as interspecies signals in Streptomyces and their great potential in the activation of silent natural product gene clusters. Streptomyces albidoflavus J1074, which has one GBL receptor gene but no GBL biosynthetic gene, was chosen as a target to study the possible interspecies communication roles of GBLs. At first, the GBL biosynthetic genes from Streptomyces coelicolor M145 were expressed in S. albidoflavus J1074, which enabled the S. albidoflavus strains to synthesize Streptomyces coelicolor butanolides (SCBs) and activated the production of paulomycins. Further studies showed that this activation process requires the participation of the GBL receptor gene XNR_4681. The results suggest that the expression of exogenous GBL biosynthetic genes can modulate the metabolisms of GBL non-producing strains, and this regulation role might be meaningful for silent gene cluster activation in Streptomyces. At final, we synthesized racemic-SCB2 and tried to simplify the activation process by adding SCB2 directly to S. albidoflavus J1074, which unfortunately failed to induce paulomycin production.
Collapse
|
25
|
Dual-function chromogenic screening-based CRISPR/Cas9 genome editing system for actinomycetes. Appl Microbiol Biotechnol 2019; 104:225-239. [DOI: 10.1007/s00253-019-10223-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/19/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022]
|
26
|
Yan H, Lu X, Sun D, Zhuang S, Chen Q, Chen Z, Li J, Wen Y. BldD, a master developmental repressor, activates antibiotic production in two Streptomyces species. Mol Microbiol 2019; 113:123-142. [PMID: 31628680 DOI: 10.1111/mmi.14405] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
BldD generally functions as a repressor controlling morphological development of Streptomyces. In this work, evidences that BldD also activates antibiotic production are provided. In Streptomyces roseosporus (which produces daptomycin widely used for treatment of human infections), deletion of bldD notably reduced daptomycin production, but enhanced sporulation. BldD stimulated daptomycin production by directly activating transcription of dpt structural genes and dptR3 (which encodes an indirect activator of daptomycin production), and repressed its own gene. BldD-binding sites on promoter regions of dptE, dptR3, and bldD were all found to contain BldD box-like sequences, facilitating prediction of new BldD targets. Two Streptomyces global regulatory genes, adpA and afsR, were confirmed to be directly activated by BldD. The protein AfsR was shown to act as an activator of daptomycin production, but a repressor of development. BldD directly represses nine key developmental genes. In Streptomyces avermitilis (which produces effective anthelmintic agents avermectins), BldD homolog (BldDsav) directly activates avermectin production through ave structural genes and cluster-situated activator gene aveR. This is the first report that BldD activates antibiotic biosynthesis both directly and via a cascade mechanism. BldD homologs are widely distributed among Streptomyces, our findings suggest that BldD may activate antibiotic production in other Streptomyces species.
Collapse
Affiliation(s)
- Hao Yan
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaorui Lu
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Di Sun
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Shuai Zhuang
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiong Chen
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhi Chen
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jilun Li
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wen
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Chen YW, Liu XC, Lv FX, Li P. Characterization of three regulatory genes involved in enduracidin biosynthesis and improvement of enduracidin production in Streptomyces fungicidicus. J Appl Microbiol 2019; 127:1698-1705. [PMID: 31424146 DOI: 10.1111/jam.14417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/25/2022]
Abstract
AIMS To increase enduracidin production in Streptomyces fungicidicus ATCC 31731 by overexpressing positive regulators in enduracidin biosynthesis. METHODS AND RESULTS Genes orf22 and orf42 were knocked out by in-frame deletion based on CRISPR/Cas9 strategy, while the orf41 gene was inactivated by replacing it with the apramycin resistance gene cassette aac(3)IV using a fast screening blue/white system. The integrative plasmid pSET152ermE was used for the overexpression of orf22, orf41 and orf42 individually. The constructed plasmids were transformed into wild-type strain Streptomyces fungicidicus ATCC 31731. Three gene inactivation mutants Δorf22, Δorf41 and Δorf42 and three recombinant strains overexpressing orf22, orf41 and orf42 were all fermented and the enduracidin production of each strain was detected and compared by HPLC analysis. Two resulting engineered strains were generated through overexpression of gene orf22 and orf42 in Streptomyces fungicidicus, respectively, and in these strains the enduracidins titres were increased by approximately 4·0-fold and 2·3-fold higher than that of the wild-type strain. CONCLUSIONS The functions of three regulatory genes orf22, orf41 and orf42 in the enduracidin gene cluster in Streptomyces fungicidicus ATCC 31731 were examined. The orf22 gene, encoding a SARP family protein, was proposed to act in a positive manner. The proteins encoded by genes orf41 and orf42 were proposed to compose a two-component regulation system, in which the response protein Orf41 was characterized as a repressor, and the kinase Orf42 was shown to be an activator. The production of enduracidins was improved considerably by overexpression of the two positive regulatory genes orf22 and orf42 respectively. SIGNIFICANCE AND IMPACT OF THE STUDY The production of enduracidins was successfully improved by manipulating the regulatory genes involving in enduracidin biosynthesis, providing an efficient approach to improve enduracidin production further for fermentation industry and synthetic biological research.
Collapse
Affiliation(s)
- Y-W Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Hebei Shuangge Food Co. Ltd, Shijiazhuang, China
| | - X-C Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - F-X Lv
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - P Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Nanjaraj Urs AN, Hu Y, Li P, Yuchi Z, Chen Y, Zhang Y. Cloning and Expression of a Nonribosomal Peptide Synthetase to Generate Blue Rose. ACS Synth Biol 2019; 8:1698-1704. [PMID: 30216051 DOI: 10.1021/acssynbio.8b00187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rose has been entwined with human culture and history. "Blue rose" in English signifies unattainable hope or an impossible mission as it does not exist naturally and is not breedable regardless of centuries of effort by gardeners. With the knowledge of genes and enzymes involved in flower pigmentation and modern genetic technologies, synthetic biologists have undertaken the challenge of producing blue rose by engineering the complicated vacuolar flavonoid pigmentation pathway and resulted in a mauve-colored rose. A completely different strategy presented in this study employs a dual expression plasmid containing bacterial idgS and sfp genes. The holo-IdgS, activated by Sfp from its apo-form, is a functional nonribosomal peptide synthetase that converts l-glutamine into the blue pigment indigoidine. Expression of these genes upon petal injection with agro-infiltration solution generates blue-hued rose flowers. We envision that implementing this proof-of-concept with obligatory modifications may have tremendous impact in floriculture to achieve a historic milestone in rose breeding.
Collapse
Affiliation(s)
- Ankanahalli N. Nanjaraj Urs
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yiling Hu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Pengwei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
29
|
Recent achievements in the generation of stable genome alterations/mutations in species of the genus Streptomyces. Appl Microbiol Biotechnol 2019; 103:5463-5482. [DOI: 10.1007/s00253-019-09901-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
|
30
|
Liu T, Jin J, Yang X, Song J, Yu J, Geng T, Zhang Z, Ma X, Wang G, Xiao H, Ge Y, Sun X, Xing B, Ma X, Chi C, Kuang Y, Ye M, Wang H, Zhang Y, Yang D, Ma M. Discovery of a Phenylamine-Incorporated Angucyclinone from Marine Streptomyces sp. PKU-MA00218 and Generation of Derivatives with Phenylamine Analogues. Org Lett 2019; 21:2813-2817. [PMID: 30924671 DOI: 10.1021/acs.orglett.9b00800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new phenylamine-incorporated angucyclinone (1) featuring a unique 1-phenylbenzo[ cd]indol-3(1 H)-one moiety was discovered from marine Streptomyces sp. PKU-MA00218. A series of experimental investigations identified that 1 was produced from the nonenzymatic conversion of a C-ring-cleaved angucyclinone (2) with phenylamine. Utilizing the nonenzymatic conversion, 18 phenylamine-incorporated angucyclinone derivatives with halogen, methyl, methoxy, and carboxy substitutions were efficiently generated under mild conditions. These results highlighted the impressive roles of nonenzymatic reactions in expanding the structural diversity of angucyclinones.
Collapse
Affiliation(s)
- Tan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Jing Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Xiaoyan Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Juan Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Jiahui Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Tongtong Geng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Zhongyi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Xueyang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Guiyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Hua Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Yuanjie Ge
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Xiaoxu Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Baiying Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Xiaojie Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Changbiao Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Hailong Wang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science , Shandong University , Qingdao 266237 , China
| | - Youming Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science , Shandong University , Qingdao 266237 , China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| |
Collapse
|
31
|
Li P, Guo Z, Tang W, Chen Y. Activation of three natural product biosynthetic gene clusters from Streptomyces lavendulae CGMCC 4.1386 by a reporter-guided strategy. Synth Syst Biotechnol 2018; 3:254-260. [PMID: 30417141 PMCID: PMC6223227 DOI: 10.1016/j.synbio.2018.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 10/27/2022] Open
Abstract
Along with the fast developing of DNA sequencing technology, a great number of natural product biosynthetic gene clusters have been discovered by bioinformatic analysis, which demands novel high-throughput genome mining methods to obtain the diverse compounds dictated by those gene clusters. In this work, a method based on the reporter gene xylE was established to screen for the activation conditions of thirteen different gene clusters from Streptomyces lavendulae CGMCC 4.1386. In this reporter-guided method, the key structure gene was replaced by a xylE-kana R cassette with the xylE gene being controlled by the transcription and translation machinery of the key structure gene. It not only facilitated the screening of activation conditions, but also provided the null mutants of specific natural product gene clusters as controls to link those clusters with their products conveniently. The potential activation conditions of eleven gene clusters from S. lavendulae CGMCC 4.1386 were obtained. In addition, activation of three of the eleven gene clusters was confirmed and their products were identified.
Collapse
Affiliation(s)
- Pengwei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhengyan Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
An efficient blue-white screening system for markerless deletions and stable integrations in Streptomyces chromosomes based on the blue pigment indigoidine biosynthetic gene bpsA. Appl Microbiol Biotechnol 2018; 102:10231-10244. [DOI: 10.1007/s00253-018-9393-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022]
|
33
|
Tafoya-Ramírez MD, Padilla-Vaca F, Ramírez-Saldaña AP, Mora-Garduño JD, Rangel-Serrano Á, Vargas-Maya NI, Herrera-Gutiérrez LJ, Franco B. Replacing Standard Reporters from Molecular Cloning Plasmids with Chromoproteins for Positive Clone Selection. Molecules 2018; 23:molecules23061328. [PMID: 29857551 PMCID: PMC6099721 DOI: 10.3390/molecules23061328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 11/23/2022] Open
Abstract
Cloning and expression plasmids are the workhorses of modern molecular biology. Despite the pathway paved by synthetic biology, laboratories around the globe still relay on standard cloning techniques using plasmids with reporter proteins for positive clone selection, such as β-galactosidase alpha peptide complementation for blue/white screening or ccdB, which encodes for a toxic DNA gyrase. These reporters, when interrupted, serve as a positive clone detection system. In the present report, we show that molecular cloning plasmids bearing the coding sequence for a 25.4 kDa protein, AmilCP, encoded by a 685 bp gene, that is well expressed in Escherichia coli, render blue-purple colonies. Using this reporter protein, we developed and tested a cloning system based on the constitutive expression of the non-toxic AmilCP protein, that once interrupted, the loss of purple color serves to facilitate positive clone selection. The main advantage of this system is that is less expensive than other systems since media do not contain chromogenic markers such as X-gal, which is both expensive and cumbersome to prepare and use, or inductors such as IPTG. We also designed an inducible expression plasmid suitable for recombinant protein expression that also contains AmilCP cloning selection marker, a feature not commonly found in protein expression plasmids. The use of chromogenic reporters opens an important avenue for its application in other organisms besides E. coli for clone selection or even for mutant selection.
Collapse
Affiliation(s)
| | - Felipe Padilla-Vaca
- Departamento de Biología, Universidad de Guanajuato, Noria Alta, 36050 Guanajuato, Mexico.
| | | | | | - Ángeles Rangel-Serrano
- Departamento de Biología, Universidad de Guanajuato, Noria Alta, 36050 Guanajuato, Mexico.
| | | | | | - Bernardo Franco
- Departamento de Biología, Universidad de Guanajuato, Noria Alta, 36050 Guanajuato, Mexico.
| |
Collapse
|
34
|
Antibacterial and Antioxidant Metabolites of Diaporthe spp. Isolated from Flowers of Melodorum fruticosum. Curr Microbiol 2017; 75:476-483. [PMID: 29159689 DOI: 10.1007/s00284-017-1405-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/16/2017] [Indexed: 01/17/2023]
Abstract
Fifty-two strains of endophytic fungi were isolated from flowers of the medicinal plant Melodorum fruticosum. Seven genera were identified including Alternaria, Aspergillus, Colletotrichum, Diaporthe, Fusarium, Greeneria and Nigrospora. All strains were cultured for 30 days and further macerated in ethyl acetate solvent for 3 days. The obtained fungal extracts were examined for antibacterial activity using agar disc diffusion against nine pathogenic bacteria: Staphylococcus aureus, Bacillus subtilis, B. cereus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, Shigella flexneri, Vibrio cholerae and V. parahaemolyticus. Forty-three fungal extracts exhibited antibacterial activity against at least one tested pathogen. The antioxidant properties of all extracts were also investigated by DPPH scavenging assay. Sixteen extracts displayed high antioxidant capacity (IC50 ranging from 10 to 50 µg/mL) when compared to the gallic acid and trolox standards (IC50 of 12.46 and 2.55 µg/mL, respectively). The crude extracts of Diaporthe sp. MFLUCC16-0682 and Diaporthe sp. MFLUCC16-0693 exhibited notable antibacterial and antioxidant activities. Analysis of chemical composition using gas chromatography-mass spectrometry suggested that the observed antibacterial activity of the two Diaporthe spp. was possibly due to the presence of abienol, 4-methoxy stilbene, phenethyl cinnamate and 2Z,6Z-farnesal, while their potential antioxidant activity could be attributed to phenolic compounds, such as benzene acetaldehyde, benzyl benzoate, salicylaldehyde, benzoin and benzyl cinnamate. The results suggest that the genus Diaporthe is a potential source of metabolites that can be used in a variety of applications.
Collapse
|
35
|
Meng X, Wang W, Xie Z, Li P, Li Y, Guo Z, Lu Y, Yang J, Guan K, Lu Z, Tan H, Chen Y. Neomycin biosynthesis is regulated positively by AfsA-g and NeoR in Streptomyces fradiae CGMCC 4.7387. SCIENCE CHINA-LIFE SCIENCES 2017; 60:980-991. [DOI: 10.1007/s11427-017-9120-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
|
36
|
Pait IGU, Kitani S, Kurniawan YN, Asa M, Iwai T, Ikeda H, Nihira T. Identification and characterization of lbpA, an indigoidine biosynthetic gene in the γ-butyrolactone signaling system of Streptomyces lavendulae FRI-5. J Biosci Bioeng 2017; 124:369-375. [PMID: 28533156 DOI: 10.1016/j.jbiosc.2017.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/17/2017] [Accepted: 04/28/2017] [Indexed: 11/18/2022]
Abstract
Streptomyces lavendulae FRI-5 produces the blue pigment indigoidine and other secondary metabolites (d-cycloserine and nucleoside antibiotics). The production of these useful compounds is controlled by a signaling cascade mediated by the γ-butyrolactone autoregulator IM-2. Previously we revealed that the far regulatory island includes the IM-2 receptor, the IM-2 biosynthetic enzyme, and several transcriptional regulators, and that it contributes to the regulation of indigoidine production in response to the signaling molecule. Here, we found that the vicinity of the far regulatory island includes the putative gene cluster for the biosynthesis of indigoidine and unidentified compounds, and demonstrated that the expression of the gene cluster is under the control of the IM-2 regulatory system. Heterologous expression of lbpA, encoding a plausible nonribosomal peptide synthetase, in the versatile model host Streptomyces avermitilis SUKA22 led to indigoidine production, which was enhanced dramatically by feeding of the indigoidine precursor l-glutamine. These results confirmed that LbpA is an indigoidine biosynthetic enzyme in the IM-2 signaling cascade.
Collapse
Affiliation(s)
- Ivy Grace Umadhay Pait
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeru Kitani
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yohanes Novi Kurniawan
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Maeda Asa
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Iwai
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Takuya Nihira
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand.
| |
Collapse
|
37
|
An external substrate-free blue/white screening system in Escherichia coli. Appl Microbiol Biotechnol 2017; 101:3811-3820. [PMID: 28352998 DOI: 10.1007/s00253-017-8252-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/11/2017] [Accepted: 03/16/2017] [Indexed: 01/06/2023]
Abstract
Since the lacZα-based blue/white screening system was introduced to molecular biology, several different visual reporter systems were developed and used for various purposes in Escherichia coli. A common limit to the existent visual reporter systems is that an extracellular chromogenic substrate has to be added for the visible pigment production. In this study, we developed a new blue/white screening system based on a non-ribosomal peptide synthetase encoded by idgS from Streptomyces and a phosphopantetheinyl transferase encoded by sfp from Bacillus. When IdgS is activated from an apo-form to a holo-form via a posttranslational modification catalyzed by Sfp, it can synthesize a blue pigment indigoidine using L-glutamine, the amino acid abundant in cells, as a substrate. The new blue/white screening system contains a recipient E. coli strain with an optimized idgS gene cassette and a cloning vector harboring an sfp gene with an in-frame insertion of a multiple cloning site close to its N-terminal. We demonstrated that the IdgS/Sfp-based blue/white screening system is a powerful alternative to the lacZα-based screening system, which does not require any external substrate addition.
Collapse
|
38
|
Li Z, Du L, Zhang W, Zhang X, Jiang Y, Liu K, Men P, Xu H, Fortman JL, Sherman DH, Yu B, Gao S, Li S. Complete elucidation of the late steps of bafilomycin biosynthesis in Streptomyces lohii. J Biol Chem 2017; 292:7095-7104. [PMID: 28292933 DOI: 10.1074/jbc.m116.751255] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/27/2017] [Indexed: 11/06/2022] Open
Abstract
Bafilomycins are an important subgroup of polyketides with diverse biological activities and possible applications as specific inhibitors of vacuolar H+-ATPase. However, the general toxicity and structural complexity of bafilomycins present formidable challenges to drug design via chemical modification, prompting interests in improving bafilomycin activities via biosynthetic approaches. Two bafilomycin biosynthetic gene clusters have been identified, but their post-polyketide synthase (PKS) tailoring steps for structural diversification and bioactivity improvement remain largely unknown. In this study, the post-PKS tailoring pathway from bafilomycin A1 (1)→C1 (2)→B1 (3) in the marine microorganism Streptomyces lohii was elucidated for the first time by in vivo gene inactivation and in vitro biochemical characterization. We found that fumarate is first adenylated by a novel fumarate adenylyltransferase Orf3. Then, the fumaryl transferase Orf2 is responsible for transferring the fumarate moiety from fumaryl-AMP to the 21-hydroxyl group of 1 to generate 2. Last, the ATP-dependent amide synthetase BafY catalyzes the condensation of 2 and 2-amino-3-hydroxycyclopent-2-enone (C5N) produced by the 5-aminolevulinic acid synthase BafZ and the acyl-CoA ligase BafX, giving rise to the final product 3. The elucidation of fumarate incorporation mechanism represents the first paradigm for biosynthesis of natural products containing the fumarate moiety. Moreover, the bafilomycin post-PKS tailoring pathway features an interesting cross-talk between primary and secondary metabolisms for natural product biosynthesis. Taken together, this work provides significant insights into bafilomycin biosynthesis to inform future pharmacological development of these compounds.
Collapse
Affiliation(s)
- Zhong Li
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101.,the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Du
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101.,the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101
| | - Xingwang Zhang
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101
| | - Yuanyuan Jiang
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101.,the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Liu
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101
| | - Ping Men
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101
| | - Huifang Xu
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101
| | - Jeffrey L Fortman
- the Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, and
| | - David H Sherman
- the Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Bing Yu
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Song Gao
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Shengying Li
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101,
| |
Collapse
|
39
|
Development of a novel compound microbial agent for degradation of kitchen waste. Braz J Microbiol 2017; 48:442-450. [PMID: 28279600 PMCID: PMC5498451 DOI: 10.1016/j.bjm.2016.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 11/04/2016] [Accepted: 12/26/2016] [Indexed: 11/20/2022] Open
Abstract
Large quantities of kitchen waste are produced in modern society and its disposal poses serious environmental and social problems. The aim of this study was to isolate degradative strains from kitchen waste and to develop a novel and effective microbial agent. One hundred and four strains were isolated from kitchen waste and the 84 dominant strains were used to inoculate protein-, starch-, fat- and cellulose-containing media for detecting their degradability. Twelve dominant strains of various species with high degradability (eight bacteria, one actinomycetes and three fungi) were selected to develop a compound microbial agent “YH” and five strains of these species including H7 (Brevibacterium epidermidis), A3 (Paenibacillus polymyxa), E3 (Aspergillus japonicus), F9 (Aspergillus versicolor) and A5 (Penicillium digitatum), were new for kitchen waste degradation. YH was compared with three commercial microbial agents—“Tiangeng” (TG), “Yilezai” (YLZ) and Effective Microorganisms (EM), by their effects on reduction, maturity and deodorization. The results showed that YH exerted the greatest efficacy on mass loss which decreased about 65.87% after 14 days. The agent inhibited NH3 and H2S emissions significantly during composting process. The concentration of NH3 decreased from 7.1 to 3.2 ppm and that of H2S reduced from 0.7 to 0.2 ppm. Moreover, E4/E6 (Extinction value460nm/Extinction value665nm) of YH decreased from 2.51 to 1.31, which meant YH had an obvious maturity effect. These results highlighted the potential application of YH in composting kitchen waste.
Collapse
|
40
|
A sensitive single-enzyme assay system using the non-ribosomal peptide synthetase BpsA for measurement of L-glutamine in biological samples. Sci Rep 2017; 7:41745. [PMID: 28139746 PMCID: PMC5282505 DOI: 10.1038/srep41745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
The ability to rapidly, economically and accurately measure L-glutamine concentrations in biological samples is important for many areas of research, medicine or industry, however there is room for improvement on existing methods. We describe here how the enzyme BpsA, a single-module non-ribosomal peptide synthetase able to convert L-glutamine into the blue pigment indigoidine, can be used to accurately measure L-glutamine in biological samples. Although indigoidine has low solubility in aqueous solutions, meaning direct measurements of indigoidine synthesis do not reliably yield linear standard curves, we demonstrate that resolubilisation of the reaction end-products in DMSO overcomes this issue and that spontaneous reduction to colourless leuco-indigoidine occurs too slowly to interfere with assay accuracy. Our protocol is amenable to a 96-well microtitre format and can be used to measure L-glutamine in common bacterial and mammalian culture media, urine, and deproteinated plasma. We show that active BpsA can be prepared in high yield by expressing it in the apo-form to avoid the toxicity of indigoidine to Escherichia coli host cells, then activating it to the holo-form in cell lysates prior to purification; and that BpsA has a lengthy shelf-life, retaining >95% activity when stored at either −20 °C or 4 °C for 24 weeks.
Collapse
|
41
|
Zhang MM, Wang Y, Ang EL, Zhao H. Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep 2016; 33:963-87. [PMID: 27072804 PMCID: PMC4963277 DOI: 10.1039/c6np00017g] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering up to end 2015Microbial fermentation provides an attractive alternative to chemical synthesis for the production of structurally complex natural products. In most cases, however, production titers are low and need to be improved for compound characterization and/or commercial production. Owing to advances in functional genomics and genetic engineering technologies, microbial hosts can be engineered to overproduce a desired natural product, greatly accelerating the traditionally time-consuming strain improvement process. This review covers recent developments and challenges in the engineering of native and heterologous microbial hosts for the production of bacterial natural products, focusing on the genetic tools and strategies for strain improvement. Special emphasis is placed on bioactive secondary metabolites from actinomycetes. The considerations for the choice of host systems will also be discussed in this review.
Collapse
Affiliation(s)
- Mingzi M Zhang
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore
| | | | | | | |
Collapse
|
42
|
Winn M, Fyans JK, Zhuo Y, Micklefield J. Recent advances in engineering nonribosomal peptide assembly lines. Nat Prod Rep 2016; 33:317-47. [PMID: 26699732 DOI: 10.1039/c5np00099h] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonribosomal peptides are amongst the most widespread and structurally diverse secondary metabolites in nature with many possessing bioactivity that can be exploited for therapeutic applications. Due to the major challenges associated with total- and semi-synthesis, bioengineering approaches have been developed to increase yields and generate modified peptides with improved physicochemical properties or altered bioactivity. Here we review the major advances that have been made over the last decade in engineering the biosynthesis of nonribosomal peptides. Structural diversity has been introduced by the modification of enzymes required for the supply of precursors or by heterologous expression of tailoring enzymes. The modularity of nonribosomal peptide synthetase (NRPS) assembly lines further supports module or domain swapping methodologies to achieve changes in the amino acid sequence of nonribosomal peptides. We also review the new synthetic biology technologies promising to speed up the process, enabling the creation and optimisation of many more assembly lines for heterologous expression, offering new opportunities for engineering the biosynthesis of novel nonribosomal peptides.
Collapse
Affiliation(s)
- M Winn
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - J K Fyans
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Y Zhuo
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - J Micklefield
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
43
|
González A, Rodríguez M, Braña AF, Méndez C, Salas JA, Olano C. New insights into paulomycin biosynthesis pathway in Streptomyces albus J1074 and generation of novel derivatives by combinatorial biosynthesis. Microb Cell Fact 2016; 15:56. [PMID: 27001601 PMCID: PMC4802897 DOI: 10.1186/s12934-016-0452-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/09/2016] [Indexed: 12/16/2022] Open
Abstract
Background Streptomyces albus J1074 produces glycosylated antibiotics paulomycin A, B and E that derive from chorismate and contain an isothiocyanate residue in form of paulic acid. Paulomycins biosynthesis pathway involves two glycosyltransferases, three acyltransferases, enzymes required for paulic acid biosynthesis (in particular an aminotransferase and a sulfotransferase), and enzymes involved in the biosynthesis of two deoxysugar moieties: D-allose and L-paulomycose. Results Inactivation of genes encoding enzymes involved in deoxysugar biosynthesis, paulic acid biosynthesis, deoxysugar transfer, and acyl moieties transfer has allowed the identification of several biosynthetic intermediates and shunt products, derived from paulomycin intermediates, and to propose a refined version of the paulomycin biosynthesis pathway. Furthermore, several novel bioactive derivatives of paulomycins carrying modifications in the L-paulomycose moiety have been generated by combinatorial biosynthesis using different plasmids that direct the biosynthesis of alternative deoxyhexoses. Conclusions The paulomycins biosynthesis pathway has been defined by inactivation of genes encoding glycosyltransferases, acyltransferases and enzymes involved in paulic acid and L-paulomycose biosynthesis. These experiments have allowed the assignment of each of these genes to specific paulomycin biosynthesis steps based on characterization of products accumulated by the corresponding mutant strains. In addition, novel derivatives of paulomycin A and B containing L-paulomycose modified moieties were generated by combinatorial biosynthesis. The production of such derivatives shows that L-paulomycosyl glycosyltransferase Plm12 possesses a certain degree of flexibility for the transfer of different deoxysugars. In addition, the pyruvate dehydrogenase system form by Plm8 and Plm9 is also flexible to catalyze the attachment of a two-carbon side chain, derived from pyruvate, into both 2,6-dideoxyhexoses and 2,3,6-trideoxyhexoses. The activity of the novel paulomycin derivatives carrying modifications in the L-paulomycose moiety is lower than the original compounds pointing to some interesting structure–activity relationships. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0452-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aránzazu González
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/Julian Claveria s/n, 33006, Oviedo (Asturias), Spain
| | - Miriam Rodríguez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/Julian Claveria s/n, 33006, Oviedo (Asturias), Spain
| | - Alfredo F Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/Julian Claveria s/n, 33006, Oviedo (Asturias), Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/Julian Claveria s/n, 33006, Oviedo (Asturias), Spain
| | - José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/Julian Claveria s/n, 33006, Oviedo (Asturias), Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/Julian Claveria s/n, 33006, Oviedo (Asturias), Spain.
| |
Collapse
|
44
|
Discovery of pentangular polyphenols hexaricins A–C from marine Streptosporangium sp. CGMCC 4.7309 by genome mining. Appl Microbiol Biotechnol 2016; 100:4189-99. [DOI: 10.1007/s00253-015-7248-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/09/2015] [Accepted: 12/12/2015] [Indexed: 10/22/2022]
|
45
|
Knirschova R, Novakova R, Mingyar E, Bekeova C, Homerova D, Kormanec J. Utilization of a reporter system based on the blue pigment indigoidine biosynthetic gene bpsA for detection of promoter activity and deletion of genes in Streptomyces. J Microbiol Methods 2015; 113:1-3. [DOI: 10.1016/j.mimet.2015.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 02/04/2023]
|