1
|
Barrena R, Vargas-García MDC, Catacora-Padilla P, Gea T, Abo Markeb A, Moral-Vico J, Sánchez A, Font X, Aspray TJ. Magnetite-based nanoparticles and nanocomposites for recovery of overloaded anaerobic digesters. BIORESOURCE TECHNOLOGY 2023; 372:128632. [PMID: 36657586 DOI: 10.1016/j.biortech.2023.128632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The effect of magnetite nanoparticles and nanocomposites (magnetite nanoparticles impregnated into graphene oxide) supplement on the recovery of overloaded laboratory batch anaerobic reactors was assessed using two types of starting inoculum: anaerobic granular sludge (GS) and flocculent sludge (FS). Both nanomaterials recovered methane production at a dose of 0.27 g/L within 40 days in GS. Four doses of magnetite nanoparticles from 0.075 to 1 g/L recovered the process in FS systems between 30 and 50 days relaying on the dose. The presence of nanomaterials helped to reverse the effect of volatile fatty acids inhibition and enabled microbial communities to recover but also favoured the development of certain microorganisms over others. In GS reactors, the methanogenic population changed from being mostly acetoclastic (Methanothrix soehngenii) to being dominated by hydrogenotrophic species (Methanobacterium beijingense). Nanomaterial amendment may serve as a preventative measure or provide an effective remedial solution for system recovery following overloading.
Collapse
Affiliation(s)
- Raquel Barrena
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
| | - María Del Carmen Vargas-García
- Department of Biology and Geology, CITE II-B Universidad de Almería CEIMAR Marine Campus of International Excellence, 04120 Almería, Spain
| | - Paula Catacora-Padilla
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Teresa Gea
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Ahmad Abo Markeb
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Javier Moral-Vico
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Antoni Sánchez
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Xavier Font
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Thomas J Aspray
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK; Solidsense Ltd, Bearsden, East Dunbartonshire G61 3BA, Scotland, UK
| |
Collapse
|
2
|
da Silva GH, Barros NO, Santana LAR, Carneiro JDC, Otenio MH. Shifts of acidogenic bacterial group and biogas production by adding two industrial residues in anaerobic co-digestion with cattle manure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1503-1511. [PMID: 34903145 DOI: 10.1080/10934529.2021.2015987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic biodigestion figures as a sustainable alternative to avoid discharge of cattle manure in the environment, which results in biogas and biofertilizer. The anaerobic bioconversion of biomass to methane via anaerobic biodigestion requires a multi-step biological process, including microorganisms with distinct roles. Here, the dynamics of acidogenic bacterial populations by classical microbiology, as well as biogas productivity by gasometer and chromatography, in the anaerobic co-digestion process were studied. This paper presents a performance evaluation of co-digestion systems for biogas production using cattle manure and wastes from the Sewage Treatment Station of a brewery and ricotta cheese whey. The search revealed that the type of substrate added in co-digestion with cattle manure, Carbon/Nitrogen ratio, and Ammonia Nitrogen were the most influential factors that explained many of the variations of the microbiota in the biodigesters fed. This study demonstrated a good potential for the use of ricotta cheese whey in the production of biogas and its further conversion into energy. These findings could provide some fundamental and technical information for the co-treatment of industrial derived wastes in centralized anaerobic biodigestion facilities in a sustainable manner with high process capacity and methane recovery.
Collapse
Affiliation(s)
- Guilherme Henrique da Silva
- Institute of Biological Sciences, Graduate Program in Ecology, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Nathan Oliveira Barros
- Institute of Biological Sciences, Graduate Program in Ecology, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Larice Aparecida Rezende Santana
- Faculty of Pharmacy, Graduate Program in Science and Technology of Milk and Derivatives, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | | |
Collapse
|
3
|
Nexus between the microbial diversity level and the stress tolerance within the biogas process. Anaerobe 2019; 56:8-16. [DOI: 10.1016/j.anaerobe.2019.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/19/2018] [Accepted: 01/05/2019] [Indexed: 11/21/2022]
|
4
|
Process Disturbances in Agricultural Biogas Production—Causes, Mechanisms and Effects on the Biogas Microbiome: A Review. ENERGIES 2019. [DOI: 10.3390/en12030365] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Disturbances of the anaerobic digestion process reduce the economic and environmental performance of biogas systems. A better understanding of the highly complex process is of crucial importance in order to avoid disturbances. This review defines process disturbances as significant changes in the functionality within the microbial community leading to unacceptable and severe decreases in biogas production and requiring an active counteraction to be overcome. The main types of process disturbances in agricultural biogas production are classified as unfavorable process temperatures, fluctuations in the availability of macro- and micronutrients (feedstock variability), overload of the microbial degradation potential, process-related accumulation of inhibiting metabolites such as hydrogen (H2), ammonium/ammonia (NH4+/NH3) or hydrogen sulphide (H2S) and inhibition by other organic and inorganic toxicants. Causes, mechanisms and effects on the biogas microbiome are discussed. The need for a knowledge-based microbiome management to ensure a stable and efficient production of biogas with low susceptibility to disturbances is derived and an outlook on potential future process monitoring and control by means of microbial indicators is provided.
Collapse
|
5
|
Meng L, Xie L, Kinh CT, Suenaga T, Hori T, Riya S, Terada A, Hosomi M. Influence of feedstock-to-inoculum ratio on performance and microbial community succession during solid-state thermophilic anaerobic co-digestion of pig urine and rice straw. BIORESOURCE TECHNOLOGY 2018; 252:127-133. [PMID: 29310016 DOI: 10.1016/j.biortech.2017.12.099] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the effect of the feedstock-to-inoculum (F/I) ratio on performance of the solid-state anaerobic co-digestion of pig urine and rice straw inoculated with a solid digestate, and clarified the microbial community succession. A 44-day biochemical methane potential test at F/I ratios of 0.5, 1, 2 and 3 at 55 °C and a 35-day large-scale batch test at F/I ratios of 0.5 and 3 at 55 °C were conducted to investigate the effects of F/I ratio on anaerobic digestibility and analyze microbial community succession, respectively. The highest cumulative methane yield was 353.7 m3/t VS in the large-scale batch test. Volatile fatty acids did not accumulate at any F/I ratios. The volatile solids reduction rate was highest at a F/I ratio of 0.5. Microbial community structures were similar between F/I ratios of 3 and 0.5, despite differences in digestion performance, suggesting that stable operation can be achieved at these ratios.
Collapse
Affiliation(s)
- Lingyu Meng
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Li Xie
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Co Thi Kinh
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Toshikazu Suenaga
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Shohei Riya
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan.
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Masaaki Hosomi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
6
|
Li YF, Shi J, Nelson MC, Chen PH, Graf J, Li Y, Yu Z. Impact of different ratios of feedstock to liquid anaerobic digestion effluent on the performance and microbiome of solid-state anaerobic digesters digesting corn stover. BIORESOURCE TECHNOLOGY 2016; 200:744-752. [PMID: 26575616 DOI: 10.1016/j.biortech.2015.10.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/21/2015] [Accepted: 10/24/2015] [Indexed: 06/05/2023]
Abstract
The objective of this study was to understand how the non-microbial factors of L-AD effluent affected the microbiome composition and successions in the SS-AD digesters using both Illumina sequencing and qPCR quantification of major genera of methanogens. The SS-AD digesters started with a feedstock/total effluent (F/Et) ratio 2.2 (half of the effluent was autoclaved) performed stably, while the SS-AD digesters started with a 4.4 F/Et ratio (no autoclaved effluent) suffered from digester acidification, accumulation of volatile fatty acids, and ceased biogas production two weeks after startup. Some bacteria and methanogens were affected by non-microbial factors of the L-AD fluent. Alkalinity, the main difference between the two F/Et ratios, may be the crucial factor when SS-AD digesters were started using L-AD effluent.
Collapse
Affiliation(s)
- Yueh-Fen Li
- Environmental Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Jian Shi
- Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave, Wooster, OH 44691, USA
| | - Michael C Nelson
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Po-Hsu Chen
- Department of Statistics, The Ohio State University, Columbus, OH 43210, USA
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Yebo Li
- Environmental Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave, Wooster, OH 44691, USA
| | - Zhongtang Yu
- Environmental Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|