1
|
Furukawa T, Sakai K, Suzuki T, Tanaka T, Kushiro M, Kusumoto KI. Comparative Genome Analysis of Japanese Field-Isolated Aspergillus for Aflatoxin Productivity and Non-Productivity. J Fungi (Basel) 2024; 10:459. [PMID: 39057344 PMCID: PMC11278155 DOI: 10.3390/jof10070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Aspergillus flavus produces aflatoxin, a carcinogenic fungal toxin that poses a threat to the agricultural and food industries. There is a concern that the distribution of aflatoxin-producing A. flavus is expanding in Japan due to climate change, and it is necessary to understand what types of strains inhabit. In this study, we sequenced the genomes of four Aspergillus strains isolated from agricultural fields in the Ibaraki prefecture of Japan and identified their genetic variants. Phylogenetic analysis based on single-nucleotide variants revealed that the two aflatoxin-producing strains were closely related to A. flavus NRRL3357, whereas the two non-producing strains were closely related to the RIB40 strain of Aspergillus oryzae, a fungus widely used in the Japanese fermentation industry. A detailed analysis of the variants in the aflatoxin biosynthetic gene cluster showed that the two aflatoxin-producing strains belonged to different morphotype lineages. RT-qPCR results indicated that the expression of aflatoxin biosynthetic genes was consistent with aflatoxin production in the two aflatoxin-producing strains, whereas the two non-producing strains expressed most of the aflatoxin biosynthetic genes, unlike common knowledge in A. oryzae, suggesting that the lack of aflatoxin production was attributed to genes outside of the aflatoxin biosynthetic gene cluster in these strains.
Collapse
Affiliation(s)
- Tomohiro Furukawa
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba 305-8642, Japan
| | - Kanae Sakai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Tadahiro Suzuki
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba 305-8642, Japan
| | - Takumi Tanaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Masayo Kushiro
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba 305-8642, Japan
| | - Ken-Ichi Kusumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
2
|
Ichinomiya M, Kawamoto A, Yamaguchi T, Iwashita K, Nagashima H, Hatabayashi H, Nakajima H, Yabe K. Detoxication of Citrinin with Kojic Acid by the Formation of the Citrinin-Kojic Acid Adduct, and the Enhancement of Kojic Acid Production by Citrinin via Oxidative Stress in Aspergillus parasiticus. J Fungi (Basel) 2022; 9:51. [PMID: 36675872 PMCID: PMC9863397 DOI: 10.3390/jof9010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Our previous work showed that citrinin (CTN) produced bay Penicillium citrinum inhibited the production of aflatoxin by Aspergillus parasiticus. We also reported that CTN was non-enzymatically converted to a novel CTN-KA adduct with kojic acid (KA) in aqueous condition. We herein observed that unlike CTN, the CTN-KA adduct does not show antimicrobial activity against Escherichia coli or Bacillus subtilis or any cytotoxic effect on HeLa cells, suggesting that CTN was detoxified by KA by the formation of the CTN-KA adduct. To examine the function of KA production by fungi, we isolated A. parasiticus mutants with impaired KA production. When the mutants were incubated in either liquid or agar medium supplemented with CTN, they were more susceptible to CTN than the wild KA-producing strain. The same results were obtained when we used the A. oryzae KA-producing strain RIB40 and KA-non-producing strains. When KA was added to the CTN-containing agar medium, the inhibition of growth by CTN was remarkably mitigated, suggesting that the production of KA protected the fungal growth from CTN's toxicity. We also observed that CTN enhanced the production of KA by A. parasiticus as well as A. oryzae strains. Reverse transcription-PCR showed that CTN enhanced the expression of KA biosynthetic genes (kojA, kojR, and kojT) of A. parasiticus. However, the enhancement of KA production with CTN was repressed by the addition of α-tocopherol or butylated hydroxy anisole, suggesting that KA production is enhanced by oxidative stress via the formation of reactive oxygen species caused by CTN. In contrast, α-tocopherol did not affect inhibition of AF production as well as fungal growth by CTN, suggesting that the regulation of these inhibitions with CTN might be different from that of KA production. We propose a regulation scheme of CTN for each of KA production, AF production, and fungal growth in A. parasiticus.
Collapse
Affiliation(s)
- Masayuki Ichinomiya
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannon-dai, Tsukuba-shi, Ibaraki 305-8642, Japan
| | - Ayaka Kawamoto
- Faculty of Agriculture, Tottori University, Koyama, Tottori 680-8553, Japan
| | - Takahiro Yamaguchi
- Department of Applied Chemistry and Food Science, Fukui University of Technology, 3-6-1 Gakuen, Fukui-shi, Fukui 910-8505, Japan
| | - Keiko Iwashita
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannon-dai, Tsukuba-shi, Ibaraki 305-8642, Japan
| | - Hitoshi Nagashima
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannon-dai, Tsukuba-shi, Ibaraki 305-8642, Japan
| | - Hidemi Hatabayashi
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannon-dai, Tsukuba-shi, Ibaraki 305-8642, Japan
| | - Hiromitsu Nakajima
- Faculty of Agriculture, Tottori University, Koyama, Tottori 680-8553, Japan
| | - Kimiko Yabe
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannon-dai, Tsukuba-shi, Ibaraki 305-8642, Japan
- Department of Applied Chemistry and Food Science, Fukui University of Technology, 3-6-1 Gakuen, Fukui-shi, Fukui 910-8505, Japan
| |
Collapse
|
3
|
Feng J, Dou J, Wu W. Development of biochar-impregnated alginate beads for the delivery of biocontrol agents for peanut aflatoxin. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1487-1500. [PMID: 35679201 DOI: 10.1080/19440049.2022.2085888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The competitive inhibition of aflatoxigenic fungi by non-aflatoxigenic Aspergillus flavus has proved to be an effective method to prevent and control peanut aflatoxin contamination, and most of the currently used inoculum carriers are grains. In this study, the reliability and efficiency of replacing grain kernels with novel chitosan-coated alginate-poly(N-isopropylacrylamide) (PNIPAAm) beads impregnated with biochar (CSACB) were evaluated. Characterisation of the beads was performed by SEM, thermogravimetry analysis (TGA), and swelling properties analyses. The optimised CSACB beads had good physical stability, shelf life, and entrapment efficiency. In addition, the water-holding capacity and porous structure were excellent, as the biochar provided a beneficial microenvironment for the attachment and microbial growth of the biocontrol fungus. The effect of reducing aflatoxin in peanuts was verified experimentally. Collectively, the novel CSACB beads are suitable carriers of non-aflatoxigenic A. flavus for the biocontrol of peanut aflatoxin.
Collapse
Affiliation(s)
- Jiachang Feng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jianpeng Dou
- Department of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Wenfu Wu
- Department of Biological and Agricultural Engineering, Jilin University, Changchun, China
| |
Collapse
|
4
|
Aflatoxin Biosynthesis, Genetic Regulation, Toxicity, and Control Strategies: A Review. J Fungi (Basel) 2021; 7:jof7080606. [PMID: 34436145 PMCID: PMC8397101 DOI: 10.3390/jof7080606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Aflatoxins (AFs) are highly toxic and cancer-causing compounds, predominantly synthesized by the Aspergillus species. AFs biosynthesis is a lengthy process that requires as minimum as 30 genes grouped inside 75 kilobytes (kB) of gene clusters, which are regulated by specific transcription factors, including aflR, aflS, and some general transcription factors. This paper summarizes the status of research on characterizing structural and regulatory genes associated with AF production and their roles in aflatoxigenic fungi, particularly Aspergillus flavus and A. parasiticus, and enhances the current understanding of AFs that adversely affect humans and animals with a great emphasis on toxicity and preventive methods.
Collapse
|
5
|
Metal Ions in Activated Carbon Improve the Detection Efficiency of Aflatoxin-Producing Fungi. Toxins (Basel) 2019; 11:toxins11030140. [PMID: 30832301 PMCID: PMC6468837 DOI: 10.3390/toxins11030140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 01/23/2023] Open
Abstract
Aflatoxins (AF), produced by several Aspergillus species, are visible under ultraviolet light if present in high amounts. AF detection can be improved by adding activated carbon, which enhances the observation efficiency of weakly AF-producing fungi. However, commercial activated carbon products differ in their characteristics, making it necessary to investigate which characteristics affect method reproducibility. Herein, the addition of 10 activated carbon products resulted in different AF production rates in each case. The differences in the production of aflatoxin G₁ (AFG₁) were roughly correlated to the observation efficiency in the plate culture. Trace element analysis showed that the concentrations of several metal ions differed by factors of >100, and the carbons that most effectively increased AFG₁ production contained higher amounts of metal ions. Adding 5 mg L-1 Fe or Mg ions increased AFG₁ production even without activated carbon. Furthermore, co-addition of both ions increased AFG₁ production stably with the addition of carbon. When varying the concentration of additives, only AFG₁ production increased in a concentration-dependent manner, while the production of all the other AFs decreased or remained unchanged. These findings suggest that a key factor influencing AF production is the concentration of several metal ions in activated carbon and that increasing AFG₁ production improves AF detectability.
Collapse
|
6
|
Yabe K, Ozaki H, Maruyama T, Hayashi K, Matto Y, Ishizaka M, Makita T, Noma SY, Fujiwara K, Kushiro M. Improvement of the Culture Medium for the Dichlorvos-Ammonia (DV-AM) Method to Selectively Detect Aflatoxigenic Fungi in Soil. Toxins (Basel) 2018; 10:toxins10120519. [PMID: 30563113 PMCID: PMC6316280 DOI: 10.3390/toxins10120519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 11/16/2022] Open
Abstract
The dichlorvos-ammonia (DV-AM) method is a simple but sensitive visual method for detecting aflatoxigenic fungi. Here we sought to develop a selective medium that is appropriate for the growth of aflatoxigenic fungi among soil mycoflora. We examined the effects of different concentrations of carbon sources (sucrose and glucose) and detergents (deoxycholate (DOC), Triton X-100, and Tween 80) on microorganisms in soils, using agar medium supplemented with chloramphenicol. The results demonstrated that 5–10% sucrose concentrations and 0.1–0.15% DOC concentrations were appropriate for the selective detection of aflatoxigenic fungi in soil. We also identified the optimal constituents of the medium on which the normal rapid growth of Rhizopus sp. was completely inhibited. By using the new medium along with the DV-AM method, we succeeded in the isolation of aflatoxigenic fungi from non-agricultural fields in Fukui city, Japan. The fungi were identified as Aspergillus nomius based on their calmodulin gene sequences. These results indicate that the new medium will be useful in practice for the detection of aflatoxigenic fungi in soil samples including those from non-agricultural environments.
Collapse
Affiliation(s)
- Kimiko Yabe
- Department of Environmental and Food Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui-shi, Fukui 910-8505, Japan.
| | - Haruna Ozaki
- Department of Environmental and Food Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui-shi, Fukui 910-8505, Japan.
| | - Takuya Maruyama
- Department of Environmental and Food Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui-shi, Fukui 910-8505, Japan.
| | - Keisuke Hayashi
- Department of Environmental and Food Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui-shi, Fukui 910-8505, Japan.
| | - Yuki Matto
- Department of Environmental and Food Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui-shi, Fukui 910-8505, Japan.
| | - Marika Ishizaka
- Department of Environmental and Food Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui-shi, Fukui 910-8505, Japan.
| | - Takeru Makita
- Department of Environmental and Food Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui-shi, Fukui 910-8505, Japan.
| | - Syun-Ya Noma
- Department of Environmental and Food Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui-shi, Fukui 910-8505, Japan.
| | - Kousuke Fujiwara
- Department of Environmental and Food Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui-shi, Fukui 910-8505, Japan.
| | - Masayo Kushiro
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannon-dai, Tsukuba-shi, Ibaraki 305-8642, Japan.
| |
Collapse
|
7
|
Detection of Aflatoxigenic and Atoxigenic Mexican Aspergillus Strains by the Dichlorvos⁻Ammonia (DV⁻AM) Method. Toxins (Basel) 2018; 10:toxins10070263. [PMID: 29954142 PMCID: PMC6070877 DOI: 10.3390/toxins10070263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 11/16/2022] Open
Abstract
The dichlorvos⁻ammonia (DV⁻AM) method is a sensitive method for distinguishing aflatoxigenic fungi by detecting red (positive) colonies. In this study, the DV⁻AM method was applied for the isolation of aflatoxigenic and atoxigenic fungi from soil samples from a maize field in Mexico. In the first screening, we obtained two isolates from two soil subsamples of 20 independent samples and, in the second screening, we obtained two isolates from one subsample of these. Morphological and phylogenic analyses of the two isolates (MEX-A19-13, MEX-A19-2nd-5) indicated that they were Aspergillus flavus located in the A. flavus clade. Chemical analyses demonstrated that one isolate could produce B-type aflatoxins, while the other produced no aflatoxins. These results demonstrate that the DV⁻AM method is useful for the isolation of both aflatoxigenic and atoxigenic Aspergilli.
Collapse
|
8
|
Kushiro M, Hatabayashi H, Zheng Y, Yabe K. Application of newly-developed dichlorvos–ammonia (DV–AM) method to direct isolation of aflatoxigenic fungi from field soils. MYCOSCIENCE 2017. [DOI: 10.1016/j.myc.2016.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Suzuki T, Iwahashi Y. Addition of Carbon to the Culture Medium Improves the Detection Efficiency of Aflatoxin Synthetic Fungi. Toxins (Basel) 2016; 8:toxins8110338. [PMID: 27854283 PMCID: PMC5127134 DOI: 10.3390/toxins8110338] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/11/2016] [Indexed: 01/24/2023] Open
Abstract
Aflatoxin (AF) is a harmful secondary metabolite that is synthesized by the Aspergillus species. Although AF detection techniques have been developed, techniques for detection of AF synthetic fungi are still required. Techniques such as plate culture methods are continually being modified for this purpose. However, plate culture methods require refinement because they suffer from several issues. In this study, activated charcoal powder (carbon) was added to a culture medium containing cyclodextrin (CD) to enhance the contrast of fluorescence and improve the detection efficiency for AF synthetic fungi. Two culture media, potato dextrose agar and yeast extract sucrose agar, were investigated using both plate and liquid cultures. The final concentrations of CD and carbon in the media were 3 mg/mL and 0.3 mg/mL, respectively. Addition of carbon improved the visibility of fluorescence by attenuating approximately 30% of light scattering. Several fungi that could not be detected with only CD in the medium were detected with carbon addition. The carbon also facilitated fungal growth in the potato dextrose liquid medium. The results suggest that addition of carbon to media can enhance the observation of AF-derived fluorescence.
Collapse
Affiliation(s)
- Tadahiro Suzuki
- Division of Food Biotechnology, Food Research Institute, NARO, 2-1-12 Kannon-dai, Tsukuba, Ibaraki 305-8642, Japan.
| | - Yumiko Iwahashi
- Division of Food Safety, Food Research Institute, NARO, 2-1-12 Kannon-dai, Tsukuba, Ibaraki 305-8642, Japan.
| |
Collapse
|
10
|
Toxicology, biosynthesis, bio-control of aflatoxin and new methods of detection. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.07.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|