1
|
Onishi-Sakamoto S, Watanabe K, Fujii T, Yamamoto K, Makida R, Tochio T, Nishifuji K. Erythritol alters the expression of genes related to sugar and arginine metabolisms and suppresses the growth of Staphylococcus hyicus. Vet Dermatol 2025. [PMID: 40525604 DOI: 10.1111/vde.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 03/27/2025] [Accepted: 05/21/2025] [Indexed: 06/19/2025]
Abstract
BACKGROUND Erythritol, a sugar alcohol, has been reported to suppress the in vitro growth of Staphylococcus pseudintermedius and Staphylococcus coagulans. OBJECTIVES To determine whether erythritol suppresses the growth of Staphylococcus hyicus, a major pathogen causing porcine exudative epidermitis, and to investigate the molecular mechanisms involved in erythritol-induced S. hyicus growth suppression. MATERIALS AND METHODS An in vitro turbidity assay was performed to assess the effect of erythritol on the growth of 26 S. hyicus strains, including a reference strain JCM 2423 and the 25 wild strains isolated from pigs. Differentially expressed genes in response to erythritol in JCM 2423 were identified by RNA-Seq and quantitative reverse transcription-PCR. The impact of trehalose, glucose and arginine supplementation on erythritol-induced growth suppression of the 25 S. hyicus wild strains was also investigated. RESULTS Erythritol suppressed the in vitro growth of JCM 2423 and the 25 S. hyicus wild strains. Moreover, erythritol upregulated the transcription of multiple genes in JCM 2423, including those encoding ATP-binding cassette transporter enzymes (potB, potC and potD), arginine biosynthetic pathway enzymes (argF, argG and argH), l-arginine deiminase pathway enzymes (arcA, arcC and arcD), fatty acid metabolism pathway enzymes (fabH and fabF) and trehalose metabolism-related proteins (treC, treR and treP). Supplementation of trehalose or glucose in aerobic conditions or arginine supplementation in anaerobic conditions restored in vitro growth of the 25 S. hyicus wild strains treated by erythritol. CONCLUSIONS AND CLINICAL RELEVANCE Erythritol suppresses the in vitro growth of S. hyicus by inhibiting intracellular sugar and arginine metabolism under aerobic and anaerobic conditions, respectively.
Collapse
Affiliation(s)
- Saki Onishi-Sakamoto
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Keito Watanabe
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tadashi Fujii
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
| | | | - Reina Makida
- Research & Development Center, B Food Science Co. Ltd., Chita, Aichi, Japan
| | - Takumi Tochio
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
| | - Koji Nishifuji
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Division of Animal Science, Institute of Agriculture, Graduate School, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
2
|
Xu J, Tao Y, Shan Q, Feng Y, Wang Y, Liu Z, Zheng Y. Optimized Biosynthetic Pathway for Nonnatural Amino Acids: An Efficient Approach for L-2-Aminobutyric Acid Production. Biotechnol Bioeng 2025. [PMID: 40265407 DOI: 10.1002/bit.29003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
L-2-Aminobutyric acid (L-2-ABA) is a nonnatural chiral α-amino acid which is widely used in various chiral pharmaceuticals and medical intermediates. Currently, the microbial metabolic engineering approach to enable Escherichia coli to produce L-2-ABA autonomously exists the problem of low synthesis efficiency, limiting its large-scale application. In this study, we successfully constructed a strain of E. coli that can produce L-2-ABA efficiently via multi-pathway transformation. Firstly, the growth defect of the start strain was restored by the help of screening transcriptional regulators. To maximize the accumulation of L-2-ABA, enhancements were made to the main synthetic pathways as well as cofactor systems and energy supply. Subsequently, transport proteins associated with osmotic stress tolerance were modified to improve adaptability of the strain during fermentation. Ultimately, the titer of L-2-ABA reached 42.14 g/L through the final strain ABAT38 in a 5-liter bioreactor, with a productivity of 0.40 g/L/h and a glucose conversion of 0.39 g/g, which exceeded the highest levels reported before. The strategies proposed in this study contribute to the production of L-2-ABA. At the same time, it has reference significance for the biosynthesis of related nonnatural amino acids with phosphoenolpyruvate as the intermediate metabolite.
Collapse
Affiliation(s)
- Jianmiao Xu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuan Tao
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qilan Shan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yan Feng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yihong Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
Zheng H, Jiang J, Huang C, Wang X, Hu P. Effect of sugar content on characteristic flavour formation of tomato sour soup fermented by Lacticaseibacillus casei H1 based on non-targeted metabolomics analysis. Food Chem X 2024; 21:101116. [PMID: 38282824 PMCID: PMC10818199 DOI: 10.1016/j.fochx.2024.101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 01/30/2024] Open
Abstract
To reveal the formation mechanism of the characteristic flavour of tomato sour soup (TSS), metabolomics based on UHPLC-Q-TOF/MS was used to investigate the effect of sugar addition on TSS metabolomics during fermentation with Lacticaseibacillus casei H1. A total of 254 differentially abundant metabolites were identified in the 10% added-sugar group, which mainly belonged to organic acids and derivatives, fatty acyls, and organic oxygen compounds. Metabolic pathway analysis revealed that alanine aspartate and glutamate metabolism, valine leucine and isoleucine metabolism and butanoate metabolism were the potential pathways for the flavour of TSS formation. Lactic acid, acetic acid, Ala, Glu and Asp significantly contributed to the acidity and umami formation of TSS. This study showed that sugar regulation played an important role in the formation of the characteristic TSS flavour during fermentation, providing important support for understanding the formation mechanism of organic acids as the main characteristic flavour of TSS.
Collapse
Affiliation(s)
- Huaisheng Zheng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Jingzhu Jiang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Chaobing Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaoyu Wang
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Ping Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Zhou S, Ding N, Han R, Deng Y. Metabolic engineering and fermentation optimization strategies for producing organic acids of the tricarboxylic acid cycle by microbial cell factories. BIORESOURCE TECHNOLOGY 2023; 379:128986. [PMID: 37001700 DOI: 10.1016/j.biortech.2023.128986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The organic acids of the tricarboxylic acid (TCA) pathway are important platform compounds and are widely used in many areas. The high-productivity strains and high-efficient and low-cost fermentation are required to satisfy a huge market size. The high metabolic flux of the TCA pathway endows microorganisms potential to produce high titers of these organic acids. Coupled with metabolic engineering and fermentation optimization, the titer of the organic acids has been significantly improved in recent years. Herein, we discuss and compare the recent advances in synthetic pathway engineering, cofactor engineering, transporter engineering, and fermentation optimization strategies to maximize the biosynthesis of organic acids. Such engineering strategies were mainly based on the TCA pathway and glyoxylate pathway. Furthermore, organic-acid-secretion enhancement and renewable-substrate-based fermentation are often performed to assist the biosynthesis of organic acids. Further strategies are also discussed to construct high-productivity and acid-resistant strains for industrial large-scale production.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Nana Ding
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Yu Deng
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Recent advances and perspectives on production of value-added organic acids through metabolic engineering. Biotechnol Adv 2023; 62:108076. [PMID: 36509246 DOI: 10.1016/j.biotechadv.2022.108076] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Organic acids are important consumable materials with a wide range of applications in the food, biopolymer and chemical industries. The global consumer organic acids market is estimated to increase to $36.86 billion by 2026. Conventionally, organic acids are produced from the chemical catalysis process with petrochemicals as raw materials, which posts severe environmental concerns and conflicts with our sustainable development goals. Most of the commonly used organic acids can be produced from various organisms. As a state-of-the-art technology, large-scale fermentative production of important organic acids with genetically-modified microbes has become an alternative to the chemical route to meet the market demand. Despite the fact that bio-based organic acid production from renewable cheap feedstock provides a viable solution, low productivity has impeded their industrial-scale application. With our deeper understanding of strain genetics, physiology and the availability of strain engineering tools, new technologies including synthetic biology, various metabolic engineering strategies, omics-based system biology tools, and high throughput screening methods are gradually established to bridge our knowledge gap. And they were further applied to modify the cellular reaction networks of potential microbial hosts and improve the strain performance, which facilitated the commercialization of consumable organic acids. Here we present the recent advances of metabolic engineering strategies to improve the production of important organic acids including fumaric acid, citric acid, itaconic acid, adipic acid, muconic acid, and we also discuss the current challenges and future perspectives on how we can develop a cost-efficient, green and sustainable process to produce these important chemicals from low-cost feedstocks.
Collapse
|
6
|
Fumaric Acid Production by R. arrhizus NRRL 1526 Using Apple Pomace Enzymatic Hydrolysates: Kinetic Modelling. Processes (Basel) 2022. [DOI: 10.3390/pr10122624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fumaric acid is one of the most promising biorefinery platform chemicals, fruit residues being a very suitable raw material for its production in second generation biorefineries. In particular, apple pomace is a plentiful residue from the apple juice industry, with apple being the second largest fruit crop in the world, with a production that increased from 46 to 86 Mtons in the 1994–2021 period. With a global apple juice production of more than 4.5 Mtons, a similar amount of apple pomace is produced yearly. In this work, apple pomace hydrolysate has been obtained by enzymatic hydrolysis and further characterized for its content in sugars, phenolics and nitrogen using different analytic methods, based on HPLC and colorimetric techniques. Previous to the use of this hydrolysate (APH), we studied if the addition of fructose to the usual glucose-rich broth could lead to high fumaric acid yields, titers and productivities. Afterwards, APH fermentation was performed and improved using different nitrogen initial amounts, obtaining production yields (0.32 gFumaric acid/gconsumed sugar) similar to those obtained with synthetic media (0.38 gFumaric acid/gconsumed sugar). Kinetic modelling was employed to evaluate, explain, and understand the experimental values and trends of relevant components in the fermentation broth as functions of the bioprocess time, proposing a suitable reaction scheme and a non-structured, non-segregated kinetic model based on it.
Collapse
|
7
|
The ornithine-urea cycle involves fumaric acid biosynthesis in Aureobasidium pullulans var. aubasidani, a green and eco-friendly process for fumaric acid production. Synth Syst Biotechnol 2022; 8:33-45. [DOI: 10.1016/j.synbio.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
|
8
|
Skorokhodova AY, Gulevich AY, Debabov VG. Engineering Escherichia coli for efficient aerobic conversion of glucose to fumaric acid. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 33:e00703. [PMID: 35145886 PMCID: PMC8801760 DOI: 10.1016/j.btre.2022.e00703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 12/16/2022]
Abstract
Escherichia coli was engineered for efficient aerobic conversion of glucose to fumaric acid. A novel design for biosynthesis of the target product through the modified TCA cycle rather than via glyoxylate shunt, implying oxaloacetate formation from pyruvate and artificial channelling of 2-ketoglutarate towards succinic acid via succinate semialdehyde formation, was implemented. The main fumarases were inactivated in the core strain MSG1.0 (∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, ∆ptsG, PL-glk, Ptac-galP) by the deletion of the fumA, fumB, and fumC genes. The Bacillus subtilis pycA gene was expressed in the strain to ensure pyruvate to oxaloacetate conversion. The Mycobacterium tuberculosis kgd gene was expressed to enable succinate semialdehyde formation. The resulting strain was able to convert glucose to fumaric acid with a yield of 0.86 mol/mol, amounting to 86% of the theoretical maximum. The results demonstrated the high potential of the implemented strategy for development of efficient strains for bio-based fumaric acid production.
Collapse
Affiliation(s)
- Alexandra Yu. Skorokhodova
- Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2. Leninsky Ave., Moscow 119071, Russia
| | - Andrey Yu. Gulevich
- Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2. Leninsky Ave., Moscow 119071, Russia
| | - Vladimir G. Debabov
- Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2. Leninsky Ave., Moscow 119071, Russia
| |
Collapse
|
9
|
Li X, Bao T, Osire T, Qiao Z, Liu J, Zhang X, Xu M, Yang T, Rao Z. MarR-type transcription factor RosR regulates glutamate metabolism network and promotes accumulation of L-glutamate in Corynebacterium glutamicum G01. BIORESOURCE TECHNOLOGY 2021; 342:125945. [PMID: 34560435 DOI: 10.1016/j.biortech.2021.125945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Transcription factors (TFs) perform a crucial function in the regulation of amino acids biosynthesis. Here, TFs involved in L-glutamate biosynthesis in Corynebacterium glutamicum were investigated. Compared to transcriptomic results of C. glutamicum 13032, 7 TFs regulated to glutamate biosynthesis were indentifed in G01 and E01. Among them, RosR was demonstrated to regulate L-glutamate metabolic network by binding to the promoters of glnA, pqo, ilvB, ilvN, ilvC, ldhA, odhA, dstr1, fas, argJ, ak and pta. Overexpression of RosR in G01 resulted in significantly decreased by-products yield and improved L-glutamate titer (130.6 g/L) and yield (0.541 g/g from glucose) in fed-batch fermentation. This study demonstrated the L-glutamate production improved by the expression of TFs in C. glutamicum, which provided a good reference for the transcriptional regulation engineering of strains for amino acid biosynthesis and suggested further metabolic engineering of C. glutamicum for L-glutamate production.
Collapse
Affiliation(s)
- Xiangfei Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Teng Bao
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhina Qiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jiafeng Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Jia H, Yang Y, Li M, Chu Y, Song H, Zhang J, Zhang D, Zhang Q, Xu Y, Wang J, Xu H, Zou X, Peng H, Hou Z. Snail enhances arginine synthesis by inhibiting ubiquitination-mediated degradation of ASS1. EMBO Rep 2021; 22:e51780. [PMID: 34184805 DOI: 10.15252/embr.202051780] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Snail is a dedicated transcriptional repressor and acts as a master inducer of EMT and metastasis, yet the underlying signaling cascades triggered by Snail still remain elusive. Here, we report that Snail promotes colorectal cancer (CRC) migration by preventing non-coding RNA LOC113230-mediated degradation of argininosuccinate synthase 1 (ASS1). LOC113230 is a novel Snail target gene, and Snail binds to the functional E-boxes within its proximal promoter to repress its expression in response to TGF-β induction. Ectopic expression of LOC113230 potently suppresses CRC cell growth, migration, and lung metastasis in xenograft experiments. Mechanistically, LOC113230 acts as a scaffold to facilitate recruiting LRPPRC and the TRAF2 E3 ubiquitin ligase to ASS1, resulting in enhanced ubiquitination and degradation of ASS1 and decreased arginine synthesis. Moreover, elevated ASS1 expression is essential for CRC growth and migration. Collectively, these findings suggest that TGF-β and Snail promote arginine synthesis via inhibiting LOC113230-mediated LRPPRC/TRAF2/ASS1 complex assembly and this complex can serve as potential target for the development of new therapeutic approaches to treat CRC.
Collapse
Affiliation(s)
- Hao Jia
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuquan Yang
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mengying Li
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yimin Chu
- Digestive Endoscopy Center, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huan Song
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Zhang
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dan Zhang
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qun Zhang
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Xu
- Digestive Endoscopy Center, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamin Wang
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Xu
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiuqun Zou
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haixia Peng
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Digestive Endoscopy Center, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaoyuan Hou
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Li Y, Yang S, Ma D, Song W, Gao C, Liu L, Chen X. Microbial engineering for the production of C 2-C 6 organic acids. Nat Prod Rep 2021; 38:1518-1546. [PMID: 33410446 DOI: 10.1039/d0np00062k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to the end of 2020Organic acids, as building block compounds, have been widely used in food, pharmaceutical, plastic, and chemical industries. Until now, chemical synthesis is still the primary method for industrial-scale organic acid production. However, this process encounters some inevitable challenges, such as depletable petroleum resources, harsh reaction conditions and complex downstream processes. To solve these problems, microbial cell factories provide a promising approach for achieving the sustainable production of organic acids. However, some key metabolites in central carbon metabolism are strictly regulated by the network of cellular metabolism, resulting in the low productivity of organic acids. Thus, multiple metabolic engineering strategies have been developed to reprogram microbial cell factories to produce organic acids, including monocarboxylic acids, hydroxy carboxylic acids, amino carboxylic acids, dicarboxylic acids and monomeric units for polymers. These strategies mainly center on improving the catalytic efficiency of the enzymes to increase the conversion rate, balancing the multi-gene biosynthetic pathways to reduce the byproduct formation, strengthening the metabolic flux to promote the product biosynthesis, optimizing the metabolic network to adapt the environmental conditions and enhancing substrate utilization to broaden the substrate spectrum. Here, we describe the recent advances in producing C2-C6 organic acids by metabolic engineering strategies. In addition, we provide new insights as to when, what and how these strategies should be taken. Future challenges are also discussed in further advancing microbial engineering and establishing efficient biorefineries.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhang Y, Zhou H, Tao Y, Lin B. Reconstitution of the Ornithine Cycle with Arginine:Glycine Amidinotransferase to Engineer Escherichia coli into an Efficient Whole-Cell Catalyst of Guanidinoacetate. ACS Synth Biol 2020; 9:2066-2075. [PMID: 32702969 DOI: 10.1021/acssynbio.0c00138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Guanidino compounds can be synthesized by transamidination reactions using arginine as a guanidine group donor. The efficiency of guanidino biosynthesis is often affected by the supply of arginine and the inhibition of the coproduct ornithine. To alleviate this shortcoming, we designed a reconstituted ornithine cycle in Escherichia coli to engineer an efficient whole-cell catalyst for guanidinoacetate (GAA) production by introducing a heterogeneous arginine:glycine amidinotransferase (AGAT). To alleviate the inhibition of ornithine, a citrulline synthetic module was constructed and optimized by introducing a glutamine self-sufficient system. Then, to improve the pathway from citrulline to arginine, an aspartate self-sufficient system was introduced into the arginine synthetic module. By combining these modules (GAA, citrulline, and arginine synthetic modules), a reconstituted ornithine cycle was developed, which significantly improved the biocatalyst efficiency (3.9-fold increase). In the system, arginine was regenerated efficiently through the reconstituted ornithine cycle, which converted arginine from a substrate to a cofactor for the transamidination reaction, thereby relieving the ornithine inhibition. Moreover, the amidino group of GAA in this system was mainly supplied by carbon and nitrogen assimilation. After the engineering process, 8.61 g/L GAA (73.56 mM) with a productivity of 0.39 g/L/h was achieved in a 22 h bioconversion. To the best of our knowledge, this is the first time that GAA has been produced in E. coli. This reconstructed ornithine cycle could be used as a transamidination platform for amidino group supply and has potential applications in the biosynthesis of other guanidino compounds.
Collapse
Affiliation(s)
- Yiwen Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hang Zhou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baixue Lin
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Zhao L, Lu Y, Yang J, Fang Y, Zhu L, Ding Z, Wang C, Ma W, Hu X, Wang X. Expression regulation of multiple key genes to improve L-threonine in Escherichia coli. Microb Cell Fact 2020; 19:46. [PMID: 32093713 PMCID: PMC7041290 DOI: 10.1186/s12934-020-01312-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/18/2020] [Indexed: 11/28/2022] Open
Abstract
Background Escherichia coli is an important strain for l-threonine production. Genetic switch is a ubiquitous regulatory tool for gene expression in prokaryotic cells. To sense and regulate intracellular or extracellular chemicals, bacteria evolve a variety of transcription factors. The key enzymes required for l-threonine biosynthesis in E. coli are encoded by the thr operon. The thr operon could coordinate expression of these genes when l-threonine is in short supply in the cell. Results The thrL leader regulatory elements were applied to regulate the expression of genes iclR, arcA, cpxR, gadE, fadR and pykF, while the threonine-activating promoters PcysH, PcysJ and PcysD were applied to regulate the expression of gene aspC, resulting in the increase of l-threonine production in an l-threonine producing E. coli strain TWF001. Firstly, different parts of the regulator thrL were inserted in the iclR regulator region in TWF001, and the best resulting strain TWF063 produced 16.34 g l-threonine from 40 g glucose after 30 h cultivation. Secondly, the gene aspC following different threonine-activating promoters was inserted into the chromosome of TWF063, and the best resulting strain TWF066 produced 17.56 g l-threonine from 40 g glucose after 30 h cultivation. Thirdly, the effect of expression regulation of arcA, cpxR, gadE, pykF and fadR was individually investigated on l-threonine production in TWF001. Finally, using TWF066 as the starting strain, the expression of genes arcA, cpxR, gadE, pykF and fadR was regulated individually or in combination to obtain the best strain for l-threonine production. The resulting strain TWF083, in which the expression of seven genes (iclR, aspC, arcA, cpxR, gadE, pykF, fadR and aspC) was regulated, produced 18.76 g l-threonine from 30 g glucose, 26.50 g l-threonine from 40 g glucose, or 26.93 g l-threonine from 50 g glucose after 30 h cultivation. In 48 h fed-batch fermentation, TWF083 could produce 116.62 g/L l‐threonine with a yield of 0.486 g/g glucose and productivity of 2.43 g/L/h. Conclusion The genetic engineering through the expression regulation of key genes is a better strategy than simple deletion of these genes to improve l-threonine production in E. coli. This strategy has little effect on the intracellular metabolism in the early stage of the growth but could increase l-threonine biosynthesis in the late stage.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Ying Lu
- Nanjing Customs District P. R. China, Wuxi, 214122, China
| | - Jun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Yu Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Lifei Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Zhixiang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Chenhui Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
14
|
Chen X, Ma D, Liu J, Luo Q, Liu L. Engineering the transmission efficiency of the noncyclic glyoxylate pathway for fumarate production in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:132. [PMID: 32760446 PMCID: PMC7379832 DOI: 10.1186/s13068-020-01771-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/15/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Fumarate is a multifunctional dicarboxylic acid in the tricarboxylic acid cycle, but microbial engineering for fumarate production is limited by the transmission efficiency of its biosynthetic pathway. RESULTS Here, pathway engineering was used to construct the noncyclic glyoxylate pathway for fumarate production. To improve the transmission efficiency of intermediate metabolites, pathway optimization was conducted by fluctuating gene expression levels to identify potential bottlenecks and then remove them, resulting in a large increase in fumarate production from 8.7 to 16.2 g/L. To further enhance its transmission efficiency of targeted metabolites, transporter engineering was used by screening the C4-dicarboxylate transporters and then strengthening the capacity of fumarate export, leading to fumarate production up to 18.9 g/L. Finally, the engineered strain E. coli W3110△4-P(H)CAI(H)SC produced 22.4 g/L fumarate in a 5-L fed-batch bioreactor. CONCLUSIONS In this study, we offered rational metabolic engineering and flux optimization strategies for efficient production of fumarate. These strategies have great potential in developing efficient microbial cell factories for production of high-value added chemicals.
Collapse
Affiliation(s)
- Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122 China
| | - Danlei Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122 China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122 China
| | - Qiuling Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Wuxi Chenming Biotechnology Co. Ltd, Wuxi, 214100 China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
15
|
|
16
|
Luneva EE, Mishchenko KV, Yukhin YM. Synthesis of bismuth (III) oxofumarate and its solubility in organic solvents. MATERIALS TODAY: PROCEEDINGS 2020; 31:566-568. [PMID: 32837920 PMCID: PMC7384780 DOI: 10.1016/j.matpr.2020.06.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Evgeniia E Luneva
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, Novosibirsk 630128, Russia
- Novosibirsk State Technical University, Novosibirsk 630073, Russia
| | - Kseniya V Mishchenko
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, Novosibirsk 630128, Russia
| | - Yurij M Yukhin
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, Novosibirsk 630128, Russia
| |
Collapse
|
17
|
Coban HB. Organic acids as antimicrobial food agents: applications and microbial productions. Bioprocess Biosyst Eng 2019; 43:569-591. [PMID: 31758240 DOI: 10.1007/s00449-019-02256-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022]
Abstract
Food safety is a global health and socioeconomic concern since many people still suffer from various acute and life-long diseases, which are caused by consumption of unsafe food. Therefore, ensuring safety of the food is one of the most essential issues in the food industry, which needs to be considered during not only food composition formulation but also handling and storage. For safety purpose, various chemical preservatives have been used so far in the foods. Recently, there has been renewed interest in replacing chemically originated food safety compounds with natural ones in the industry, which can also serve as antimicrobial agents. Among these natural compounds, organic acids possess the major portion. Therefore, in this paper, it is aimed to review and compile the applications, effectiveness, and microbial productions of various widely used organic acids as antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Hasan Bugra Coban
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Health Campus, Balcova, 35340, Izmir, Turkey.
| |
Collapse
|
18
|
Ding Z, Fang Y, Zhu L, Wang J, Wang X. Deletion of arcA, iclR, and tdcC in Escherichia coli to improve l-threonine production. Biotechnol Appl Biochem 2019; 66:794-807. [PMID: 31177569 DOI: 10.1002/bab.1789] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/06/2019] [Indexed: 11/06/2022]
Abstract
l-Threonine is an important amino acid supplemented in food, medicine, or feed. Starting from glucose, l-threonine production in Escherichia coli involves the glycolysis, TCA cycle, and the l-threonine biosynthetic pathway. In this study, how the l-threonine production in an l-threonine producing E. coli TWF001 is controlled by the three regulators ArcA, Cra, and IclR, which control the expression of genes involved in the glycolysis and TCA cycle, has been investigated. Ten mutant strains were constructed from TWF001 by different combinations of deletion or overexpression of arcA, cra, iclR, and tdcC. l-Threonine production was increased in the mutants TWF015 (ΔarcAΔcra), TWF016 (ΔarcAPcra::Ptrc), TWF017 (ΔarcAΔiclR), TWF018 (ΔarcAΔiclRΔtdcC), and TWF019 (ΔarcAΔcraΔiclRΔtdcC). Among these mutant strains, the highest l-threonine production (26.0 g/L) was obtained in TWF018, which was a 109.7% increase compared with the control TWF001. In addition, TWF018 could consume glucose more efficiently than TWF001 and produce less acetate. The results suggest that deletion of arcA, iclR, and tdcC could efficiently increase l-threonine production in E. coli.
Collapse
Affiliation(s)
- Zhixiang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Yu Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Lifei Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
19
|
Sebastian J, Hegde K, Kumar P, Rouissi T, Brar SK. Bioproduction of fumaric acid: an insight into microbial strain improvement strategies. Crit Rev Biotechnol 2019; 39:817-834. [DOI: 10.1080/07388551.2019.1620677] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, Québec, Canada
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Yang J, Fang Y, Wang J, Wang C, Zhao L, Wang X. Deletion of regulator-encoding genes fadR, fabR and iclR to increase L-threonine production in Escherichia coli. Appl Microbiol Biotechnol 2019; 103:4549-4564. [DOI: 10.1007/s00253-019-09818-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/19/2019] [Accepted: 03/31/2019] [Indexed: 12/25/2022]
|
21
|
Liu H, Song R, Liang Y, Zhang T, Deng L, Wang F, Tan T. Genetic manipulation of Escherichia coli central carbon metabolism for efficient production of fumaric acid. BIORESOURCE TECHNOLOGY 2018; 270:96-102. [PMID: 30212779 DOI: 10.1016/j.biortech.2018.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 05/06/2023]
Abstract
Fumaric acid is one of the top 12-biomass building-block chemicals. In this study, we reported manipulation of E. coli central carbon metabolism with the aim to decrease the by-products and improve fumaric acid production. PEP-dependent glucose phosphotransferase system was replaced with a galactose translocation system to minimize the consumption of phosphoenolpyruvate. Engineering anaplerotic pathway (phosphoenolpyruvate carboxylase) was employed to redistribute carbon flux from glycolysis to Krebs cycle. Deletion of malate dehydrogenase and overexpression of acetyl-CoA synthase could decrease the byproducts malic acid and acetic acid. The combined strategies led to fumaric acid yield up to 1.53 g/g dry cell weight, a 50% increase compared with the parental strain. The result demonstrated that these genetic modifications were effective strategies for improving the production of fumaric acid and the engineered strain may serve a platform microbial cell factory for efficient production of fumaric acid or other dicarboxylic acids.
Collapse
Affiliation(s)
- Huan Liu
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ruirui Song
- Institute of Food and Agriculture Standardization, China National Institute of Standardization, Beijing 100191, PR China
| | - Yue Liang
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ting Zhang
- Comprehensive Liver Cancer Center, the 302 Hospital of PLA, Beijing 100039, PR China
| | - Li Deng
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Fang Wang
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tianwei Tan
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
22
|
|
23
|
Zhao H, Fang Y, Wang X, Zhao L, Wang J, Li Y. Increasing L-threonine production in Escherichia coli by engineering the glyoxylate shunt and the L-threonine biosynthesis pathway. Appl Microbiol Biotechnol 2018; 102:5505-5518. [PMID: 29713792 DOI: 10.1007/s00253-018-9024-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/20/2018] [Accepted: 04/13/2018] [Indexed: 11/29/2022]
Abstract
L-threonine is an important amino acid that can be added in food, medicine, or feed. Here, the influence of glyoxylate shunt on an L-threonine producing strain Escherichia coli TWF001 has been studied. The gene iclR was deleted, and the native promoter of the aceBA operon was replaced by the trc promoter in the chromosome of TWF001, the resulting strainTWF004 could produce 0.39 g L-threonine from1 g glucose after 36-h flask cultivation. Further replacing the native promoter of aspC by the trc promoter in the chromosome of TWF004 resulted in the strain TWF006. TWF006 could produce 0.42 g L-threonine from 1 g glucose after 36-h flask cultivation. Three key genes in the biosynthetic pathway of L-threonine, thrA * (a mutated thrA), thrB, and thrC were overexpressed in TWF006, resulting the strain TWF006/pFW01-thrA * BC. TWF006/pFW01-thrA * BC could produce 0.49 g L-threonine from 1 g glucose after 36-h flask cultivation. Next, the genes asd, rhtA, rhtC, or thrE were inserted into the plasmid TWF006/pFW01-thrA * BC, and TWF006 was transformed with these plasmids, resulting the strains TWF006/pFW01-thrA * BC-asd, TWF006/pFW01-thrA * BC-rhtA, TWF006/pFW01-thrA * BC-rhtC, and TWF006/pFW01-thrA * BC-thrE, respectively. These four strains could produce more L-threonine than the control strain, and the highest yield was produced by TWF006/pFW01-thrA * BC-asd; after 36-h flask cultivation, TWF006/pFW01-thrA * BC-asd could produce 15.85 g/l L-threonine, i.e., 0.53 g L-threonine per 1 g glucose, which is a 70% increase relative to the control strain TWF001. The results suggested that the combined engineering of glyoxylate shunt and L-threonine biosynthesis pathway could significantly increase the L-threonine production in E. coli.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yu Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| | - Lei Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Ye Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
24
|
Marullo S, Rizzo C, Dintcheva NT, Giannici F, D'Anna F. Ionic liquids gels: Soft materials for environmental remediation. J Colloid Interface Sci 2018; 517:182-193. [PMID: 29425955 DOI: 10.1016/j.jcis.2018.01.111] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS Nanostructured sorbents and, in particular, supramolecular gels are emerging as efficient materials for the removal of toxic contaminants from water, like industrial dyes. It is also known that ionic liquids can dissolve significant amounts of dyes. Consequently, supramolecular ionic liquids gels could be highly efficient sorbents for dyes removal. This would also contribute to overcome the drawbacks associated with dye removal by liquid-liquid extraction with neat ionic liquids which would require large volumes of extractant and a more difficult separation of the phases. EXPERIMENTS Herein we employed novel supramolecular ionic liquid gels based on diimidazolium salts bearing naturally occurring or biomass derived anions, to adsorb cationic and anionic dyes from wastewaters. We also carried out a detailed investigation of thermal, structural, morphological and rheological features of our gels to identify which of them are key in designing better sorbents for environmental remediation. FINDINGS The most effective gels showed fast and thorough removal of cationic dyes like Rhodamine B. These gels could also be reused up to 20 times without any loss in removal efficiency. Overall, our ionic gels outperform most of gel-based sorbents systems so far reported in literature.
Collapse
Affiliation(s)
- Salvatore Marullo
- Dipartimento STEBICEF-Sezione di Chimica-Università degli Studi di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy.
| | - Carla Rizzo
- Dipartimento STEBICEF-Sezione di Chimica-Università degli Studi di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy
| | - Nadka T Dintcheva
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | - Francesco Giannici
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, I-90128, Palermo, Italy
| | - Francesca D'Anna
- Dipartimento STEBICEF-Sezione di Chimica-Università degli Studi di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy.
| |
Collapse
|
25
|
Gou L, Lee J, Yang JM, Park YD, Zhou HM, Zhan Y, Lü ZR. Inhibition of tyrosinase by fumaric acid: Integration of inhibition kinetics with computational docking simulations. Int J Biol Macromol 2017; 105:1663-1669. [DOI: 10.1016/j.ijbiomac.2016.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
|
26
|
Odoni DI, Tamayo-Ramos JA, Sloothaak J, van Heck RGA, Martins Dos Santos VAP, de Graaff LH, Suarez-Diez M, Schaap PJ. Comparative proteomics of Rhizopus delemar ATCC 20344 unravels the role of amino acid catabolism in fumarate accumulation. PeerJ 2017; 5:e3133. [PMID: 28382234 PMCID: PMC5376114 DOI: 10.7717/peerj.3133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/01/2017] [Indexed: 11/20/2022] Open
Abstract
The filamentous fungus Rhizopus delemar naturally accumulates relatively high amounts of fumarate. Although the culture conditions that increase fumarate yields are well established, the network underlying the accumulation of fumarate is not yet fully understood. We set out to increase the knowledge about fumarate accumulation in R. delemar. To this end, we combined a transcriptomics and proteomics approach to identify key metabolic pathways involved in fumarate production in R. delemar, and propose that a substantial part of the fumarate accumulated in R. delemar during nitrogen starvation results from the urea cycle due to amino acid catabolism.
Collapse
Affiliation(s)
- Dorett I Odoni
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Juan A Tamayo-Ramos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jasper Sloothaak
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ruben G A van Heck
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands.,LifeGlimmer GmBH, Berlin, Germany
| | - Leo H de Graaff
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
27
|
Zhang T, Song R, Wang M, Deng L, Fan L, Wang F. Regulating C4-dicarboxylate transporters for improving fumaric acid production. RSC Adv 2017. [DOI: 10.1039/c6ra24727j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although many efforts have been made to engineer Escherichia coli for fumaric acid production, the fumarate efflux system has not been investigated as an engineering target to improve fumaric acid production.
Collapse
Affiliation(s)
- Ting Zhang
- National Energy R&D Center for Biorefinery
- Beijing University of Chemical Technology
- Beijing
- People's Republic of China
- The 302 Hospital of PLA
| | - Ruirui Song
- National Energy R&D Center for Biorefinery
- Beijing University of Chemical Technology
- Beijing
- People's Republic of China
| | - Meng Wang
- National Energy R&D Center for Biorefinery
- Beijing University of Chemical Technology
- Beijing
- People's Republic of China
| | - Li Deng
- National Energy R&D Center for Biorefinery
- Beijing University of Chemical Technology
- Beijing
- People's Republic of China
- Amoy—BUCT Industrial Bio-technovation Institute
| | - Lihai Fan
- National Energy R&D Center for Biorefinery
- Beijing University of Chemical Technology
- Beijing
- People's Republic of China
| | - Fang Wang
- National Energy R&D Center for Biorefinery
- Beijing University of Chemical Technology
- Beijing
- People's Republic of China
| |
Collapse
|