1
|
Jiang W, Yao X, Wang F, Li Y, Zhu S, Bian D. Effect of transient organic load and aeration changes to pollutant removal and extracellular polymeric substances. ENVIRONMENTAL TECHNOLOGY 2023; 44:2417-2430. [PMID: 35029133 DOI: 10.1080/09593330.2022.2029952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/08/2022] [Indexed: 06/08/2023]
Abstract
Transient organic load shocks have an important influence on the removal of pollutants and the content and composition of extracellular polymeric substances (EPS). This study was based on a micro-pressure reactor (MPR) with the influent COD concentration as the variable, while different operating conditions were controlled by adjusting the aeration rate. The effect of single-cycle transient organic loading shocks on EPS and pollutant removal and the correlation between their changes were investigated. The results showed that COD removal was unaffected under the shock, and the effect of nitrogen and phosphorus removal decreased. As the incoming carbon source increased, the EPS content at shock increased, with the polysaccharide (PS) content being the most affected. As aeration increased, the effect of organic load shock on EPS and pollutant removal decreased. Under different aeration conditions, PS contributed to denitrification and anaerobic phosphorus release during transient organic load shocks, and protein (PN) contributed to aerobic phosphorus uptake. The reduction in PS and PN relative to the pre-shock caused by the shock resulted in the EPS exhibiting a favourable effect on COD removal and an inhibitory effect on the effectiveness of nitrogen and phosphorus removal.
Collapse
Affiliation(s)
- Weiqing Jiang
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun, People's Republic of China
| | - Xingrong Yao
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun, People's Republic of China
| | - Fan Wang
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun, People's Republic of China
| | - Yajing Li
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun, People's Republic of China
| | - Suiyi Zhu
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun, People's Republic of China
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, People's Republic of China
| | - Dejun Bian
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun, People's Republic of China
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, People's Republic of China
| |
Collapse
|
2
|
Wang X, Dong Y, Yu S, Mu G, Qu H, Li Z, Bian D. Analysis of the Electricity Consumption in Municipal Wastewater Treatment Plants in Northeast China in Terms of Wastewater Characteristics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14398. [PMID: 36361281 PMCID: PMC9656581 DOI: 10.3390/ijerph192114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
A municipal wastewater treatment plant plays an important role in treating urban sewage and reducing the quantity of pollutants discharged into rivers. However, the energy consumption of the municipal wastewater treatment industry is large. High energy consumption indirectly produces ecological damage, accelerates the energy crisis, and increases carbon emissions. For energy conservation and emission reduction in wastewater treatment plants, it is first necessary to identify the main factors influencing energy consumption. Electricity consumption accounts for more than 80% of the energy consumption of wastewater treatment plants. Wastewater quantity and wastewater quality have become the key influencing factors of energy conservation and consumption reduction in wastewater treatment plants. In this study, a municipal wastewater treatment plant in Northeast China was selected as the research object, and the measured data, such as air temperature, wastewater quantity, wastewater quality, and electricity consumption of the plant from 2017 to 2020 were statistically analyzed to explore the influences of temperature and wastewater quantity and wastewater quality indicators of influent and effluent on energy consumption. Firstly, the range of influent quantity in the wastewater treatment plant was large. The influent quantity in summer was high because some rainwater entered the sewage treatment plant. In winter, average daily electricity consumption (ADEC) was higher than that in summer. The relationship between ADEC and the wastewater quantity showed a positive correlation, and ADEC slowly increased with the increase in wastewater quantity. Electricity consumption per unit of wastewater (UEC) was negatively correlated with the wastewater quantity, but the correction coefficient in winter was larger than that in summer. Secondly, the ranges of chemical oxygen demand (CODCr) and ammonia nitrogen in influent were large, and the ranges of CODCr and ammonia nitrogen in effluent were small. Influent CODCr concentration was negatively correlated with influent ammonia nitrogen concentration. ADEC increased slightly with the increase in influent CODCr concentration. In winter, the increasing trend of ADEC with the influent CODCr concentration was higher than that in the summer. The increasing trend of UEC with the increase in influent COD concentration in summer was more significant than that in winter. Thirdly, influent CODCr in 11.6% of the samples exceeded the corresponding designed value, and influent ammonia nitrogen concentration in 41.4% of the samples exceeded the corresponding designed value. Effluent CODCr in 10.6% of the samples exceeded the First Level Class B standard in "Discharge Standard of Pollutants for Municipal Wastewater Treatment Plants (GB18918-2002)", and unqualified CODCr in 94% of the effluent samples was ascribed to the unqualified ammonia nitrogen concentration in the influent samples. The electricity consumption level under abnormal conditions was higher than that under normal conditions. Fourthly, ADEC was positively correlated with the average daily CODCr reduction. The correction coefficient of ADEC with average daily CODCr reduction was greater in winter than that in summer. Fifthly, the average electricity consumption per unit of wastewater was close to the national average energy consumption, displaying the characteristics of high energy consumption in winter and low energy consumption in summer. The correlation analysis results of unit electricity consumption and temperature showed that when it was below 0 °C, the lower the temperature, the higher the electricity consumption. In Northeast China, the influences of seasons and temperatures on the electricity consumption of sewage plants were obvious. Accordingly, it is necessary to implement the diversion of rainwater and sewage, reduce the discharge of unqualified wastewater from enterprises, and take thermal insulation measures in winter. In addition, activated sludge microorganisms suitable for a low temperature area and the optimal scheduling of sewage pipe networks can also improve the operation and management of sewage treatment plants.
Collapse
Affiliation(s)
- Xuege Wang
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun 130012, China
| | - Yanhong Dong
- China Northeast Municipal Engineering Design and Research Institute Co., Ltd., Changchun 130021, China
| | - Shuang Yu
- China Northeast Municipal Engineering Design and Research Institute Co., Ltd., Changchun 130021, China
| | - Guangyi Mu
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun 130012, China
| | - Hong Qu
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun 130012, China
| | - Zhuan Li
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun 130012, China
| | - Dejun Bian
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun 130012, China
| |
Collapse
|
3
|
Wang F, Liu W, Liu W, Xiao L, Ai S, Sun X, Bian D. Simultaneous removal of organic matter and nitrogen by heterotrophic nitrification-aerobic denitrification bacteria in an air-lift multi-stage circulating integrated bioreactor. BIORESOURCE TECHNOLOGY 2022; 363:127888. [PMID: 36070812 DOI: 10.1016/j.biortech.2022.127888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to propose a novel air-lift multi-stage circulating integrated bioreactor (AMCIB) to treat urban sewage. The AMCIB combined the reaction zone and sedimentation zone, the alternating circulation of activated sludge in separate aerobic and anaerobic environments facilitates the enrichment of HN-AD bacteria. The preliminary study showed that AMCIB had high removal efficiencies for COD, NH4+-N, TN and TP under high dissolved oxygen (DO) concentration conditions, with average removal rates of 93.21 %, 96.04 %, 75.06 % and 94.30 %, respectively. IlluminaMiSeq sequencing results showed that the system successfully cultured heterotrophic nitrification-aerobic denitrification (HN-AD) functional bacteria (Pseudomonas, Acinetobacter, Aeromonas) that played a crucial role in sewage treatment, and Tetrasphaera was the central phosphorus removing bacteria in the system. Functional gene predictions showed that the HN-AD played a dominant role in the system.
Collapse
Affiliation(s)
- Fan Wang
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Wanqi Liu
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Wenai Liu
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Letian Xiao
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Shengshu Ai
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Xuejian Sun
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Dejun Bian
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
4
|
Ma Y, Jiang W, Nie Z, Qi P, Jiao Y, Peng J, Bian D. Study on the mechanisms of enhanced biological nitrogen and phosphorus removal by denitrifying phosphorus removal in a Micro-pressure swirl reactor. BIORESOURCE TECHNOLOGY 2022; 364:128093. [PMID: 36229011 DOI: 10.1016/j.biortech.2022.128093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
To reveal the mechanisms of enhanced biological nitrogen and phosphorus removal by denitrifying phosphorus removal in a Micro-pressure swirl reactor (MPSR), this study used a MPSR to treat municipal wastewater and enriched denitrifying phosphate accumulating organisms (DPAOs) by using its alternating anaerobic-anoxic-aerobic environment. The coupling of denitrification phosphorus removal (DPR) and simultaneous nitrification endogenous denitrification phosphorus removal (SNEDPR) was achieved in MPSR, and the average removal rates of COD, NH4+-N, TN and TP were 91.57%, 98.51%, 85.88%, 96.08% respectively. The results of the batch experiments showed that DPAOs activity in the low dissolved oxygen (DO) and high DO zones were 70.5% and 74.3%. The results of intracellular carbon source conversion patterns, microbial assays and functional gene prediction indicated that Flavobacterium and Dechloromonas dominated the DPR process in the low DO zone. Based on these findings, nutrient removal pathways within the MPSR were integrated.
Collapse
Affiliation(s)
- Yunguang Ma
- Changchun Institute of Technology, Changchun 130012, China; Key Laboratory of Urban Sewage Treatment of Jilin Province , Changchun 130012, China
| | - Weiqing Jiang
- Changchun Institute of Technology, Changchun 130012, China; Key Laboratory of Urban Sewage Treatment of Jilin Province , Changchun 130012, China
| | - Zebing Nie
- Key Laboratory of Urban Sewage Treatment of Jilin Province , Changchun 130012, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Peng Qi
- Changchun Institute of Technology, Changchun 130012, China; Key Laboratory of Urban Sewage Treatment of Jilin Province , Changchun 130012, China
| | - Yang Jiao
- Changchun Institute of Technology, Changchun 130012, China; Key Laboratory of Urban Sewage Treatment of Jilin Province , Changchun 130012, China
| | - Jiaxi Peng
- Changchun Institute of Technology, Changchun 130012, China; Key Laboratory of Urban Sewage Treatment of Jilin Province , Changchun 130012, China
| | - Dejun Bian
- Changchun Institute of Technology, Changchun 130012, China; Key Laboratory of Urban Sewage Treatment of Jilin Province , Changchun 130012, China.
| |
Collapse
|
5
|
Zhou JH, Ren Q, Xu XL, Fang JY, Wang T, Wang KM, Wang HY. Enhancing stability of aerobic granules by microbial selection pressure using height-adjustable influent strategy. WATER RESEARCH 2021; 201:117356. [PMID: 34147742 DOI: 10.1016/j.watres.2021.117356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/15/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Optimizing granules size distribution is critical for both reactor performance and stability. In this research, an optimal size range of 1800 to 3000 μm was proposed regarding mass transfer and granules stability based on granules developed at DO around 8.0 mg L-1 with the feed COD:N:P at 100:5:1. A height-adjustable influent strategy was applied to facilitate the nutrient storage of granules at optimum size range via microbial selective pressure. Results suggested insufficient hydraulic shear stress led to overgrowth of granules size. High abundance of filamentous bacteria (Thiothrix sp.) was observed in oversized granules, which detached and affected the remaining granules, resulting in severe sludge bulking. Strong hydraulic shear stress suppressed uncontrolled growth of granules. However, fewer abundance of simultaneous nitrification and denitrification (SND) bacterium was acquired, which led to unfavored SND effect and total nitrogen (TN) removal efficiency. The height-adjustable influent strategy facilitated the poly-β-hydroxybutyrate (PHB) storage of granules at optimum size range, while limiting the overgrowth of granules size. Additionally, more than 87.51% of total granules situated in optimal sizes range, which led to higher abundance of SND bacterium and higher TN removal efficiency.
Collapse
Affiliation(s)
- Jia-Heng Zhou
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Qing Ren
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiao-Lei Xu
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jing-Yuan Fang
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tao Wang
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kan-Ming Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong-Yu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
6
|
Nie Z, Huo M, Wang F, Ai S, Sun X, Zhu S, Li Q, Bian D. Pilot study on urban sewage treatment with micro pressure swirl reactor. BIORESOURCE TECHNOLOGY 2021; 320:124305. [PMID: 33189044 DOI: 10.1016/j.biortech.2020.124305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to propose a new type of micro-pressure swirl reactor (MPSR) to treat urban sewage. The MPSR could form a stable swirl in the reactor, and realized the coexistence of anaerobic, anoxic, and aerobic zones in a single aeration tank. The pilot study showed that MPSR achieved high removal efficient of SS, COD, NH4+-N, TN, TP under the conditions of drastic fluctuation in influent quality and temperature, and the average removal rate were 88.58%, 93.32%, 94.47%, 73.19%, 96.16%. The relative high abundance of Thermomonas, Thaurea, and Dechloromonas, etc, guaranteed the denitrification efficiency of the MPSR, and Dechloromonas was the main phosphorus removal bacteria in the system. The study confirmed the rationality of the structural design of the MPSR, and it was excellent in sewage treatment and stability.
Collapse
Affiliation(s)
- Zebing Nie
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China; Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012 China
| | - Mingxin Huo
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China; Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012 China.
| | - Fan Wang
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012 China
| | - Shengshu Ai
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012 China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education (Jilin University), Changchun 130021, China
| | - Xuejian Sun
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012 China
| | - Suiyi Zhu
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China; Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012 China
| | - Qingzhe Li
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012 China
| | - Dejun Bian
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China; Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012 China
| |
Collapse
|
7
|
Bian D, Nie Z, Wang F, Ai S, Zhu S, Guo H. Micro-pressure swirl reactor (MPSR) for efficient COD and nitrogen removal of high-concentration wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1795-1807. [PMID: 33201844 DOI: 10.2166/wst.2020.454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A micro-pressure swirl reactor (MPSR) was developed for carbon and nitrogen removal of wastewater, in which dissolved oxygen (DO) gradient and internal circulation could be created by setting the aerators along one side of the reactor, and micro-pressure could be realized by sealing most of the top cap and increasing the outlet water level. In this study, velocity and DO distribution in the reactor was measured, removal performance treating high-concentration wastewater was investigated, and the main functional microorganisms were analyzed. The experiment results indicated that there was stable swirl flow and spatial DO gradient in MPSR. Operated in sequencing batch reactor mode, distinct biological environments spatially and temporally were created. Under the average influent condition of chemical oxygen demand (COD) concentration of 2,884 mg/L and total nitrogen (TN) of 184 mg/L, COD removal efficiency and removal loading was 98% and 1.8 kgCOD/(m3·d) respectively, and TN removal efficiency and removal loading reached up to 90% and 0.11 kgTN/(m3·d) respectively. With efficient utilization of DO and simpler configuration for simultaneous nitrification and denitrification, the MPSR has the potential of treating high-concentration wastewater at lower cost.
Collapse
Affiliation(s)
- Dejun Bian
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China E-mail: ; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Zebing Nie
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China E-mail: ; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Fan Wang
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China E-mail:
| | - Shengshu Ai
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China E-mail:
| | - Suiyi Zhu
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China E-mail: ; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Haiyan Guo
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China E-mail: ; College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| |
Collapse
|
8
|
Study on Aeration Optimization and Sewage Treatment Efficiency of a Novel Micro-Pressure Swirl Reactor (MPSR). WATER 2020. [DOI: 10.3390/w12030890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study developed a new type of micro-pressure swirl reactor (MPSR) for treating rural domestic sewage with variable water volume in northern China. The transformation of a traditional aeration tank to MPSR was mainly divided into three steps. Firstly, the aeration device was installed on one side of the aeration tank. Secondly, most of the top cover plate was sealed. Finally, the liquid level-lifting zone was set to achieve micro-pressure. The study measured the flow velocity and dissolved oxygen (DO) distribution in the main reaction zone of MPSR, studied the effects of MPSR sewage treatment in continuous operation mode and sequential batch operation mode, and analyzed the main microbial species. The experimental results showed that a stable circular circle flow and a spatial DO gradient in MPSR were formed when the aeration rate of MPSR was 0.2 m3/h. Through the MPSR sewage treatment experiment in two operation modes, it could meet the current requirements of rural environmental pollution controlled in China. Analysis of the types of microorganisms showed that microorganisms with different functions gathered in different zones of the MPSR due to the different dissolved oxygen environment and water flow environment, which further improved the ability of MPSR to simultaneously remove nitrogen and phosphorus.
Collapse
|
9
|
Zhou JH, Yu HC, Ye KQ, Wang HY, Ruan YJ, Yu JM. Optimized aeration strategies for nitrogen removal efficiency: application of end gas recirculation aeration in the fixed bed biofilm reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28216-28227. [PMID: 31368074 DOI: 10.1007/s11356-019-06050-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Aeration strategy played an important role in reactor performance. In this study, when superficial upflow air velocity (SAV) decreased from 0.16 to 0.08 cm s-1, low dissolved oxygen concentration (DO) of 2.0 mg L-1 occurred in reactor. The required depth for anoxic microenvironment in biofilm decreased from 902.3 to 525.9 μm, which enhanced the growth of denitrifying bacteria and total nitrogen (TN) removal efficiency. However, decreasing aeration intensity resulted in insufficient hydraulic shear stress, which led to weak biofilm matrix structure. Mass biofilm detachment and reactor deterioration then occurred after 87 days of operation. An end gas recirculation aeration strategy was proposed to separately manipulate DO and aeration intensity. Low DO and high aeration intensity were simultaneously achieved, which enhanced the metabolism of denitrifying bacteria (such as Flavobacterium sp., Pseudorhodobacter sp., and Dok59 sp.) and EPS-producing bacteria (such as Zoogloea sp. and Rhodobacter sp.). Consequently, high TN removal performance (82.1 ± 2.7%) and stable biofilm structure were achieved.
Collapse
Affiliation(s)
- Jia Heng Zhou
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hao Cheng Yu
- College of Environment, Zhejiang University of Technology, 310014, CNo. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Kai Qiang Ye
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hong Yu Wang
- College of Environment, Zhejiang University of Technology, 310014, CNo. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Yun Jie Ruan
- College of Bio-systems Engineering and Food Science, Zhejiang University, |Hangzhou, 310058, China
| | - Jian Ming Yu
- College of Environment, Zhejiang University of Technology, 310014, CNo. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
10
|
Wang J, Rong H, Zhang C. Evaluation of the impact of dissolved oxygen concentration on biofilm microbial community in sequencing batch biofilm reactor. J Biosci Bioeng 2018; 125:532-542. [DOI: 10.1016/j.jbiosc.2017.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/24/2017] [Accepted: 11/14/2017] [Indexed: 01/21/2023]
|
11
|
Ren Q, Yu Y, Zhu S, Bian D, Huo M, Zhou D, Huo H. Characterization of a novel micro-pressure swirl reactor for removal of chemical oxygen demand and total nitrogen from domestic wastewater at low temperature. Biodegradation 2017; 28:145-157. [PMID: 28168378 DOI: 10.1007/s10532-017-9784-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 02/01/2017] [Indexed: 11/26/2022]
Abstract
A novel micro-pressure swirl reactor (MPSR) was designed and applied to treat domestic wastewater at low temperature by acclimating microbial biomass with steadily decreasing temperature from 15 to 3 °C. Chemical oxygen demand (COD) was constantly removed by 85% and maintained below 50 mg L-1 in the effluent during the process. When the air flow was controlled at 0.2 m3 h-1, a swirl circulation was formed in the reactor, which created a dissolved oxygen (DO) gradient with a low DO zone in the center and a high DO zone in the periphery for denitrification and nitrification. 81% of total nitrogen was removed by this reactor, in which ammonium was reduced by over 90%. However, denitrification was less effective because of the presence of low levels of oxygen. The progressively decreasing temperature favored acclimation of psychrophilic bacteria in the reactor, which replaced mesophilic bacteria in the process of treatment.
Collapse
Affiliation(s)
- Qingkai Ren
- Jilin Engineering Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
- Changchun Institute of Technology, Changchun, 130117, China
| | - Yang Yu
- Jilin Engineering Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
- Biorefining Research Institute, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada
| | - Suiyi Zhu
- Jilin Engineering Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China.
| | - Dejun Bian
- Jilin Engineering Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
- Changchun Institute of Technology, Changchun, 130117, China
| | - Mingxin Huo
- Jilin Engineering Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
- Changchun Institute of Technology, Changchun, 130117, China
| | - Dandan Zhou
- Jilin Engineering Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Hongliang Huo
- Jilin Engineering Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| |
Collapse
|