1
|
Quiton-Tapia S, Balboa S, Omil F, Garrido JM, Suarez S. How efficiently does a metabolically enhanced system with denitrifying anaerobic methane oxidizing microorganisms remove antibiotics? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122033. [PMID: 37348697 DOI: 10.1016/j.envpol.2023.122033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/26/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
In this work, the novel N-damo (Nitrite dependent anaerobic methane oxidation) process was investigated at high biomass activities for its potential to remove simultaneously nitrite and methane, as well as selected antibiotics commonly found in sewage in trace amounts. For this purpose, two MBRs were operated at three high nitrite loading rates (NLRs), namely 76 ± 9.9, 161.5 ± 11.4 and 215.2 ± 24.2 mg N-NO⁻2 L-1 d-1, at long-term operation. The MBRs performance achieved a significantly high nitrite removal activity for an N-damo process (specific denitrifying activity of up to 540 mg N-NO⁻2 g-1 VSS d-1), even comparable to heterotrophic denitrification values. In this study, we have implemented a novel operational strategy that sets our work apart from previous studies with similar bioreactors. Specifically, we have introduced Cerium as a trace element in the feeding medium, which serves as a key differentiating factor. It allowed maintaining a stable reactor operation at high NLRs. Microbial community composition evidenced that both MBRs were dominated with N-damo bacteria (67-87% relative abundance in period III and I, respectively). However, a decrease in functional N-damo bacteria (Candidatus Methylomirabilis) abundance was observed during the increase in biomass activity and concentration, concomitantly with an increase of the other minor families (Hypomicrobiaceae and Xanthobacteraceae). Most of the selected antibiotics showed high biotransformation such as sulfamethoxazole, trimethoprim, cefalexin and azithromycin, whereas others such as roxithromycin and clarithromycin were only partially degraded (20-35%). On the contrary, ciprofloxacin showed almost no removal. Despite the metabolic enhancement, no apparent increase on the antibiotic removal was observed throughout the operation, suggesting that microbiological composition was of greater influence than its primary metabolic activity on the removal of antibiotics.
Collapse
Affiliation(s)
- Silvana Quiton-Tapia
- CRETUS Institute. Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782, Santiago de Compostela, Spain.
| | - Sabela Balboa
- CRETUS Institute. Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782, Santiago de Compostela, Spain.
| | - Francisco Omil
- CRETUS Institute. Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782, Santiago de Compostela, Spain.
| | - Juan Manuel Garrido
- CRETUS Institute. Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782, Santiago de Compostela, Spain.
| | - Sonia Suarez
- CRETUS Institute. Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Shi T, Liu X, Xue Y, He F, Dang Y, Sun D. Enhancement of denitrifying anaerobic methane oxidation via applied electric potential. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115527. [PMID: 35759969 DOI: 10.1016/j.jenvman.2022.115527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
In this study, single-chamber three-electrode electrochemical sequencing batch reactor (ESBR) was set up to investigate the impact of applying potential on denitrifying anaerobic methane oxidation (DAMO) process. When the applied potential was +0.8 V, the conversion rate of nitrite to nitrogen was superior to those of other potentials. With the optimal potential of +0.8 V for 60 days, the nitrite removal rate of ESBR could reach 3.34 ± 0.28 mg N/L/d, which was 4.5 times more than that of the non-current control (0.74 ± 0.16 mg N/L/d). The DAMO functional bacteria Candidatus Methylomirabilis exhibited noticeable enrichment under applying potential, and its functional gene of pmoA was significantly expressed. Through untargeted LC-MS metabolomics analysis, applied potential was shown to affect the regulation of prior metabolites including spermidine, spermine and glycerophosphocholine that were related to the metabolic pathways of glycerophospholipid metabolism and arginine and proline metabolism, which had positive effects on DAMO process. These results show that applying electric potential could be a useful strategy in DAMO process used for methane and nitrogen removal.
Collapse
Affiliation(s)
- Tianjing Shi
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yiting Xue
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Fang He
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Niu Y, Zheng Y, Hou L, Gao D, Chen F, Pei C, Dong H, Liang X, Liu M. Microbial dynamics and activity of denitrifying anaerobic methane oxidizers in China's estuarine and coastal wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150425. [PMID: 34560448 DOI: 10.1016/j.scitotenv.2021.150425] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Estuarine and coastal wetlands, which act as large sources of methane (CH4) and undergo substantial loading of anthropogenic nitrogen (N), provide ideal conditions for denitrifying anaerobic methane oxidation (DAMO) to occur. Yet the microbial mechanisms governing DAMO and the main driving factors in estuarine and coastal ecosystems remain unclear. This study investigated the spatiotemporal distribution and associated activity of DAMO microorganisms along a wide swath of China's coastline (latitudinal range: 22-41°N) using molecular assays and isotope tracing techniques. We uncovered significant spatial and seasonal variation in DAMO bacterial community structure, whereas DAMO archaeal community structure exhibited no seasonal differences. The abundance of DAMO bacterial pmoA gene (2.2 × 105-1.0 × 107 copies g-1) was almost one order of magnitude higher than that of DAMO archaeal mcrA gene (8.7 × 104 -1.8 × 106 copies g-1). A significant positive correlation between pmoA and mcrA gene abundances (p < 0.01) was observed, indicating that DAMO bacteria and archaea may cooperate closely and thus complete nitrate elimination. Potential DAMO rates, in the range of 0.09-23.4 nmol 13CO2 g-1 day-1 for nitrite-DAMO and 0.03-43.7 nmol 13CO2 g-1 day-1 for nitrate-DAMO, tended to be greater in the relatively warmer low-latitudes. Potential DAMO rates were weakly positively correlated with gene abundances, suggesting that DAMO microbial activity could not be predicted directly by gene abundance alone. The heterogeneous variability of DAMO was shaped by interactions among key environmental characteristics (sediment texture, N availability, TOC, Fe3+, salinity of water, and temperature). On a broader continental scale, potential N removal rates of 0.1-11.2 g N m-2 yr-1 were estimated via nitrite-DAMO activity in China's coastal wetlands. Overall, our results highlight the widespread distribution of DAMO microbes and their potential role in eliminating excess N inputs and reducing CH4 emissions in estuarine and coastal ecosystems, which could help mitigate global warming.
Collapse
Affiliation(s)
- Yuhui Niu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chenya Pei
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
4
|
Qi L, Li L, Yin L, Zhang W. Study on the properties of denitrifying carbon sources from cellulose plants and their nitrogen removal mechanisms. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:719-730. [PMID: 35100149 DOI: 10.2166/wst.2021.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon sources of cellulose plants are promising materials that enhance the activities of denitrifying bacteria in the groundwater system. To further verify the denitrification performance of cellulose plants and the main factors of affecting the denitrifying system, six cellulose plants from agricultural wastes (wood chip, corn cob, rice husk, corn straw, wheat straw, and sugar cane) were selected for bioavailable organic matter leaching experiments, carbon denitrification experiments, functional bacteria identification, and analysis experiments. The results show that the extracts of cellulose plants contain a mixed carbon sources system including small molecular organic acids, sugars, nitrogen-containing organic components, and esters. The qPCR results showed that the denitrifying bacteria had obvious advantages compared to anaerobic ammonia-oxidizing bacteria during the stable period; the denitrification experiment showed that each of six cellulose plants removed more than 80% of nitrogen, and the denitrification rates reached 1.00-2.00 mg N cm-3·d-1. The supplement of cellulose plants promotes the metabolism rate of denitrifying bacteria, and the additional denitrifying bacteria have little effect on nitrate removal. In summary, the expected denitrification reaction occurred in the cellulose plant system, which is suitable as a carbon source material for water body nitrogen pollution remediation.
Collapse
Affiliation(s)
- Liang Qi
- School of Engineering, Westlake University, Hangzhou 310024, China E-mail: ; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Hangzhou 310024, China
| | - Ling Li
- School of Engineering, Westlake University, Hangzhou 310024, China E-mail: ; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Hangzhou 310024, China
| | - Lin Yin
- School of Earth Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Wen Zhang
- School of Engineering, Westlake University, Hangzhou 310024, China E-mail: ; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Hangzhou 310024, China; School of Earth Science and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Su C, Deng Q, Chen Z, Lu X, Huang Z, Guan X, Chen M. Denitrifying anaerobic methane oxidation process responses to the addition of growth factor betaine in the MFC-granular sludge coupling system: Enhancing mechanism and metagenomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126139. [PMID: 34492928 DOI: 10.1016/j.jhazmat.2021.126139] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/27/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
To solve the problem of the slow growth of denitrifying anaerobic methane oxidation (DAMO) bacteria during the enrichment process, betaine was added as a growth factor and its influence on the mechanism of DAMO process along with the metagenomic analysis of the process in a MFC-granular sludge coupling system was explored. When the addition of betaine was increased to 0.5 g/L and 1.0 g/L, the NO3--N removal increased to 210 mg/L. Also, the increasing betaine dosage in 1st to 4th chambers resulted in a significant increase in dissolved methane concentration which reached a maximum value of 16.6 ± 1.19 mg/L. When the dosage of betaine was increased from 0 g/L to 1.0 g/L, the dominant bacterial phyla in the 1st to 4th chambers changed to Proteobacteria (20.8-50.7%) from Euryarchaeota (42.0-54.1%) and Methanothrix which was significantly decreased by 17.9-37.4%. There was a slight decline in the DAMO microorganism abundance, possibly due to the increased methyl donors limiting the DAMO microorganism growth. Denitrification metabolism pathway module (increased from 0.10% to 0.15%) of Nitrogen metabolism and Formaldehyde assimilation, and serine pathway of Methane metabolism presented an ascendant trend with the increased betaine dosage as determined by the metagenomics analysis of KEGG metabolism pathway.
Collapse
Affiliation(s)
- Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, 12 Jiangan Road, Guilin 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin 541004, PR China.
| | - Qiujin Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xinya Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zun Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xin Guan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
6
|
Costa RB, Lens PNL, Foresti E. Methanotrophic denitrification in wastewater treatment: microbial aspects and engineering strategies. Crit Rev Biotechnol 2021; 42:145-161. [PMID: 34157918 DOI: 10.1080/07388551.2021.1931014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Anaerobic technologies are consolidated for sewage treatment and are the core processes for mining marketable products from waste streams. However, anaerobic effluents are supersaturated with methane, which represents a liability regarding greenhouse gas emissions. Meanwhile, anaerobic technologies are not capable of nitrogen removal, which is required to ensure environmental protection. Methane oxidation and denitrification processes can be combined to address both issues concurrently. Aerobic methane oxidizers can release intermediate organic compounds that can be used by conventional denitrifiers as electron donors. Alternatively, anoxic methanotrophic species combine methane oxidation with either nitrate or nitrite reduction in the same metabolism. Engineered systems need to overcome the long doubling times and low NOx consumption rates of anoxic methanotrophic microorganisms. Another commonly reported bottleneck of methanotrophic denitrification relates to gas-liquid mass transfer limitations. Although anaerobic effluents are supersaturated with methane, experimental setups usually rely on methane supply in a gaseous mode. Hence, possibilities for the application of methane-oxidation coupled to denitrification in full scale might be overlooked. Moreover, syntrophic relationships among methane oxidizers, denitrifiers, nitrifiers, and other microorganisms (such as anammox) are not well understood. Integrating mixed populations with various metabolic abilities could allow for more robust methane-driven wastewater denitrification systems. This review presents an overview of the metabolic capabilities of methane oxidation and denitrification and discusses technological aspects that allow for the application of methanotrophic denitrification at larger scales.
Collapse
Affiliation(s)
- R B Costa
- Department of Hydraulics and Sanitation, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos, Brazil.,National University of Ireland, Galway, Ireland
| | - P N L Lens
- National University of Ireland, Galway, Ireland
| | - E Foresti
- Department of Hydraulics and Sanitation, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos, Brazil
| |
Collapse
|
7
|
Tikhomirova TS, But SY. Laboratory scale bioreactor designs in the processes of methane bioconversion: Mini-review. Biotechnol Adv 2021; 47:107709. [PMID: 33548452 DOI: 10.1016/j.biotechadv.2021.107709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023]
Abstract
Global methane emissions have been steadily increasing over the past few decades, exerting a negative effect on the environment. Biogas from landfills and sewage treatment plants is the main anthropogenic source of methane. This makes methane bioconversion one of the priority areas of biotechnology. This process involves the production of biochemical compounds from non-food sources through microbiological synthesis. Methanotrophic bacteria are a promising tool for methane bioconversion due to their ability to use this greenhouse gas and to produce protein-rich biomass, as well as a broad range of useful organic compounds. Currently, methane is used not only to produce biomass and chemical compounds, but also to increase the efficiency of water and solid waste treatment. However, the use of gaseous substrates in biotechnological processes is associated with some difficulties. The low solubility of methane in water is one of the major problems. Different approaches have been involved to encounter these challenges, including different bioreactor and gas distribution designs, solid carriers and bulk sorbents, as well as varying air/oxygen supply, the ratio of volumetric flow rate of gas mixture to its consumption rate, etc. The aim of this review was to summarize the current data on different bioreactor designs and the aspects of their applications for methane bioconversion and wastewater treatment. The bioreactors used in these processes must meet a number of requirements such as low methane emission, improved gas exchange surface, and controlled substrate supply to the reaction zone.
Collapse
Affiliation(s)
- Tatyana S Tikhomirova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», Institutskaya 7, Pushchino, Moscow Region 142290, Russia.
| | - Sergey Y But
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», Prospect Nauki 5, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
8
|
Li Y, Wang J, Hua M, Yao X, Zhao Y, Hu J, Xi C, Hu B. Strategy for denitrifying anaerobic methane-oxidizing bacteria growing under the oxygen-present condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140476. [PMID: 32629252 DOI: 10.1016/j.scitotenv.2020.140476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Denitrifying anaerobic methane oxidizing (DAMO) bacteria are newly discovered microorganisms that use methane as the electron donor to reduce nitrite into dinitrogen. They have potential value on nitrogen removal from wastewater. However, the oxygen exposure in engineering is considered one of the bottlenecks for DAMO engineering application. In this work, we cultured DAMO bacteria under oxic and anoxic conditions in a gas-lift sequencing batch reactor (GLSBR) to explore DAMO bacterial response to oxygen stress. Under oxic conditions (7.5-8 mg O2/L), the extension of hydraulic retention time (HRT) from 2 days to 4 days increased DAMO bacterial abundance by 3.8 times. Under anoxic conditions (0.2-0.5 mg O2/L), DAMO bacterial abundance increased by 30.1 times and were kept over 2.0 × 1011 copies g-1 wet sludge. During the enrichment, microbial aggregates were formed and DAMO bacteria tended to be distributed inside the aggregates. Notably, aerobic methanotrophs existed in the whole process, capable of consuming oxygen and providing a suitable environment for DAMO bacterial growth. Finally, DAMO bacteria were enriched and the relative abundance was 16.16%. This work provides new insights into DAMO bacterial enrichment and their application in wastewater treatment.
Collapse
Affiliation(s)
- Yufen Li
- Department of Environmental Engineering, College of Environmental &Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaqi Wang
- Department of Environmental Engineering, College of Environmental &Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Miaolian Hua
- Department of Environmental Engineering, College of Environmental &Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangwu Yao
- Department of Environmental Engineering, College of Environmental &Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxiang Zhao
- Department of Environmental Engineering, College of Environmental &Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajie Hu
- Department of Environmental Engineering, College of Environmental &Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Baolan Hu
- Department of Environmental Engineering, College of Environmental &Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|
9
|
Wang W, Zhang RC, Huang ZQ, Chen C, Xu XJ, Zhou X, Yin TM, Wang AJ, Lee DJ, Ren NQ. Performance of a novel IAHD-DSR process with methane and sulfide as co-electron donors. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121657. [PMID: 31784129 DOI: 10.1016/j.jhazmat.2019.121657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/09/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
A novel integrated autotrophic and heterotrophic denitrification- denitrifying sulfide removal (IAHD-DSR) process was established in this study for biogas desulfurization to simultaneously remove nitrogen in wastewater. The study demonstrated that the system could utilize methane and sulfide as co-electron donors to replace organic carbon source in IAHD process. Three batch tests (B1, B2 and B3) were set up with IAHD sludge to explore how the novel process works. According to mass balance in B2, methane oxidation and sulfide oxidation contributed 18.75 % and 71.25 % to nitrate removal, respectively; however, the contribution of methane oxidation to total nitrogen (TN) removal reached 84.36 %. Sulfide was mainly responsible for the reduction of nitrate to nitrite, while the methane was for nitrite to nitrogen gas in the presence of insufficient sulfide as electron donors. The TN removal in B2 was almost the same as in normal IAHD-DSR process B3-C. The functional genes mcrA and pmoA responsible for methane oxidation were detected in all three batches, with the abundance of 2.23 ×106 copies/(g dry soil) for mcrA in B1 being the highest in three batches. The sulfide addition in B2 increased the abundance of gene pmoA, indicating the enhancement of nitrite reduction coupled with methane oxidation.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Ruo-Chen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Zi-Qing Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China.
| | - Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Xu Zhou
- Engineering Laboratory of Microalgal Bioenergy, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Tian-Ming Yin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China.
| |
Collapse
|
10
|
Wen D, Ordonez D, McKenna A, Chang NB. Fate and transport processes of nitrogen in biosorption activated media for stormwater treatment at varying field conditions of a roadside linear ditch. ENVIRONMENTAL RESEARCH 2020; 181:108915. [PMID: 31759643 DOI: 10.1016/j.envres.2019.108915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Roadside drainage networks can result in changes to watershed hydrology and water quality. By acting as hydrological links between urban development, agricultural fields, and natural streams, roadside ditches may be modified by filling in some green sorption media to control nitrogen pollution. Biosorption activated media (BAM), one of the green sorption media, are composed of sand, tire crumb, and clay, which can remove nitrogen from stormwater and groundwater through integrated hydrological, chemophysical, and microbial processes. The fate and transport processes of interest are complicated by internal microbial processes including ammonification, nitrification, denitrification, and dissimilatory nitrate reduction to ammonium (DNRA), each of which is controlled by different microbial species in addition to some varying field conditions. In this study, BAM was tested in a suite of columns to address site-specific physical, chemical and biological concerns driven by in situ traffic compaction, carbon availability, and animal impact (such as gopher turtles, moles, and ants) all of which impose different impacts on nitrogen fate and transport processes that may be signified by changing dissolved organic nitrogen species (DONs). The traffic compaction condition resulted in the most suitable hydraulic retention time in the hydrological process, which is beneficial for the assimilation of DONs in a long-term carbon rich environment due to biofilm expansion. Denitrifiers were the most predominant microbial population and the microbial species of DNRA were the second most predominant one in all three field conditions. However, the relationship of denitrifiers and DNRA in BAM can be shifted from commensalism to competition or even inhibition after carbon addition in microbial ecology.
Collapse
Affiliation(s)
- Dan Wen
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Diana Ordonez
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Amy McKenna
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Ni-Bin Chang
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
11
|
Wang J, Hua M, Li Y, Ma F, Zheng P, Hu B. Achieving high nitrogen removal efficiency by optimizing nitrite-dependent anaerobic methane oxidation process with growth factors. WATER RESEARCH 2019; 161:35-42. [PMID: 31176104 DOI: 10.1016/j.watres.2019.05.101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/05/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Nitrite-dependent anaerobic methane oxidation (N-DAMO) is a newly discovered bioprocess which uses methane as electron donor to reduce nitrite into dinitrogen. It is a promising clean bioprocess for denitrification in wastewater treatment. However, the low reaction rate and slow growth rate of N-DAMO bacteria within NC10 phylum limit the application of the process. In this study, we chose vitamin, heme, nucleobase and betaine to investigate their short- and long-term effects on N-DAMO bacteria. The concentrations of the growth factors of medium were improved according to the short-term experiments. The results were subsequently verified via long-term inoculations and were applied in a magnetically stirred gas lift reactor (MSGLR). The results indicated that nucleobase and betaine (5.0 and 200 μg L-1, respectively) significantly stimulated the N-DAMO activity, whereas vitamin and heme had no significant effects in the tested concentration ranges. During the long-term incubation, N-DAMO bacteria continuously increased and finally achieved a relative abundance of 14.4% on day 300. Notably, larger aggregates of N-DAMO bacteria were observed at the end of the long-term incubation. And the nitrogen removal rate of the MSGLR increased to 70 mg N L-1 day-1, with the total nitrogen removal efficiency over 99.0%. However, the addition of betaine introduced methyl into the reactors and this made methylotrophs account a considerable part of the bacterial community, which limited the enrichment degree of N-DAMO bacteria. This work will contribute to the engineering application and enrichment of N-DAMO bacteria.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Miaolian Hua
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yufen Li
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China.
| |
Collapse
|
12
|
He Z, Feng J, Wei Z, Wu S, Zou J, Pan X. Optimization of methane-dependent oxygenic denitrification in sequencing batch reactors by insights into the microbial interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:623-631. [PMID: 29957429 DOI: 10.1016/j.scitotenv.2018.06.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Methane-dependent oxygenic denitrification (O2DN) is a promising technology used for reducing greenhouse gas emissions of nitrous oxide (N2O) during wastewater treatment. Heterotrophic bacteria are associated with methane-dependent O2DN bacteria, and it has been proposed that metabolic cross-feeding occurs between the two populations above. In this study, a mathematical model was developed to describe the microbial processes and interactions between methane-dependent O2DN bacteria and associated heterotrophic bacteria in a sequencing batch reactor (SBR). A growth factor-dependent decoupling of metabolism and growth of methane-dependent O2DN bacteria was introduced into the model. Effects of influent substrates, operating parameters, and initial biomass on microbial community and reactor performance were then investigated, and the above parameters were optimized using the model. Results surprisingly show that organic matter in the influent greatly stimulated the growth of methane-dependent O2DN bacteria but slightly limited the increase of heterotrophic bacteria. This effect could be explained by the increased excretion of growth factors by heterotrophic bacteria and the intensified competition for nitrite when methane-dependent O2DN bacteria increased. These results will assist in providing a new understanding of microbial interactions in methane-dependent O2DN systems and offer a new and efficient strategy for operating methane-dependent O2DN reactors.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jieni Feng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhen Wei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Shuyun Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jinte Zou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
13
|
He Z, Feng Y, Zhang S, Wang X, Wu S, Pan X. Oxygenic denitrification for nitrogen removal with less greenhouse gas emissions: Microbiology and potential applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:453-464. [PMID: 29195194 DOI: 10.1016/j.scitotenv.2017.11.280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Nitrogen pollution is a worldwide problem and has been extensively treated by canonical denitrification (CDN) process. However, the CDN process generates several issues such as intensive greenhouse gas (GHG) emissions. In the past years, a novel biological nitrogen removal (BNR) process of oxygenic denitrification (O2DN) has been proposed as a promising alternative to the CDN process. The classic denitrification four steps are simplified to three steps by O2DN bacteria without producing and releasing the intermediate nitrous oxide (N2O), a potent GHG. In this article, we summarized the findings in previous literatures as well as our results, including involved microorganisms and metabolic mechanisms, functional genes and microbial detection, kinetics and influencing factors and their potential applications in wastewater treatment. Based on our knowledge and experience, the benefits and limitations of the current O2DN process were analyzed. Since O2DN is a new field in wastewater treatment, more research and application is required, especially the development of integrated processes and the quantitative assessment of the contribution of O2DN process in natural habitats and engineered systems.
Collapse
Affiliation(s)
- Zhanfei He
- College of Environment, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Yudong Feng
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Shijie Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiaonan Wang
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Shuyun Wu
- College of Environment, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
14
|
He Z, Zhang Q, Feng Y, Luo H, Pan X, Gadd GM. Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:759-768. [PMID: 28830047 DOI: 10.1016/j.scitotenv.2017.08.140] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/22/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Anaerobic oxidation of methane (AOM) can be coupled to the reduction of sulfate, nitrate and nitrite, which effectively reduces methane emission into the atmosphere. Recently, metal-dependent AOM (metal-AOM, AOM coupled to metal reduction) was demonstrated to occur in both environmental samples and enrichment cultures. Anaerobic methanotrophs are capable of respiration using Fe(III) or Mn(IV), whether they are in the form of soluble metal species or insoluble minerals. Given the wide distribution of Fe(III)/Mn(IV)-bearing minerals in aquatic methane-rich environments, metal-AOM is considered to be globally important, although it has generally been overlooked in previous studies. In this article, we discuss the discovery of this process, the microorganisms and mechanisms involved, environmental significance and factors influencing metal-AOM. Since metal-AOM is poorly studied to date, some discussion is included on the present understanding of sulfate- and nitrate-AOM and traditional metal reduction processes using organic substrates or hydrogen as electron donors. Metal-AOM is a relatively new research field, and therefore more studies are needed to fully characterize the process. This review summarizes current studies and discusses the many unanswered questions, which should be useful for future research in this field.
Collapse
Affiliation(s)
- Zhanfei He
- College of Environment, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Qingying Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yudong Feng
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China.
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
15
|
Shen LD, Wu HS, Liu X, Li J. Cooccurrence and potential role of nitrite- and nitrate-dependent methanotrophs in freshwater marsh sediments. WATER RESEARCH 2017; 123:162-172. [PMID: 28668629 DOI: 10.1016/j.watres.2017.06.075] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 05/31/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Nitrite- and nitrate-dependent anaerobic methane oxidation are mediated by the NC10 bacteria closely related to "Candidatus Methylomirabilis oxyfera" (M. oxyfera) and the ANME-2d archaea closely related to "Candidatus Methanoperedens nitroreducens" (M. nitroreducens), respectively. Here, we investigated the occurrence and activity of both M. oxyfera-like bacteria and M. nitroreducens-like archaea in the sediment of freshwater marshes in Eastern China. The presence of diverse M. oxyfera-like bacteria (>87% identity to M. oxyfera) and M. nitroreducens-like archaea (>96% identity to M. nitroreducens) was confirmed by using Illumina-based total bacterial and archaeal 16S rRNA gene sequencing, respectively. The recovered M. oxyfera-like bacterial sequences accounted for 1.6-4.3% of the total bacterial 16S rRNA pool, and M. nitroreducens-like archaeal sequences accounted for 0.2-1.8% of the total archaeal 16S rRNA pool. The detected numbers of OTUs of the 16S rRNA genes of M. oxyfera-like bacteria and M. nitroreducens-like archaea were 78 and 72, respectively, based on 3% sequence difference. Quantitative PCR showed that the 16S rRNA gene abundance of M. oxyfera-like bacteria (6.1 × 106-3.2 × 107 copies g-1 sediment) was 2-4 orders of magnitude higher than that of M. nitroreducens-like archaea (1.4 × 103-3.2 × 104 copies g-1 sediment). Stable isotope experiments showed that the addition of both nitrite and nitrate stimulated the anaerobic methane oxidation, while the stimulation by nitrite is more significant than nitrate. Our results provide the first evidence that the M. oxyfera-like bacteria play a more important role than the M. nitroreducens-like archaea in methane cycling in wetland systems.
Collapse
Affiliation(s)
- Li-Dong Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Department of Agricultural Resource and Environment, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China.
| | - Hong-Sheng Wu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Department of Agricultural Resource and Environment, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xu Liu
- Department of Agricultural Resource and Environment, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Ji Li
- Department of Agricultural Resource and Environment, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| |
Collapse
|
16
|
Ma R, Hu Z, Zhang J, Ma H, Jiang L, Ru D. Reduction of greenhouse gases emissions during anoxic wastewater treatment by strengthening nitrite-dependent anaerobic methane oxidation process. BIORESOURCE TECHNOLOGY 2017; 235:211-218. [PMID: 28365349 DOI: 10.1016/j.biortech.2017.03.094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered process performed by NC10 phylum, which plays an important role in greenhouse gases (GHG) reduction. In this study, co-existence of n-damo bacteria and methanogens was successfully achieved by using upflow anaerobic sludge blanket (UASB) reactor. Reactor with inorganic carbon source (CO2/H2) showed the highest abundance of n-damo bacteria and the highest n-damo potential activity, resulted in its highest nitrogen removal rate. Significant reduction in GHG was obtained after introduction of n-damo process, especially for N2O. Furthermore, GHG emissions decreased with the increase of n-damo bacteria abundance. Community structure analysis found carbon source could influence the diversity of n-damo bacteria indirectly. And phylogenetic analysis showed that all the obtained sequences were assigned to group B, mainly due to in situ production and consumption of CH4.
Collapse
Affiliation(s)
- Ru Ma
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Zhen Hu
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Hao Ma
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Liping Jiang
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Dongyun Ru
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, China
| |
Collapse
|
17
|
Wang S, Liu Y, Liu G, Huang Y, Zhou Y. A New Primer to Amplify pmoA Gene From NC10 Bacteria in the Sediments of Dongchang Lake and Dongping Lake. Curr Microbiol 2017; 74:908-914. [PMID: 28501892 DOI: 10.1007/s00284-017-1260-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/28/2017] [Indexed: 11/27/2022]
Abstract
Nitrite-dependent anaerobic methane oxidation (n-damo) is catalyzed by the NC10 phylum bacterium "Candidatus Methylomirabilis oxyfera" (M. oxyfera). Generally, the pmoA gene is applied as a functional marker to test and identify NC10-like bacteria. However, it is difficult to detect the NC10 bacteria from sediments of freshwater lake (Dongchang Lake and Dongping Lake) with the previous pmoA gene primer sets. In this work, a new primer cmo208 was designed and used to amplify pmoA gene of NC10-like bacteria. A newly nested PCR approach was performed using the new primer cmo208 and the previous primers cmo182, cmo682, and cmo568 to detect the NC10 bacteria. The obtained pmoA gene sequences exhibited 85-92% nucleotide identity and 95-97% amino acid sequence identity to pmoA gene of M. oxyfera. The obtained diversity of pmoA gene sequences coincided well with the diversity of 16S rRNA sequences. These results indicated that the newly designed pmoA primer cmo208 could give one more option to detect NC10 bacteria from different environmental samples.
Collapse
MESH Headings
- Aerobiosis
- Anaerobiosis
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Cluster Analysis
- DNA Primers/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, Bacterial
- Genetic Variation
- Geologic Sediments/microbiology
- Lakes
- Phylogeny
- Polymerase Chain Reaction/methods
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Shenghui Wang
- College of Life Science, Liaocheng University, Liaocheng, 252059, People's Republic of China.
| | - Yanjun Liu
- College of Life Science, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Guofu Liu
- College of Life Science, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Yaru Huang
- College of Life Science, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Yu Zhou
- College of Life Science, Liaocheng University, Liaocheng, 252059, People's Republic of China
| |
Collapse
|
18
|
Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process. Appl Microbiol Biotechnol 2017; 101:3895-3906. [DOI: 10.1007/s00253-017-8163-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 11/25/2022]
|
19
|
Xie GJ, Cai C, Hu S, Yuan Z. Complete Nitrogen Removal from Synthetic Anaerobic Sludge Digestion Liquor through Integrating Anammox and Denitrifying Anaerobic Methane Oxidation in a Membrane Biofilm Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:819-827. [PMID: 27983816 DOI: 10.1021/acs.est.6b04500] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Partial nitritation and Anammox processes are increasingly used for nitrogen removal from anaerobic sludge digestion liquor. However, their nitrogen removal efficiency is often limited due to the production of nitrate by the Anammox reaction and the sensitivity to the nitrite to ammonium ratio. This work develops and demonstrates an innovative process that achieves complete nitrogen removal from partially nitrified anaerobic sludge digestion liquor through the use of a membrane biofilm reactor (MBfR), with methane supplied through hollow fiber membranes. When steady state with a hydraulic retention time (HRT) of 1 day was reached, the process achieved complete nitrite and ammonium removal at rates of 560 mg N/L/d and 470 mg N/L/d, respectively, without any nitrate accumulation. The process is relatively insensitive to the nitrite to ammonium ratio, achieving complete nitrogen removal when their ratio in influent varied in the range of 1.125-1.32. Pyrosequencing and fluorescence in situ hybridization analysis revealed that denitrifying anaerobic methane oxidation (DAMO) archaea, Anammox bacteria and DAMO bacteria jointly dominated the microbial community. Mass balance analysis showed that nitrate produced by Anammox (122.2 mg N/L/d) was entirely converted to nitrite by DAMO archaea, while nitrite in the feed and produced by DAMO archaea was jointly removed by Anammox (90%) and DAMO bacteria (10%). The nitrogen removal rate of over 1 kg N/m3/d is comparable to the practical rates reported for side-stream nitrogen removal processes.
Collapse
Affiliation(s)
- Guo-Jun Xie
- Advanced Water Management Centre, The University of Queensland , St Lucia, Brisbane QLD 4072, Australia
| | - Chen Cai
- Advanced Water Management Centre, The University of Queensland , St Lucia, Brisbane QLD 4072, Australia
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland , St Lucia, Brisbane QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland , St Lucia, Brisbane QLD 4072, Australia
| |
Collapse
|
20
|
He Z, Cai C, Wang J, Xu X, Zheng P, Jetten MSM, Hu B. A novel denitrifying methanotroph of the NC10 phylum and its microcolony. Sci Rep 2016; 6:32241. [PMID: 27582299 PMCID: PMC5007514 DOI: 10.1038/srep32241] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/02/2016] [Indexed: 12/03/2022] Open
Abstract
The NC10 phylum is a candidate phylum of prokaryotes and is considered important in biogeochemical cycles and evolutionary history. NC10 members are as-yet-uncultured and are difficult to enrich, and our knowledge regarding this phylum is largely limited to the first species ‘Candidatus Methylomirabilis oxyfera’ (M. oxyfera). Here, we enriched NC10 members from paddy soil and obtained a novel species of the NC10 phylum that mediates the anaerobic oxidation of methane (AOM) coupled to nitrite reduction. By comparing the new 16S rRNA gene sequences with those already in the database, this new species was found to be widely distributed in various habitats in China. Therefore, we tentatively named it ‘Candidatus Methylomirabilis sinica’ (M. sinica). Cells of M. sinica are roughly coccus-shaped (0.7–1.2 μm), distinct from M. oxyfera (rod-shaped; 0.25–0.5 × 0.8–1.1 μm). Notably, microscopic inspections revealed that M. sinica grew in honeycomb-shaped microcolonies, which was the first discovery of microcolony of the NC10 phylum. This finding opens the possibility to isolate NC10 members using microcolony-dependent isolation strategies.
Collapse
Affiliation(s)
- Zhanfei He
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Chaoyang Cai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
He Z, Geng S, Wang L, Cai C, Wang J, Liu J, Zheng P, Xu X, Hu B. Improvement of mineral nutrient concentrations and pH control for the nitrite-dependent anaerobic methane oxidation process. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
He Z, Wang J, Hu J, Zhang H, Cai C, Shen J, Xu X, Zheng P, Hu B. Improved PCR primers to amplify 16S rRNA genes from NC10 bacteria. Appl Microbiol Biotechnol 2016; 100:5099-108. [PMID: 27020287 DOI: 10.1007/s00253-016-7477-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
Anaerobic oxidation of methane (AOM) coupled to nitrite reduction (AOM-NIR) is ecologically significant for mitigating the methane-induced greenhouse effect. The microbes responsible for this reaction, NC10 bacteria, have been widely detected in diverse ecosystems. However, some defects were discovered in the commonly used NC10-specific primers, 202F and qP1F. In the present work, the primers were redesigned and improved to overcome the defects found in the previous primers. A new nested PCR method was developed using the improved primers to amplify 16S ribosomal RNA (rRNA) genes from NC10 bacteria. In the new nested PCR method, the qP1mF/1492R and 1051F/qP2R primer sets were used in the first and second rounds, respectively. The PCR products were sequenced, and more operational taxonomic units (OTUs) of the NC10 phylum were obtained using the new primers compared to the previous primers. The sensitivity of the new nested PCR was tested by the serial dilution method, and the limit of detection was approximately 10(3) copies g(-1) dry sed. for the environmental samples compared to approximately 10(5) copies g(-1) dry sed. by the previous method. Finally, the improved primer, qP1mF, was used in quantitative PCR (qPCR) to determine the abundance of NC10 bacteria, and the results agreed well with the activity of AOM-NIR measured by isotope tracer experiments. The improved primers are able to amplify NC10 16S rRNA genes more efficiently than the previous primers and useful to explore the microbial community of the NC10 phylum in different systems.
Collapse
Affiliation(s)
- Zhanfei He
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jiajie Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hao Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Chaoyang Cai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jiaxian Shen
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|