1
|
Bugeda A, Shi X, Castillo L, Marcos JF, Manzanares P, López-Moya JJ, Coca M. High yield production of the antifungal proteins PeAfpA and PdAfpB by vacuole targeting in a TMV-based expression vector. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40318202 DOI: 10.1111/pbi.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 05/07/2025]
Abstract
Antifungal proteins (AFPs) derived from filamentous fungi show great potential against economically significant fungi that cause plant diseases and consequently threat food safety and security. This study focuses on the Penicillium expansum PeAfpA and Penicillium digitatum PdAfpB proteins and their activity against several phytopathogens. The AFPs were synthesized through a highly productive tobacco mosaic virus-based expression vector in the fast-growing model plant Nicotiana benthamiana, combining signalling sequences for apoplastic and vacuolar compartmentalization to increase yields. Adding a vacuolar signalling peptide from a Nicotiana sylvestris chitinase at the C-termini of the AFPs in combination with an apoplastic N-terminal signalling peptide from N. benthamiana osmotin significantly enhanced AFP yields without altering functionality. Results showed an improvement of ninefold for PeAfpA and 3,5-fold for PdAfpB compared to constructs with only the apoplastic N-terminal signalling. Transmission electron microscopy and immunogold labelling confirmed the localization of AFPs in both the apoplast and the vacuole, highlighting its compatibility with vacuolar environments. In vitro and in vivo assessments against key pathogenic fungi, including Magnaporthe oryzae, Botrytis cinerea and Fusarium proliferatum, revealed that the activities of easily purified PeAfpA- and PdAfpB-enriched plant extracts closely mirrored those of their purified fungal counterparts. This innovative approach represents a notable advance towards the application of AFPs as effective, safe and environmentally friendly 'green biofungicides' for safeguarding crop and postharvest produce and could also be applied to control other pathogenic fungi that threat human health.
Collapse
Affiliation(s)
- Adrià Bugeda
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Xiaoqing Shi
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Jose F Marcos
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Valencia, Spain
| | - Paloma Manzanares
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Valencia, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
2
|
Wang Y, Wang S, Chen Y, Xie C, Xu H, Lin Y, Lin R, Zeng W, Chen X, Nie X, Wang S. The role of Npt1 in regulating antifungal protein activity in filamentous fungi. Nat Commun 2025; 16:2850. [PMID: 40122888 PMCID: PMC11930961 DOI: 10.1038/s41467-025-58230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/16/2025] [Indexed: 03/25/2025] Open
Abstract
Pathogenic filamentous fungi pose a significant threat to global food security and human health. The limitations of available antifungal agents, including resistance and toxicity, highlight the need for developing innovative antifungal strategies. Antifungal proteins (AFPs) are a class of secreted small proteins that exhibit potent antifungal activity against filamentous fungi, yet the underlying mechanism remains partially understood. In this study, we investigate the molecular and cellular effects of two AFPs, PgAFP and AfAFP, on Aspergillus flavus, a representative filamentous fungus. These AFPs affect various fungal phenotypes and exert an intracellular effect by interacting with Ntp1, a fungi exclusive protein modulating diverse fungal traits. We find that Ntp1 amino acids 417-588 are critical for AFP binding and play a role in regulating growth, development, sporulation, sclerotia formation, toxin synthesis, and pathogenicity. Results generated from this study will help to control pathogenic fungi.
Collapse
Affiliation(s)
- Yu Wang
- The State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sen Wang
- The State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanyuan Chen
- The State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chunlan Xie
- The State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haibo Xu
- The State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yunhua Lin
- The State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ranxun Lin
- The State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wanlin Zeng
- The State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xuan Chen
- The State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinyi Nie
- The State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shihua Wang
- The State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Yélamos AM, Marcos JF, Manzanares P, Garrigues S. Harnessing Filamentous Fungi for Enzyme Cocktail Production Through Rice Bran Bioprocessing. J Fungi (Basel) 2025; 11:106. [PMID: 39997400 PMCID: PMC11856480 DOI: 10.3390/jof11020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Valorization of agri-food residues has garnered significant interest for obtaining value-added compounds such as enzymes or bioactive molecules. Rice milling by-products, such as rice bran, have limited commercial value and may pose environmental challenges. Filamentous fungi are recognized for their ability to grow on residues and for their capacity to produce large amounts of metabolites and enzymes of industrial interest. Here, we used filamentous fungi to produce enzyme cocktails from rice bran, which, due to its polysaccharide composition, serves as an ideal substrate for the growth of fungi producing cellulases and xylanases. To this end, sixteen fungal strains were isolated from rice bran and identified at the species level. The species belonged to the genera Aspergillus, Penicillium, and Mucor. The Aspergillus species displayed the highest efficiency in cellulase and xylanase activities, especially A. niger var. phoenicis and A. amstelodami. A. terreus, A. tritici, and A. montevidensis stood out as xylanolytic isolates, while P. parvofructum exhibited good cellulase activity. A. niger var. phoenicis followed by A. terreus showed the highest specific enzymatic activities of α- and β-D-galactosidase, α-L-arabinofuranosidase, α- and β-D-glucosidase, and β-D-xylosidase. Additionally, proteomic analysis of A. terreus, A. niger var. phoenicis, and P. parvofructum exoproteomes revealed differences in enzyme production for rice bran degradation. A. niger var. phoenicis had the highest levels of xylanases and cellulases, while P. parvofructum excelled in proteases, starch-degrading enzymes, and antifungal proteins. Finally, two Penicillium isolates were notable as producers of up to three different antifungal proteins. Our results demonstrate that filamentous fungi can effectively valorize rice bran by producing enzyme cocktails of industrial interest, along with bioactive peptides, in a cost-efficient manner, aligning with the circular bio-economy framework.
Collapse
Affiliation(s)
| | | | | | - Sandra Garrigues
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980, Valencia, Spain; (A.M.Y.); (J.F.M.); (P.M.)
| |
Collapse
|
4
|
Starke S, Velleman L, Dobbert B, Seibert L, Witte J, Jung S, Meyer V. The antifungal peptide AnAFP from Aspergillus niger promotes nutrient mobilization through autophagic recycling during asexual development. Front Microbiol 2025; 15:1490293. [PMID: 39925883 PMCID: PMC11802824 DOI: 10.3389/fmicb.2024.1490293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/05/2024] [Indexed: 02/11/2025] Open
Abstract
Antifungal peptides are promising drug candidates to fight fungal infections in the clinics and agriculture. However, recent data suggest that antifungal peptides might also play a role within their own producing organism to survive nutrient limiting conditions. We have therefore studied the function of the antifungal AnAFP in Aspergillus niger in more detail. To achieve this, we established a Tet-on controlled anafp expression system, which allowed us to study a null and an overexpression phenotype in the same isolate. We observed that increased intracellular AnAFP expression reduces growth of A. niger and prematurely activates autophagy. Comparative transcriptome analyses of glucose-starving mycelium demonstrated that increased anafp expression strongly impacts expression of genes important for cell wall integrity and remodeling, as well as genes with a predicted function in metabolism and transport of carbohydrates, proteins, and lipids. Notably, genes encoding regulators of conidiophore development such as flbC and flbD became induced upon anafp overexpression. Fluorescent analyses of a Tet-on driven AnAFP::eGFP fusion protein congruently unraveled that AnAFP localizes to cell walls and septa of A. niger. Moreover, AnAFP::eGFP expression is spatially restricted to selected compartments only and affected cells displayed a sudden reduction in hyphal diameter. From these data we conclude that AnAFP is important to drive vegetative growth and sporulation in A. niger during nutrient limitation through autophagic recycling. We predict that AnAFP drives nutrient mobilization through selective cell lysis to ensure the survival of the whole colony during phases of starvation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vera Meyer
- *Correspondence: Sascha Jung, ; Vera Meyer,
| |
Collapse
|
5
|
Hernández-García L, Manzanares P, Marcos JF, Martínez-Culebras PV. Effect of antifungal proteins (AFPs) on the viability of heat-resistant fungi (HRFs) and the preservation of fruit juices. Int J Food Microbiol 2024; 425:110886. [PMID: 39214027 DOI: 10.1016/j.ijfoodmicro.2024.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The control of heat-resistant fungi (HRFs), which cause spoilage of heat-treated fruit products, is considered a challenge for the fruit juice and beverage industry and requires new strategies for the development of antifungal compounds. In this study, four antifungal proteins (AFPs) from Penicillium digitatum (PdAfpB) and Penicillium expansum (PeAfpA, PeAfpB and PeAfpC), were evaluated against conidia from a representative collection of HRFs. A total of 19 strains from 16 different species belonging to the genera Aspergillus, Hamigera, Paecilomyces, Rasamsonia, Sarocladium, Talaromyces and Thermoascus were included in the study. PeAfpA and PdAfpB exhibited potent antifungal activity in synthetic media, completely inhibiting the growth of most of the fungi evaluated in the range of 0.5-32 μg/mL. The efficacy of the four AFPs was also tested in fruit juices against ascospores of five HRFs relevant to the food industry, including P. fulvus, P. niveus, P. variotii, A. fischeri and T. flavus. PdAfpB was the most effective protein in fruit juices, since it completely inhibited the growth of the five species tested in at least one of the fruit juices evaluated. This is the first study to demonstrate the activity of AFPs against fungal ascospores. Finally, a challenge test study showed that PdAfpB, at a concentration of 32 μg/mL, protected apple fruit juice artificially inoculated with ascospores of P. variotii for 17 days, highlighting the potential of the protein as a preservative in the fruit juice industry.
Collapse
Affiliation(s)
- Laura Hernández-García
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Paloma Manzanares
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Jose F Marcos
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Pedro V Martínez-Culebras
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain; Departamento de Medicina Preventiva y Salud Pública, Ciencias de la Alimentación, Bromatología, Toxicología y Medicina Legal, Universitat de València, Vicente Andrès Estellès s/n, Burjassot 46100, Valencia, Spain.
| |
Collapse
|
6
|
Giner-Llorca M, Ropero-Pérez C, Garrigues S, Thomson DD, Bignell EM, Manzanares P, Marcos JF. Dynamics of interaction and internalisation of the antifungal protein PeAfpA into Penicillium digitatum morphotypes. Int J Biol Macromol 2024; 282:136980. [PMID: 39471922 DOI: 10.1016/j.ijbiomac.2024.136980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
Antifungal proteins (AFPs) as the highly active PeAfpA from Penicillium expansum or PdAfpB from Penicillium digitatum exert promising antifungal activity, but their mode of action is not fully understood. We characterised the interaction of PeAfpA against P. digitatum, comparing it to the less active PdAfpB. Despite similar effect on conidia germination, PeAfpA did not induce a burst of reactive oxygen species as PdAfpB. Live-cell fluorescence microscopy revealed complex dynamics of interaction and internalisation of both proteins with distinct P. digitatum morphotypes (quiescent conidia, swollen conidia, germlings and hyphae). Labelled PeAfpA co-localised at the cell wall of quiescent conidia, where its localisation was punctate and not uniformly distributed. This pattern changed during germination to a uniform distribution with increased intensity. Conidia from mutants of genes involved in melanin biosynthesis (pksP/alb1 or arp2) showed an altered distribution of PeAfpA but later mimicked the wild type trend of changes during germination. In swollen conidia and germlings, PeAfpA remained attached to the cell wall. In hyphae, PeAfpA was internalised through the growing hyphal tip after binding to the cell wall, in a non-endocytic but energy-dependent process that caused vacuolisation, which preceded cell death. These results may help the development of biofungicides based on AFPs.
Collapse
Affiliation(s)
- Moisés Giner-Llorca
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain
| | - Carolina Ropero-Pérez
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain
| | - Sandra Garrigues
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain
| | - Darren D Thomson
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Elaine M Bignell
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Paloma Manzanares
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain
| | - Jose F Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain..
| |
Collapse
|
7
|
Ropero-Pérez C, Moreno-Giménez E, Marcos JF, Manzanares P, Gandía M. Studies on the biological role of the antifungal protein PeAfpA from Penicillium expansum by functional gene characterization and transcriptomic profiling. Int J Biol Macromol 2024; 266:131236. [PMID: 38554901 DOI: 10.1016/j.ijbiomac.2024.131236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Antifungal proteins (AFPs) from filamentous fungi have enormous potential as novel biomolecules for the control of fungal diseases. However, little is known about the biological roles of AFPs beyond their antifungal action. Penicillium expansum encodes three phylogenetically different AFPs (PeAfpA, PeAfpB and PeAfpC) with diverse profiles of antifungal activity. PeAfpA stands out as a highly active AFP that is naturally produced at high yields. Here, we provide new data about the function of PeAfpA in P. expansum through phenotypical characterization and transcriptomic studies of null mutants of the corresponding afpA gene. Mutation of afpA did not affect axenic growth, conidiation, virulence, stress responses or sensitivity towards P. expansum AFPs. However, RNA sequencing evidenced a massive transcriptomic change linked to the onset of PeAfpA production. We identified two large gene expression clusters putatively involved in PeAfpA function, which correspond to genes induced or repressed with the production of PeAfpA. Functional enrichment analysis unveiled significant changes in genes related to fungal cell wall remodeling, mobilization of carbohydrates and plasma membrane transporters. This study also shows a putative co-regulation between the three afp genes. Overall, our transcriptomic analyses provide valuable insights for further understanding the biological functions of AFPs.
Collapse
Affiliation(s)
- Carolina Ropero-Pérez
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain
| | - Elena Moreno-Giménez
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain; Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Valencia 46022, Spain
| | - Jose F Marcos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain
| | - Paloma Manzanares
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain.
| | - Mónica Gandía
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
8
|
Giner-Llorca M, Locascio A, Del Real JA, Marcos JF, Manzanares P. Novel findings about the mode of action of the antifungal protein PeAfpA against Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2023; 107:6811-6829. [PMID: 37688596 PMCID: PMC10589166 DOI: 10.1007/s00253-023-12749-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
Antifungal proteins (AFPs) from filamentous fungi offer the potential to control fungal infections that threaten human health and food safety. AFPs exhibit broad antifungal spectra against harmful fungi, but limited knowledge of their killing mechanism hinders their potential applicability. PeAfpA from Penicillium expansum shows strong antifungal potency against plant and human fungal pathogens and stands above other AFPs for being active against the yeast Saccharomyces cerevisiae. We took advantage of this and used a model laboratory strain of S. cerevisiae to gain insight into the mode of action of PeAfpA by combining (i) transcriptional profiling, (ii) PeAfpA sensitivity analyses of deletion mutants available in the S. cerevisiae genomic deletion collection and (iii) cell biology studies using confocal microscopy. Results highlighted and confirmed the role of the yeast cell wall (CW) in the interaction with PeAfpA, which can be internalized through both energy-dependent and independent mechanisms. The combined results also suggest an active role of the CW integrity (CWI) pathway and the cAMP-PKA signalling in the PeAfpA killing mechanism. Besides, our studies revealed the involvement of phosphatidylinositol metabolism and the participation of ROX3, which codes for the subunit 19 of the RNA polymerase II mediator complex, in the yeast defence strategy. In conclusion, our study provides clues about both the killing mechanism of PeAfpA and the fungus defence strategies against the protein, suggesting also targets for the development of new antifungals. KEY POINTS: • PeAfpA is a cell-penetrating protein with inhibitory activity against S. cerevisiae. • The CW integrity (CWI) pathway is a key player in the PeAfpA killing mechanism. • Phosphatidylinositol metabolism and ROX3 are involved in the yeast defence strategy.
Collapse
Affiliation(s)
- Moisés Giner-Llorca
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Antonella Locascio
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Javier Alonso Del Real
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Jose F Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Paloma Manzanares
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain.
| |
Collapse
|
9
|
Ropero-Pérez C, Bolós B, Giner-Llorca M, Locascio A, Garrigues S, Gandía M, Manzanares P, Marcos JF. Transcriptomic Profile of Penicillium digitatum Reveals Novel Aspects of the Mode of Action of the Antifungal Protein AfpB. Microbiol Spectr 2023; 11:e0484622. [PMID: 37022187 PMCID: PMC10269557 DOI: 10.1128/spectrum.04846-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
Antifungal proteins (AFPs) from filamentous fungi are promising biomolecules to control fungal pathogens. Understanding their biological role and mode of action is essential for their future application. AfpB from the citrus fruit pathogen Penicillium digitatum is highly active against fungal phytopathogens, including its native fungus. Our previous data showed that AfpB acts through a multitargeted three-stage process: interaction with the outer mannosylated cell wall, energy-dependent cell internalization, and intracellular actions that result in cell death. Here, we extend these findings by characterizing the functional role of AfpB and its interaction with P. digitatum through transcriptomic studies. For this, we compared the transcriptomic response of AfpB-treated P. digitatum wild type, a ΔafpB mutant, and an AfpB-overproducing strain. Transcriptomic data suggest a multifaceted role for AfpB. Data from the ΔafpB mutant suggested that the afpB gene contributes to the overall homeostasis of the cell. Additionally, these data showed that AfpB represses toxin-encoding genes, and they suggest a link to apoptotic processes. Gene expression and knockout mutants confirmed that genes coding for acetolactate synthase (ALS) and acetolactate decarboxylase (ALD), which belong to the acetoin biosynthetic pathway, contribute to the inhibitory activity of AfpB. Moreover, a gene encoding a previously uncharacterized extracellular tandem repeat peptide (TRP) protein showed high induction in the presence of AfpB, whereas its TRP monomer enhanced AfpB activity. Overall, our study offers a rich source of information to further advance in the characterization of the multifaceted mode of action of AFPs. IMPORTANCE Fungal infections threaten human health worldwide and have a negative impact on food security, damaging crop production and causing animal diseases. At present, only a few classes of fungicides are available due to the complexity of targeting fungi without affecting plant, animal, or human hosts. Moreover, the intensive use of fungicides in agriculture has led to the development of resistance. Therefore, there is an urgent need to develop antifungal biomolecules with new modes of action to fight human-, animal-, and plant-pathogenic fungi. Fungal antifungal proteins (AFPs) offer great potential as new biofungicides to control deleterious fungi. However, current knowledge about their killing mechanism is still limited, which hampers their potential applicability. AfpB from P. digitatum is a promising molecule with potent and specific fungicidal activity. This study further characterizes its mode of action, opening avenues for the development of new antifungals.
Collapse
Affiliation(s)
- Carolina Ropero-Pérez
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Begoña Bolós
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Moisés Giner-Llorca
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Antonella Locascio
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Sandra Garrigues
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Mónica Gandía
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Paloma Manzanares
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Jose F. Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| |
Collapse
|
10
|
Váradi G, Batta G, Galgóczy L, Hajdu D, Fizil Á, Czajlik A, Virágh M, Kele Z, Meyer V, Jung S, Marx F, Tóth GK. Confirmation of the Disulfide Connectivity and Strategies for Chemical Synthesis of the Four-Disulfide-Bond-Stabilized Aspergillus giganteus Antifungal Protein, AFP. JOURNAL OF NATURAL PRODUCTS 2023; 86:782-790. [PMID: 36847642 PMCID: PMC10152477 DOI: 10.1021/acs.jnatprod.2c00954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 05/04/2023]
Abstract
Emerging fungal infections require new, more efficient antifungal agents and therapies. AFP, a protein from Aspergillus giganteus with four disulfide bonds, is a promising candidate because it selectively inhibits the growth of filamentous fungi. In this work, the reduced form of AFP was prepared using native chemical ligation. The native protein was synthesized via oxidative folding with uniform protection for cysteine thiols. AFP's biological activity depends heavily on the pattern of natural disulfide bonds. Enzymatic digestion and MS analysis provide proof for interlocking disulfide topology (abcdabcd) that was previously assumed. With this knowledge, a semi-orthogonal thiol protection method was designed. By following this strategy, out of a possible 105, only 6 disulfide isomers formed and 1 of them proved to be identical with the native protein. This approach allows the synthesis of analogs for examining structure-activity relationships and, thus, preparing AFP variants with higher antifungal activity.
Collapse
Affiliation(s)
- Györgyi Váradi
- Department
of Medical Chemistry, University of Szeged, Szeged 6720, Hungary
| | - Gyula Batta
- Department
of Organic Chemistry, University of Debrecen, Debrecen 4010, Hungary
| | - László Galgóczy
- Institute
of Molecular Biology, Biocenter, Medical
University of Innsbruck, Innsbruck 6020, Austria
- Institute
of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged 6726, Hungary
| | - Dorottya Hajdu
- Department
of Organic Chemistry, University of Debrecen, Debrecen 4010, Hungary
| | - Ádám Fizil
- Department
of Organic Chemistry, University of Debrecen, Debrecen 4010, Hungary
| | - András Czajlik
- Department
of Organic Chemistry, University of Debrecen, Debrecen 4010, Hungary
| | - Máté Virágh
- Department
of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Zoltán Kele
- Department
of Medical Chemistry, University of Szeged, Szeged 6720, Hungary
| | - Vera Meyer
- Department
of Applied and Molecular Microbiology Technische Universität
Berlin, Institute of Biotechnology, Berlin 13355, Germany
| | - Sascha Jung
- Department
of Applied and Molecular Microbiology Technische Universität
Berlin, Institute of Biotechnology, Berlin 13355, Germany
| | - Florentine Marx
- Institute
of Molecular Biology, Biocenter, Medical
University of Innsbruck, Innsbruck 6020, Austria
| | - Gábor K. Tóth
- Department
of Medical Chemistry, University of Szeged, Szeged 6720, Hungary
- MTA-SZTE
Biomimetic Systems Research Group, University
of Szeged, Szeged 6720, Hungary
| |
Collapse
|
11
|
Abad AV, Manzanares P, Marcos JF, Martínez-Culebras PV. The Penicillium digitatum antifungal protein PdAfpB shows high activity against mycobiota involved in sliced bread spoilage. Food Microbiol 2023; 109:104142. [DOI: 10.1016/j.fm.2022.104142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022]
|
12
|
Giner-Llorca M, Gallego del Sol F, Marcos JF, Marina A, Manzanares P. Rationally designed antifungal protein chimeras reveal new insights into structure-activity relationship. Int J Biol Macromol 2023; 225:135-148. [PMID: 36460243 DOI: 10.1016/j.ijbiomac.2022.11.280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Antifungal proteins (AFPs) are promising antimicrobial compounds that represent a feasible alternative to fungicides. Penicillium expansum encodes three phylogenetically distinct AFPs (PeAfpA, PeAfpB and PeAfpC) which show different antifungal profiles and fruit protection effects. To gain knowledge about the structural determinants governing their activity, we solved the crystal structure of PeAfpB and rationally designed five PeAfpA::PeAfpB chimeras (chPeAFPV1-V5). Chimeras showed significant differences in their antifungal activity. chPeAFPV1 and chPeAFPV2 improved the parental PeAfpB potency, and it was very similar to that of PeAfpA. chPeAFPV4 and chPeAFPV5 showed an intermediate profile of activity compared to the parental proteins while chPeAFPV3 was inactive towards most of the fungi tested. Structural analysis of the chimeras evidenced an identical scaffold to PeAfpB, suggesting that the differences in activity are due to the contributions of specific residues and not to induced conformational changes or structural rearrangements. Results suggest that mannoproteins determine protein interaction with the cell wall and its antifungal activity while there is not a direct correlation between binding to membrane phospholipids and activity. This work provides new insights about the relevance of sequence motifs and the feasibility of modifying protein specificity, opening the door to the rational design of chimeras with biotechnological applicability.
Collapse
Affiliation(s)
- Moisés Giner-Llorca
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain
| | - Francisca Gallego del Sol
- Instituto de Biomedicina de Valencia (IBV), CSIC and CIBER de Enfermedades Raras (CIBERER), Jaume Roig 11, 46010, Valencia, Spain
| | - Jose F Marcos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV), CSIC and CIBER de Enfermedades Raras (CIBERER), Jaume Roig 11, 46010, Valencia, Spain.
| | - Paloma Manzanares
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
13
|
Fardella PA, Tian Z, Clarke BB, Belanger FC. The Epichloë festucae Antifungal Protein Efe-AfpA Protects Creeping Bentgrass ( Agrostis stolonifera) from the Plant Pathogen Clarireedia jacksonii, the Causal Agent of Dollar Spot Disease. J Fungi (Basel) 2022; 8:jof8101097. [PMID: 36294663 PMCID: PMC9605492 DOI: 10.3390/jof8101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Dollar spot disease, caused by the fungal pathogen Clarireedia jacksonii, is a major problem in many turfgrass species, particularly creeping bentgrass (Agrostis stolonifera). It is well-established that strong creeping red fescue (Festuca rubra subsp. rubra) exhibits good dollar spot resistance when infected by the fungal endophyte Epichloë festucae. This endophyte-mediated disease resistance is unique to the fine fescues and has not been observed in other grass species infected with other Epichloë spp. The mechanism underlying the unique endophyte-mediated disease resistance in strong creeping red fescue has not yet been established. We pursued the possibility that it may be due to the presence of an abundant secreted antifungal protein produced by E. festucae. Here, we compare the activity of the antifungal protein expressed in Escherichia coli, Pichia pastoris, and Penicillium chrysogenum. Active protein was recovered from all systems, with the best activity being from Pe. chrysogenum. In greenhouse assays, topical application of the purified antifungal protein to creeping bentgrass and endophyte-free strong creeping red fescue protected the plants from developing severe symptoms caused by C. jacksonii. These results support the hypothesis that Efe-AfpA is a major contributor to the dollar spot resistance observed with E. festucae-infected strong creeping red fescue in the field, and that this protein could be developed as an alternative or complement to fungicides for the management of this disease on turfgrasses.
Collapse
|
14
|
Gandía M, Moreno‐Giménez E, Giner‐Llorca M, Garrigues S, Ropero‐Pérez C, Locascio A, Martínez‐Culebras PV, Marcos JF, Manzanares P. Development of a FungalBraid Penicillium expansum-based expression system for the production of antifungal proteins in fungal biofactories. Microb Biotechnol 2022; 15:630-647. [PMID: 35084102 PMCID: PMC8867986 DOI: 10.1111/1751-7915.14006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/10/2022] [Indexed: 12/03/2022] Open
Abstract
Fungal antifungal proteins (AFPs) have attracted attention as novel biofungicides. Their exploitation requires safe and cost-effective producing biofactories. Previously, Penicillium chrysogenum and Penicillium digitatum produced recombinant AFPs with the use of a P. chrysogenum-based expression system that consisted of the paf gene promoter, signal peptide (SP)-pro sequence and terminator. Here, the regulatory elements of the afpA gene encoding the highly produced PeAfpA from Penicillium expansum were developed as an expression system for AFP production through the FungalBraid platform. The afpA cassette was tested to produce PeAfpA and P. digitatum PdAfpB in P. chrysogenum and P. digitatum, and its efficiency was compared to that of the paf cassette. Recombinant PeAfpA production was only achieved using the afpA cassette, being P. chrysogenum a more efficient biofactory than P. digitatum. Conversely, P. chrysogenum only produced PdAfpB under the control of the paf cassette. In P. digitatum, both expression systems allowed PdAfpB production, with the paf cassette resulting in higher protein yields. Interestingly, these results did not correlate with the performance of both promoters in a luciferase reporter system. In conclusion, AFP production is a complex outcome that depends on the regulatory sequences driving afp expression, the fungal biofactory and the AFP sequence.
Collapse
Affiliation(s)
- Mónica Gandía
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
- Present address:
Departamento de Medicina Preventiva y Salud PúblicaCiencias de la Alimentación, Bromatología, Toxicología y Medicina LegalUniversitat de ValènciaVicente Andrés Estellés s/nValencia46100Spain
| | - Elena Moreno‐Giménez
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
- Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Biología Molecular y Celular de Plantas (IBMCP)Universidad Politécnica de ValenciaValenciaSpain
| | - Moisés Giner‐Llorca
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
| | - Sandra Garrigues
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
| | - Carolina Ropero‐Pérez
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
| | - Antonella Locascio
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
| | - Pedro V. Martínez‐Culebras
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
- Departamento de Medicina Preventiva y Salud PúblicaCiencias de la Alimentación, Bromatología, Toxicología y Medicina LegalUniversitat de ValènciaVicente Andrés Estellés s/nValencia46100Spain
| | - Jose F. Marcos
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
| | - Paloma Manzanares
- Food Biotechnology DepartmentConsejo Superior de Investigaciones Científicas (CSIC)Instituto de Agroquímica y Tecnología de Alimentos (IATA)Catedrático Agustín Escardino Benlloch 7Paterna, Valencia46980Spain
| |
Collapse
|
15
|
Antifungal Peptides and Proteins to Control Toxigenic Fungi and Mycotoxin Biosynthesis. Int J Mol Sci 2021; 22:ijms222413261. [PMID: 34948059 PMCID: PMC8703302 DOI: 10.3390/ijms222413261] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
The global challenge to prevent fungal spoilage and mycotoxin contamination on food and feed requires the development of new antifungal strategies. Antimicrobial peptides and proteins (AMPs) with antifungal activity are gaining much interest as natural antifungal compounds due to their properties such as structure diversity and function, antifungal spectrum, mechanism of action, high stability and the availability of biotechnological production methods. Given their multistep mode of action, the development of fungal resistance to AMPs is presumed to be slow or delayed compared to conventional fungicides. Interestingly, AMPs also accomplish important biological functions other than antifungal activity, including anti-mycotoxin biosynthesis activity, which opens novel aspects for their future use in agriculture and food industry to fight mycotoxin contamination. AMPs can reach intracellular targets and exert their activity by mechanisms other than membrane permeabilization. The mechanisms through which AMPs affect mycotoxin production are varied and complex, ranging from oxidative stress to specific inhibition of enzymatic components of mycotoxin biosynthetic pathways. This review presents natural and synthetic antifungal AMPs from different origins which are effective against mycotoxin-producing fungi, and aims at summarizing current knowledge concerning their additional effects on mycotoxin biosynthesis. Antifungal AMPs properties and mechanisms of action are also discussed.
Collapse
|
16
|
Cairns TC, Zheng X, Zheng P, Sun J, Meyer V. Turning Inside Out: Filamentous Fungal Secretion and Its Applications in Biotechnology, Agriculture, and the Clinic. J Fungi (Basel) 2021; 7:535. [PMID: 34356914 PMCID: PMC8307877 DOI: 10.3390/jof7070535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Filamentous fungi are found in virtually every marine and terrestrial habitat. Vital to this success is their ability to secrete a diverse range of molecules, including hydrolytic enzymes, organic acids, and small molecular weight natural products. Industrial biotechnologists have successfully harnessed and re-engineered the secretory capacity of dozens of filamentous fungal species to make a diverse portfolio of useful molecules. The study of fungal secretion outside fermenters, e.g., during host infection or in mixed microbial communities, has also led to the development of novel and emerging technological breakthroughs, ranging from ultra-sensitive biosensors of fungal disease to the efficient bioremediation of polluted environments. In this review, we consider filamentous fungal secretion across multiple disciplinary boundaries (e.g., white, green, and red biotechnology) and product classes (protein, organic acid, and secondary metabolite). We summarize the mechanistic understanding for how various molecules are secreted and present numerous applications for extracellular products. Additionally, we discuss how the control of secretory pathways and the polar growth of filamentous hyphae can be utilized in diverse settings, including industrial biotechnology, agriculture, and the clinic.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
17
|
Gandía M, Kakar A, Giner-Llorca M, Holzknecht J, Martínez-Culebras P, Galgóczy L, Marx F, Marcos JF, Manzanares P. Potential of Antifungal Proteins (AFPs) to Control Penicillium Postharvest Fruit Decay. J Fungi (Basel) 2021; 7:449. [PMID: 34199956 PMCID: PMC8229795 DOI: 10.3390/jof7060449] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Penicillium phytopathogenic species provoke severe postharvest disease and economic losses. Penicillium expansum is the main pome fruit phytopathogen while Penicillium digitatum and Penicillium italicum cause citrus green and blue mold, respectively. Control strategies rely on the use of synthetic fungicides, but the appearance of resistant strains and safety concerns have led to the search for new antifungals. Here, the potential application of different antifungal proteins (AFPs) including the three Penicillium chrysogenum proteins (PAF, PAFB and PAFC), as well as the Neosartorya fischeri NFAP2 protein to control Penicillium decay, has been evaluated. PAFB was the most potent AFP against P. digitatum, P. italicum and P. expansum, PAFC and NFAP2 showed moderate antifungal activity, whereas PAF was the least active protein. In fruit protection assays, PAFB provoked a reduction of the incidence of infections caused by P. digitatum and P. italicum in oranges and by P. expansum in apples. A combination of AFPs did not result in an increase in the efficacy of disease control. In conclusion, this study expands the antifungal inhibition spectrum of the AFPs evaluated, and demonstrates that AFPs act in a species-specific manner. PAFB is a promising alternative compound to control Penicillium postharvest fruit decay.
Collapse
Affiliation(s)
- Mónica Gandía
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Valencia, Spain; (M.G.); (M.G.-L.); (P.M.-C.); (J.F.M.)
- Departamento de Medicina Preventiva y Salud Pública, Ciencias de la Alimentación, Bromatología, Toxicología y Medicina Legal, Universitat de València, Vicente Andrès Estellès s/n, 46100 Valencia, Spain
| | - Anant Kakar
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (A.K.); (J.H.); (F.M.)
| | - Moisés Giner-Llorca
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Valencia, Spain; (M.G.); (M.G.-L.); (P.M.-C.); (J.F.M.)
| | - Jeanett Holzknecht
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (A.K.); (J.H.); (F.M.)
| | - Pedro Martínez-Culebras
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Valencia, Spain; (M.G.); (M.G.-L.); (P.M.-C.); (J.F.M.)
- Departamento de Medicina Preventiva y Salud Pública, Ciencias de la Alimentación, Bromatología, Toxicología y Medicina Legal, Universitat de València, Vicente Andrès Estellès s/n, 46100 Valencia, Spain
| | - László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, 6726 Szeged, Hungary;
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (A.K.); (J.H.); (F.M.)
| | - Jose F. Marcos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Valencia, Spain; (M.G.); (M.G.-L.); (P.M.-C.); (J.F.M.)
| | - Paloma Manzanares
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Valencia, Spain; (M.G.); (M.G.-L.); (P.M.-C.); (J.F.M.)
| |
Collapse
|
18
|
Martínez-Culebras PV, Gandía M, Boronat A, Marcos JF, Manzanares P. Differential susceptibility of mycotoxin-producing fungi to distinct antifungal proteins (AFPs). Food Microbiol 2021; 97:103760. [PMID: 33653530 DOI: 10.1016/j.fm.2021.103760] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
The global challenge to prevent fungal spoilage and mycotoxin contamination on foods and feeds require the development of new antifungal strategies. Filamentous fungi encode diverse antifungal proteins (AFPs), which offer a great potential for the control of contaminant fungi. In this study, four AFPs from Penicillium digitatum (PdAfpB) and Penicillium expansum (PeAfpA, PeAfpB and PeAfpC) belonging to classes A, B and C, were tested against a representative panel of mycotoxin-producing fungi. They included a total of 38 strains representing 32 different species belonging to the genera Alternaria, Aspergillus, Byssochlamys, Fusarium and Penicillium. PeAfpA exhibited a potent antifungal activity, since the growth of all tested fungi was completely inhibited by concentrations ranging from 0.5 to 16 μg/mL. PdAfpB and PeAfpB, although less effective than PeAfpA, showed significant activity against most of the mycotoxigenic fungi tested. Importantly, PeAfpC previously described as inactive, showed a powerful inhibition against B. spectabilis strains, which are important spoilage and mycotoxin fungi in pasteurized foods. Although less effective than in liquid media, AFPs affected fungal growth on solid media. This study also underlines the potential of these AFPs, in particular PeAfpA, as future antifungal agents for applications in foods, on growing crops or during postharvest storage.
Collapse
Affiliation(s)
- Pedro V Martínez-Culebras
- Departamento de Medicina Preventiva y Salud Pública, Ciencias de la Alimentación, Bromatología, Toxicología y Medicina Legal. Universitat de València, Vicente Andrès Estellès S/n, Burjassot, 46100, Valencia, Spain; Departamento de Biotecnología. Instituto de Agroquímica y Tecnología de los Alimentos (IATA-CSIC), C/ Catedrático Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| | - Mónica Gandía
- Departamento de Biotecnología. Instituto de Agroquímica y Tecnología de los Alimentos (IATA-CSIC), C/ Catedrático Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Alicia Boronat
- Departamento de Medicina Preventiva y Salud Pública, Ciencias de la Alimentación, Bromatología, Toxicología y Medicina Legal. Universitat de València, Vicente Andrès Estellès S/n, Burjassot, 46100, Valencia, Spain
| | - Jose F Marcos
- Departamento de Biotecnología. Instituto de Agroquímica y Tecnología de los Alimentos (IATA-CSIC), C/ Catedrático Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Paloma Manzanares
- Departamento de Biotecnología. Instituto de Agroquímica y Tecnología de los Alimentos (IATA-CSIC), C/ Catedrático Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| |
Collapse
|
19
|
A Novel Secreted Cysteine-Rich Anionic (Sca) Protein from the Citrus Postharvest Pathogen Penicillium digitatum Enhances Virulence and Modulates the Activity of the Antifungal Protein B (AfpB). J Fungi (Basel) 2020; 6:jof6040203. [PMID: 33023232 PMCID: PMC7711571 DOI: 10.3390/jof6040203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Antifungal proteins (AFPs) from ascomycete fungi could help the development of antimycotics. However, little is known about their biological role or functional interactions with other fungal biomolecules. We previously reported that AfpB from the postharvest pathogen Penicillium digitatum cannot be detected in the parental fungus yet is abundantly produced biotechnologically. While aiming to detect AfpB, we identified a conserved and novel small Secreted Cysteine-rich Anionic (Sca) protein, encoded by the gene PDIG_23520 from P. digitatum CECT 20796. The sca gene is expressed during culture and early during citrus fruit infection. Both null mutant (Δsca) and Sca overproducer (Scaop) strains show no phenotypic differences from the wild type. Sca is not antimicrobial but potentiates P. digitatum growth when added in high amounts and enhances the in vitro antifungal activity of AfpB. The Scaop strain shows increased incidence of infection in citrus fruit, similar to the addition of purified Sca to the wild-type inoculum. Sca compensates and overcomes the protective effect of AfpB and the antifungal protein PeAfpA from the apple pathogen Penicillium expansum in fruit inoculations. Our study shows that Sca is a novel protein that enhances the growth and virulence of its parental fungus and modulates the activity of AFPs.
Collapse
|
20
|
Gandía M, Monge A, Garrigues S, Orozco H, Giner-Llorca M, Marcos JF, Manzanares P. Novel insights in the production, activity and protective effect of Penicillium expansum antifungal proteins. Int J Biol Macromol 2020; 164:3922-3931. [PMID: 32871122 DOI: 10.1016/j.ijbiomac.2020.08.208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 01/11/2023]
Abstract
Antifungal proteins (AFPs) offer a great potential as new biofungicides to control deleterious fungi. The phytopathogenic fungus Penicillium expansum encodes three phylogenetically distinct AFPs, PeAfpA, PeAfpB and PeAfpC. Here, PeAfpA, a potent in vitro self-inhibitory protein, was demonstrated to control the infection caused by P. expansum in Golden apple fruits. We determined the production of the three proteins in different growth media. PeAfpA and PeAfpC were simultaneously produced by P. expansum in three out of the eight media tested as detected by Western blot, whereas PeAfpB was not detected even in those described for class B AFP production. Regardless of the culture medium, the carbon source affected Peafp expression. Notably, the production of PeAfpA was strain-dependent, but analyses of PeafpA regulatory sequences in the three strains studied could not explain differences in protein production. None of the PeAFPs was produced during apple infection, suggesting no relevant role in pathogenesis. PeAfpA together with PeAfpB and also with Penicillium digitatum PdAfpB showed synergistic interaction. The highly active antifungal PeAfpA also showed moderate antibacterial activity. We conclude that there is not a general pattern for Peafp gene expression, protein production or antimicrobial activity and confirm PeAfpA as a promising compound for postharvest conservation.
Collapse
Affiliation(s)
- Mónica Gandía
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain
| | - Ana Monge
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain
| | - Sandra Garrigues
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain
| | - Helena Orozco
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain
| | - Moisés Giner-Llorca
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain
| | - Jose F Marcos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain
| | - Paloma Manzanares
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
21
|
The Antifungal Protein AfpB Induces Regulated Cell Death in Its Parental Fungus Penicillium digitatum. mSphere 2020; 5:5/4/e00595-20. [PMID: 32848004 PMCID: PMC7449623 DOI: 10.1128/msphere.00595-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disease-causing fungi pose a serious threat to human health and food safety and security. The limited number of licensed antifungals, together with the emergence of pathogenic fungi with multiple resistance to available antifungals, represents a serious challenge for medicine and agriculture. Therefore, there is an urgent need for new compounds with high fungal specificity and novel antifungal mechanisms. Antifungal proteins in general, and AfpB from Penicillium digitatum in particular, are promising molecules for the development of novel antifungals. This study on AfpB’s mode of action demonstrates its potent, specific fungicidal activity through the interaction with multiple targets, presumably reducing the risk of evolving fungal resistance, and through a regulated cell death process, uncovering this protein as an excellent candidate for a novel biofungicide. The in-depth knowledge on AfpB mechanistic function presented in this work is important to guide its possible future clinical and agricultural applications. Filamentous fungi produce small cysteine-rich proteins with potent, specific antifungal activity, offering the potential to fight fungal infections that severely threaten human health and food safety and security. The genome of the citrus postharvest fungal pathogen Penicillium digitatum encodes one of these antifungal proteins, namely AfpB. Biotechnologically produced AfpB inhibited the growth of major pathogenic fungi at minimal concentrations, surprisingly including its parental fungus, and conferred protection to crop plants against fungal infections. This study reports an in-depth characterization of the AfpB mechanism of action, showing that it is a cell-penetrating protein that triggers a regulated cell death program in the target fungus. We prove the importance of AfpB interaction with the fungal cell wall to exert its killing activity, for which protein mannosylation is required. We also show that the potent activity of AfpB correlates with its rapid and efficient uptake by fungal cells through an energy-dependent process. Once internalized, AfpB induces a transcriptional reprogramming signaled by reactive oxygen species that ends in cell death. Our data show that AfpB activates a self-injury program, suggesting that this protein has a biological function in the parental fungus beyond defense against competitors, presumably more related to regulation of the fungal population. Our results demonstrate that this protein is a potent antifungal that acts through various targets to kill fungal cells through a regulated process, making AfpB a promising compound for the development of novel biofungicides with multiple fields of application in crop and postharvest protection, food preservation, and medical therapies. IMPORTANCE Disease-causing fungi pose a serious threat to human health and food safety and security. The limited number of licensed antifungals, together with the emergence of pathogenic fungi with multiple resistance to available antifungals, represents a serious challenge for medicine and agriculture. Therefore, there is an urgent need for new compounds with high fungal specificity and novel antifungal mechanisms. Antifungal proteins in general, and AfpB from Penicillium digitatum in particular, are promising molecules for the development of novel antifungals. This study on AfpB’s mode of action demonstrates its potent, specific fungicidal activity through the interaction with multiple targets, presumably reducing the risk of evolving fungal resistance, and through a regulated cell death process, uncovering this protein as an excellent candidate for a novel biofungicide. The in-depth knowledge on AfpB mechanistic function presented in this work is important to guide its possible future clinical and agricultural applications.
Collapse
|
22
|
Tóth L, Váradi G, Boros É, Borics A, Ficze H, Nagy I, Tóth GK, Rákhely G, Marx F, Galgóczy L. Biofungicidal Potential of Neosartorya ( Aspergillus) Fischeri Antifungal Protein NFAP and Novel Synthetic γ-Core Peptides. Front Microbiol 2020; 11:820. [PMID: 32477291 PMCID: PMC7237641 DOI: 10.3389/fmicb.2020.00820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Because of enormous crop losses worldwide due to pesticide-resistant plant pathogenic fungi, there is an increasing demand for the development of novel antifungal strategies in agriculture. Antifungal proteins (APs) and peptides are considered potential biofungicides; however, several factors limit their direct agricultural application, such as the high cost of production, narrow antifungal spectrum, and detrimental effects to plant development and human/animal health. This study evaluated the safety of the application of APs and peptides from the ascomycete Neosartorya fischeri as crop preservatives. The full-length N. fischeri AP (NFAP) and novel rationally designed γ-core peptide derivatives (PDs) γNFAP-opt and γNFAP-optGZ exhibited efficacy by inhibiting the growth of the agriculturally relevant filamentous ascomycetes in vitro. A high positive net charge, however, neither the hydrophilicity nor the primary structure supported the antifungal efficacy of these PDs. Further testing demonstrated that the antifungal activity did not require a conformational change of the β-pleated NFAP or the canonically ordered conformation of the synthetic PDs. Neither hemolysis nor cytotoxicity was observed when the NFAP and γNFAP-opt were applied at antifungally effective concentrations in human cell lines. Similarly, the Medicago truncatula plants that served as toxicity model and were grown from seedlings that were treated with NFAP, γNFAP-opt, or γNFAP-optGZ failed to exhibit morphological aberrations, reduction in primary root length, or the number of lateral roots. Crop protection experiments demonstrated that NFAP and associated antifungal active γ-core PDs were able to protect tomato fruits against the postharvest fungal pathogen Cladosporium herbarum.
Collapse
Affiliation(s)
- Liliána Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Györgyi Váradi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Éva Boros
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Hargita Ficze
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - István Nagy
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Gábor K. Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Florentine Marx
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
23
|
Tong S, Li M, Keyhani NO, Liu Y, Yuan M, Lin D, Jin D, Li X, Pei Y, Fan Y. Characterization of a fungal competition factor: Production of a conidial cell-wall associated antifungal peptide. PLoS Pathog 2020; 16:e1008518. [PMID: 32324832 PMCID: PMC7200012 DOI: 10.1371/journal.ppat.1008518] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/05/2020] [Accepted: 04/05/2020] [Indexed: 01/16/2023] Open
Abstract
Competition is one of the fundamental driving forces of natural selection. Beauveria bassiana is a soil and plant phylloplane/root fungus capable of parasitizing insect hosts. Soil and plant environments are often enriched with other fungi against which B. bassiana competes for survival. Here, we report an antifungal peptide (BbAFP1), specifically expressed and localized to the conidial cell wall and is released into the surrounding microenvironment inhibiting growth of competing fungi. B. bassiana strains expressing BbAFP1, including overexpression strains, inhibited growth of Alternaria brassicae in co-cultured experiments, whereas targeted gene deletion of BbAFP1 significantly decreased (25%) this inhibitory effect. Recombinant BbAFP1 showed chitin and glucan binding abilities, and growth inhibition of a wide range of phytopathogenic fungi by disrupting membrane integrity and eliciting reactive oxygen species (ROS) production. A phenylalanine residue (F50) contributes to chitin binding and antifungal activity, but was not required for the latter. Expression of BbAFP1 in tomato resulted in transgenic plants with enhanced resistance to plant fungal pathogens. These results highlight the importance of fungal competition in shaping primitive competition strategies, with antimicrobial compounds that can be embedded in the spore cell wall to be released into the environment during the critical initial phases of germination for successful growth in its environmental niche. Furthermore, these peptides can be exploited to increase plant resistance to fungal pathogens. Microbial competition exerts powerful selective pressures for the development of defensive and offensive methods of suppressing potential competitors. One of the most vulnerable stages for any fungi is the initial germination of resting spores in potentially hostile environments. Currently, we know little about how fungi defend other microbial competitors during the beginning stage of conidial germination. Here, we report on an antifungal peptide from B. bassiana (BbAFP1) that is specifically expressed in mature aerial conidia, with the protein localized exclusively to the conidial cell wall. The “pre-loaded” BbAFP1 is released into the surrounding microenvironment where it can act to inhibit the growth of competing fungi during the initial stages of fungal germination, i.e. largely before actual germ tubes are apparent, thus conferring an advantage to B. bassiana in out-competing susceptible competitors in the microenvironment surrounding the spore. The effects of BbAFP1 on membrane integrity were characterized and a key amino acid (F50) was shown to function in chitin binding and antifungal activity. Transgenic tomato overexpressing BbAFP1 were shown to exhibit enhanced resistance to plant fungal pathogens. Our study provides new insights into the microbial competition and genes involved in this process that can be exploited to increase plant disease resistance.
Collapse
Affiliation(s)
- Sheng Tong
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Maolian Li
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Nemat O. Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Yu Liu
- College of Biotechnology, Southwest University, Chongqing, P. R. China
| | - Min Yuan
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Dongmei Lin
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Dan Jin
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Xianbi Li
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Yanhua Fan
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, P.R. China
- * E-mail:
| |
Collapse
|
24
|
Vazquez‐Vilar M, Gandía M, García‐Carpintero V, Marqués E, Sarrion‐Perdigones A, Yenush L, Polaina J, Manzanares P, Marcos JF, Orzaez D. Multigene Engineering by GoldenBraid Cloning: From Plants to Filamentous Fungi and Beyond. ACTA ACUST UNITED AC 2020; 130:e116. [DOI: 10.1002/cpmb.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marta Vazquez‐Vilar
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Universitat Politècnica de València–Consejo Superior de Investigaciones Científicas (CSIC) Valencia Spain
| | - Mónica Gandía
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA)Consejo Superior de Investigaciones Científicas (CSIC) Valencia Spain
| | - Victor García‐Carpintero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Universitat Politècnica de València–Consejo Superior de Investigaciones Científicas (CSIC) Valencia Spain
| | - Eric Marqués
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA)Consejo Superior de Investigaciones Científicas (CSIC) Valencia Spain
| | | | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Universitat Politècnica de València–Consejo Superior de Investigaciones Científicas (CSIC) Valencia Spain
| | - Julio Polaina
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA)Consejo Superior de Investigaciones Científicas (CSIC) Valencia Spain
| | - Paloma Manzanares
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA)Consejo Superior de Investigaciones Científicas (CSIC) Valencia Spain
| | - Jose F. Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA)Consejo Superior de Investigaciones Científicas (CSIC) Valencia Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Universitat Politècnica de València–Consejo Superior de Investigaciones Científicas (CSIC) Valencia Spain
| |
Collapse
|
25
|
Contreras G, Shirdel I, Braun MS, Wink M. Defensins: Transcriptional regulation and function beyond antimicrobial activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103556. [PMID: 31747541 DOI: 10.1016/j.dci.2019.103556] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/20/2023]
Abstract
Defensins are one the largest group of antimicrobial peptides and are part of the innate defence. Defensins are produced by animals, plants and fungi. In animals and plants, defensins can be constitutively or differentially expressed both locally or systemically which confer defence before and a stronger response after infection. Immune signalling pathways regulate the gene expression of defensins. These pathways include cellular receptors, which recognise pathogen-associated molecular patterns and are found both in plants and animals. After recognition, signalling pathways and, subsequently, transcriptional factors are activated. There is an increasing number of novel functions in defensins, such as immunomodulators and immune cell attractors. Identification of defensin triggers could help us to elucidate other new functions. The present article reviews the different elicitors of defensins with a main focus on human, fish and marine invertebrate defensins.
Collapse
Affiliation(s)
- Gabriela Contreras
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | - Iman Shirdel
- Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
26
|
Huber A, Lerchster H, Marx F. Nutrient Excess Triggers the Expression of the Penicillium chrysogenum Antifungal Protein PAFB. Microorganisms 2019; 7:microorganisms7120654. [PMID: 31817241 PMCID: PMC6956099 DOI: 10.3390/microorganisms7120654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022] Open
Abstract
Nutrient limitation and nonfavorable growth conditions have been suggested to be major triggers for the expression of small, cysteine-rich antimicrobial proteins (AMPs) of fungal origin, e.g., the Penicillium chrysogenum antifungal protein (PAF), the Aspergillus giganteus antifungal protein (AFP), the Aspergillus niger antifungal protein (AnAFP). Therefore, these AMPs have been considered to be fungal secondary metabolite products. In contrast, the present study revealed that the expression of the PAF-related AMP P. chrysogenum antifungal protein B (PAFB) is strongly induced under nutrient excess during the logarithmic growth phase, whereas PAFB remained under the detection level in the supernatant of cultures grown under nutrient limitation. The efficiency of the pafB-promoter to induce PAFB expression was compared with that of two P. chrysogenum promoters that are well established for recombinant protein production: the paf-promoter and the xylose-inducible promoter of the xylanase gene, xylP. The inducibility of the pafB-promoter was superior to that of the xylP-promoter yielding comparable PAFB amounts as under the regulation of the paf-promoter. We conclude that (i) differences in the expression regulation of AMPs suggest distinct functional roles in the producer beyond their antifungal activity; and (ii) the pafB-promoter is a promising tool for recombinant protein production in P. chrysogenum, as it guarantees strong gene expression with the advantage of inducibility.
Collapse
|
27
|
Gandía M, Garrigues S, Bolós B, Manzanares P, Marcos JF. The Myosin Motor Domain-Containing Chitin Synthases Are Involved in Cell Wall Integrity and Sensitivity to Antifungal Proteins in Penicillium digitatum. Front Microbiol 2019; 10:2400. [PMID: 31681248 PMCID: PMC6813208 DOI: 10.3389/fmicb.2019.02400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
Abstract
Penicillium digitatum is the main postharvest pathogen of citrus fruit and is responsible for important economic losses in spite of the massive use of fungicides. The fungal cell wall (CW) and its specific component chitin are potential targets for the development of new antifungal molecules. Among these are the antifungal peptides and proteins that specifically interact with fungal CW. Chitin is synthesized by a complex family of chitin synthases (Chs), classified into up to eight classes within three divisions. Previously, we obtained and characterized a mutant of P. digitatum in the class VII gene (ΔchsVII), which contains a short myosin motor-like domain (MMD). In this report, we extend our previous studies to the characterization of mutants in chsII and in the gene coding for the other MMD-Chs (chsV), and study the role of chitin synthases in the sensitivity of P. digitatum to the self-antifungal protein AfpB, and to AfpA obtained from P. expansum. The ΔchsII mutant showed no significant phenotypic and virulence differences with the wild type strain, except in the production and morphology of the conidia. In contrast, mutants in chsV showed a more dramatic phenotype than the previous ΔchsVII, with reduced growth and conidial production, increased chitin content, changes in mycelial morphology and a decrease in virulence to citrus fruit. Mutants in chsVII were specifically more tolerant than the wild type to nikkomycin Z, an antifungal inhibitor of chitin biosynthesis. Treatment of P. digitatum with its own antifungal protein AfpB resulted in an overall reduction in the expression of the chitin synthase genes. The mutants corresponding to MMD chitin synthases exhibited differential sensitivity to the antifungal proteins AfpA and AfpB, ΔchsVII being more susceptible than its parental strain and ΔchsV being slightly more tolerant despite its reduced growth in liquid broth. Taking these results together, we conclude that the MMD-containing chitin synthases affect cell wall integrity and sensitivity to antifungal proteins in P. digitatum.
Collapse
Affiliation(s)
- Mónica Gandía
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | | | | | | |
Collapse
|
28
|
Delgado J, Ballester AR, Núñez F, González-Candelas L. Evaluation of the activity of the antifungal PgAFP protein and its producer mould against Penicillium spp postharvest pathogens of citrus and pome fruits. Food Microbiol 2019; 84:103266. [PMID: 31421779 DOI: 10.1016/j.fm.2019.103266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022]
Abstract
Postharvest fungal diseases are among the main causes of fresh fruit losses. Chemical control is against claims for "natural" or "chemical-free" products. Biocontrol agents, such as antifungal proteins or their producing moulds, may serve to combat unwanted pathogens. Since the effectiveness of these bioprotective agents depends on the food substrate, their effect must be tested on fruits. The objective of this work was to study the effect of the antifungal protein PgAFP and its producer, Penicillium chrysogenum, against Penicillium expansum and Penicillium digitatum growth on apple and oranges respectively, and the PgAFP effect on eleven P. expansum, Penicillium italicum, and P. digitatum strains in vitro, and on patulin production on apple substrate. The sensitivity upon PgAFP was P. digitatum > P. expansum > P. italicum. In oranges, broadly, no inhibitory effect was obtained. PgAFP and P. chrysogenum did not inhibit the P. expansum CMP-1 growth on Golden Delicious apples, however, a successful effect was achieved on Royal Gala apples. On apple substrate, patulin production by P. expansum CMP-1 rose in parallel to PgAFP concentrations, linked with high reactive oxygen species levels. PgAFP cannot be proposed as a bioprotective agent on apple. However, P. chrysogenum is a promising agent to be used on Royal Gala apples.
Collapse
Affiliation(s)
- Josué Delgado
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avenida de la Universidad s/n, 10003, Cáceres, Spain
| | - Ana-Rosa Ballester
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC). C. Catedrático Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Félix Núñez
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avenida de la Universidad s/n, 10003, Cáceres, Spain.
| | - Luis González-Candelas
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC). C. Catedrático Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
29
|
Shi X, Cordero T, Garrigues S, Marcos JF, Daròs J, Coca M. Efficient production of antifungal proteins in plants using a new transient expression vector derived from tobacco mosaic virus. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1069-1080. [PMID: 30521145 PMCID: PMC6523586 DOI: 10.1111/pbi.13038] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/24/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Fungi that infect plants, animals or humans pose a serious threat to human health and food security. Antifungal proteins (AFPs) secreted by filamentous fungi are promising biomolecules that could be used to develop new antifungal therapies in medicine and agriculture. They are small highly stable proteins with specific potent activity against fungal pathogens. However, their exploitation requires efficient, sustainable and safe production systems. Here, we report the development of an easy-to-use, open access viral vector based on Tobacco mosaic virus (TMV). This new system allows the fast and efficient assembly of the open reading frames of interest in small intermediate entry plasmids using the Gibson reaction. The manipulated TMV fragments are then transferred to the infectious clone by a second Gibson assembly reaction. Recombinant proteins are produced by agroinoculating plant leaves with the resulting infectious clones. Using this simple viral vector, we have efficiently produced two different AFPs in Nicotiana benthamiana leaves, namely the Aspergillus giganteus AFP and the Penicillium digitatum AfpB. We obtained high protein yields by targeting these bioactive small proteins to the apoplastic space of plant cells. However, when AFPs were targeted to intracellular compartments, we observed toxic effects in the host plants and undetectable levels of protein. We also demonstrate that this production system renders AFPs fully active against target pathogens, and that crude plant extracellular fluids containing the AfpB can protect tomato plants from Botrytis cinerea infection, thus supporting the idea that plants are suitable biofactories to bring these antifungal proteins to the market.
Collapse
Affiliation(s)
- Xiaoqing Shi
- Centre for Research in Agricultural Genomics (CRAGCSIC‐IRTA‐UAB‐UB)Cerdanyola del VallèsSpain
| | - Teresa Cordero
- Instituto de Biología Molecular y Celular de Plantas (IBMCPCSIC‐Universitat Politècnica de València)ValenciaSpain
| | - Sandra Garrigues
- Instituto de Agroquímica y Tecnología de Alimentos (IATA, CSIC)PaternaSpain
| | - Jose F. Marcos
- Instituto de Agroquímica y Tecnología de Alimentos (IATA, CSIC)PaternaSpain
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCPCSIC‐Universitat Politècnica de València)ValenciaSpain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAGCSIC‐IRTA‐UAB‐UB)Cerdanyola del VallèsSpain
| |
Collapse
|
30
|
Hajdu D, Huber A, Czajlik A, Tóth L, Kele Z, Kocsubé S, Fizil Á, Marx F, Galgóczy L, Batta G. Solution structure and novel insights into phylogeny and mode of action of the Neosartorya (Aspergillus) fischeri antifungal protein (NFAP). Int J Biol Macromol 2019; 129:511-522. [PMID: 30738898 DOI: 10.1016/j.ijbiomac.2019.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/22/2019] [Accepted: 02/03/2019] [Indexed: 01/02/2023]
Abstract
Small, cysteine-rich and cationic antifungal proteins from natural sources are promising candidates for the development of novel treatment strategies to prevent and combat infections caused by drug-resistant fungi. However, limited information about their structure and antifungal mechanism hampers their future applications. In the present study, we determined the solution structure, dynamics and associated solvent areas of the Neosartorya (Aspergillus) fischeri antifungal protein NFAP. Genome mining within the genus revealed the presence of orthologous genes in N. fischeri and Neosartorya spathulata, and genes encoding closely related proteins can be found in Penicillium brasiliensis and Penicillium oxalicum. We show that the tertiary structure of these putative proteins can be resolved using the structure of NFAP as reliable template for in silico prediction. Localization studies with fluorescence-labelled protein pointed at an energy-dependent uptake mechanism of NFAP in the sensitive model fungus Neurospora crassa and subsequent cytoplasmic localization coincided with cell-death induction. The presented results contribute to a better understanding of the structure/function relationship of NFAP and related proteins and pave the way towards future antifungal drug development.
Collapse
Affiliation(s)
- Dorottya Hajdu
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Anna Huber
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - András Czajlik
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Liliána Tóth
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary; Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Zoltán Kele
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Ádám Fizil
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - László Galgóczy
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary; Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Gyula Batta
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| |
Collapse
|
31
|
Huber A, Oemer G, Malanovic N, Lohner K, Kovács L, Salvenmoser W, Zschocke J, Keller MA, Marx F. Membrane Sphingolipids Regulate the Fitness and Antifungal Protein Susceptibility of Neurospora crassa. Front Microbiol 2019; 10:605. [PMID: 31031714 PMCID: PMC6471014 DOI: 10.3389/fmicb.2019.00605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
The membrane sphingolipid glucosylceramide (GlcCer) plays an important role in fungal fitness and adaptation to most diverse environments. Moreover, reported differences in the structure of GlcCer between fungi, plants and animals render this pathway a promising target for new generation therapeutics. Our knowledge about the GlcCer biosynthesis in fungi is mainly based on investigations of yeasts, whereas this pathway is less well characterized in molds. We therefore performed a detailed lipidomic profiling of GlcCer species present in Neurospora crassa and comprehensively show that the deletion of genes encoding enzymes involved in GlcCer biosynthesis affects growth, conidiation and stress response in this model fungus. Importantly, our study evidences that differences in the pathway intermediates and their functional role exist between N. crassa and other fungal species. We further investigated the role of GlcCer in the susceptibility of N. crassa toward two small cysteine-rich and cationic antimicrobial proteins (AMPs), PAF and PAFB, which originate from the filamentous ascomycete Penicillium chrysogenum. The interaction of these AMPs with the fungal plasma membrane is crucial for their antifungal toxicity. We found that GlcCer determines the susceptibility of N. crassa toward PAF, but not PAFB. A higher electrostatic affinity of PAFB than PAF to anionic membrane surfaces might explain the difference in their antifungal mode of action.
Collapse
Affiliation(s)
- Anna Huber
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Oemer
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Nermina Malanovic
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Graz, Austria
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Graz, Austria
| | - Laura Kovács
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Johannes Zschocke
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A Keller
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Gandía M, Garrigues S, Hernanz-Koers M, Manzanares P, Marcos JF. Differential roles, crosstalk and response to the Antifungal Protein AfpB in the three Mitogen-Activated Protein Kinases (MAPK) pathways of the citrus postharvest pathogen Penicillium digitatum. Fungal Genet Biol 2019; 124:17-28. [DOI: 10.1016/j.fgb.2018.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
|
33
|
Galgóczy L, Marx F. Do Antimicrobial Proteins Contribute to Overcoming the Hidden Antifungal Crisis at the Dawn of a Post-Antibiotic Era? Microorganisms 2019; 7:16. [PMID: 30641886 PMCID: PMC6352135 DOI: 10.3390/microorganisms7010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
The incidence of fungal infections has been grossly underestimated in the past decades as a consequence of poor identification techniques and a lack of regular epidemiologic surveys in low- and middle-income countries [...].
Collapse
Affiliation(s)
- László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Florentine Marx
- Biocenter, Division of Molecular Biology, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
34
|
Heredero M, Garrigues S, Gandía M, Marcos JF, Manzanares P. Rational Design and Biotechnological Production of Novel AfpB-PAF26 Chimeric Antifungal Proteins. Microorganisms 2018; 6:microorganisms6040106. [PMID: 30326659 PMCID: PMC6313716 DOI: 10.3390/microorganisms6040106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 01/19/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been proposed as candidates to develop new antimicrobial compounds for medicine, agriculture, and food preservation. PAF26 is a synthetic antifungal hexapeptide obtained from combinatorial approaches with potent fungicidal activity against filamentous fungi. Other interesting AMPs are the antifungal proteins (AFPs) of fungal origin, which are basic cysteine-rich and small proteins that can be biotechnologically produced in high amounts. A promising AFP is the AfpB identified in the phytopathogen Penicillium digitatum. In this work, we aimed to rationally design, biotechnologically produce and test AfpB::PAF26 chimeric proteins to obtain designed AFPs (dAfpBs) with improved properties. The dAfpB6 and dAfpB9 chimeras could be produced using P. digitatum as biofactory and a previously described Penicillium chrysogenum-based expression cassette, but only dAfpB9 could be purified and characterized. Protein dAfpB9 showed subtle and fungus-dependent differences of fungistatic activity against filamentous fungi compared to native AfpB. Significantly, dAfpB9 lost the fungicidal activity of PAF26 and AfpB, thus disconnecting this activity from the fungistatic activity and mapping fungicidal determinants to the exposed loop L3 of AfpB, wherein modifications are located. This study provides information on the design and development of novel chimeric AFPs.
Collapse
Affiliation(s)
- Marcos Heredero
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, 46980 Valencia, Spain.
| | - Sandra Garrigues
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, 46980 Valencia, Spain.
| | - Mónica Gandía
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, 46980 Valencia, Spain.
| | - Jose F Marcos
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, 46980 Valencia, Spain.
| | - Paloma Manzanares
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, 46980 Valencia, Spain.
| |
Collapse
|
35
|
Garrigues S, Gandía M, Castillo L, Coca M, Marx F, Marcos JF, Manzanares P. Three Antifungal Proteins From Penicillium expansum: Different Patterns of Production and Antifungal Activity. Front Microbiol 2018; 9:2370. [PMID: 30344516 PMCID: PMC6182064 DOI: 10.3389/fmicb.2018.02370] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023] Open
Abstract
Antifungal proteins of fungal origin (AFPs) are small, secreted, cationic, and cysteine-rich proteins. Filamentous fungi encode a wide repertoire of AFPs belonging to different phylogenetic classes, which offer a great potential to develop new antifungals for the control of pathogenic fungi. The fungus Penicillium expansum is one of the few reported to encode three AFPs each belonging to a different phylogenetic class (A, B, and C). In this work, the production of the putative AFPs from P. expansum was evaluated, but only the representative of class A, PeAfpA, was identified in culture supernatants of the native fungus. The biotechnological production of PeAfpB and PeAfpC was achieved in Penicillium chrysogenum with the P. chrysogenum-based expression cassette, which had been proved to work efficiently for the production of other related AFPs in filamentous fungi. Western blot analyses confirmed that P. expansum only produces PeAfpA naturally, whereas PeAfpB and PeAfpC could not be detected. From the three AFPs from P. expansum, PeAfpA showed the highest antifungal activity against all fungi tested, including plant and human pathogens. P. expansum was also sensitive to its self-AFPs PeAfpA and PeAfpB. PeAfpB showed moderate antifungal activity against filamentous fungi, whereas no activity could be attributed to PeAfpC at the conditions tested. Importantly, none of the PeAFPs showed hemolytic activity. Finally, PeAfpA was demonstrated to efficiently protect against fungal infections caused by Botrytis cinerea in tomato leaves and Penicillium digitatum in oranges. The strong antifungal potency of PeAfpA, together with the lack of cytotoxicity, and significant in vivo protection against phytopathogenic fungi that cause postharvest decay and plant diseases, make PeAfpA a promising alternative compound for application in agriculture, but also in medicine or food preservation.
Collapse
Affiliation(s)
- Sandra Garrigues
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Mónica Gandía
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Jose F. Marcos
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Paloma Manzanares
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
36
|
Characterization of a novel cysteine-rich antifungal protein from Fusarium graminearum with activity against maize fungal pathogens. Int J Food Microbiol 2018; 283:45-51. [DOI: 10.1016/j.ijfoodmicro.2018.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 02/08/2023]
|
37
|
Sonderegger C, Váradi G, Galgóczy L, Kocsubé S, Posch W, Borics A, Dubrac S, Tóth GK, Wilflingseder D, Marx F. The Evolutionary Conserved γ-Core Motif Influences the Anti- Candida Activity of the Penicillium chrysogenum Antifungal Protein PAF. Front Microbiol 2018; 9:1655. [PMID: 30079061 PMCID: PMC6062912 DOI: 10.3389/fmicb.2018.01655] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022] Open
Abstract
Small, cysteine-rich and cationic antimicrobial proteins (AMPs) from filamentous ascomycetes represent ideal bio-molecules for the development of next-generation antifungal therapeutics. They are promising candidates to counteract resistance development and may complement or even replace current small molecule-based antibiotics in the future. In this study, we show that a 14 amino acid (aa) long peptide (Pγ) spanning the highly conserved γ-core motif of the Penicillium chrysogenum antifungal protein (PAF) has antifungal activity against the opportunistic human pathogenic yeast Candida albicans. By substituting specific aa we elevated the positive net charge and the hydrophilicity of Pγ and created the peptide variants Pγvar and Pγopt with 10-fold higher antifungal activity than Pγ. Similarly, the antifungal efficacy of the PAF protein could be significantly improved by exchanging the respective aa in the γ-core of the protein by creating the protein variants PAFγvar and PAFγopt. The designed peptides and proteins were investigated in detail for their physicochemical features and mode of action, and were tested for cytotoxicity on mammalian cells. This study proves for the first time the important role of the γ-core motif in the biological function of an AMP from ascomycetes. Furthermore, we provide a detailed phylogenetic analysis that proves the presence and conservation of the γ-core motif in all AMP classes from Eurotiomycetes. We emphasize the potential of this common protein motif for the design of short antifungal peptides and as a protein motif in which targeted aa substitutions enhance antimicrobial activity.
Collapse
Affiliation(s)
- Christoph Sonderegger
- Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Györgyi Váradi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Wilfried Posch
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergy, Innsbruck Medical University, Innsbruck, Austria
| | - Gábor K. Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Szeged, Hungary
| | - Doris Wilflingseder
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Florentine Marx
- Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
38
|
Hernanz-Koers M, Gandía M, Garrigues S, Manzanares P, Yenush L, Orzaez D, Marcos JF. FungalBraid: A GoldenBraid-based modular cloning platform for the assembly and exchange of DNA elements tailored to fungal synthetic biology. Fungal Genet Biol 2018; 116:51-61. [DOI: 10.1016/j.fgb.2018.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022]
|
39
|
Meyer V, Jung S. Antifungal Peptides of the AFP Family Revisited: Are These Cannibal Toxins? Microorganisms 2018; 6:microorganisms6020050. [PMID: 29865265 PMCID: PMC6027536 DOI: 10.3390/microorganisms6020050] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
Abstract
The emergence and spread of pathogenic fungi resistant to currently used antifungal drugs represents a serious challenge for medicine and agriculture. The use of smart antimicrobials, so-called “dirty drugs” which affect multiple cellular targets, is one strategy to prevent resistance. Of special interest is the exploitation of the AFP family of antimicrobial peptides, which include its founding member AFP from Aspergillus giganteus. This latter is a highly potent inhibitor of chitin synthesis and affects plasma membrane integrity in many human and plant pathogenic fungi. A transcriptomic meta-analysis of the afp-encoding genes in A. giganteus and A. niger predicts a role for these proteins during asexual sporulation, autophagy, and nutrient recycling, suggesting that AFPs are molecules important for the survival of A. niger and A. giganteus under nutrient limitation. In this review, we discuss parallels which exist between AFPs and bacterial cannibal toxins and provide arguments that the primary function of AFPs could be to kill genetically identical siblings. We hope that this review inspires computational and experimental biologists studying alternative explanations for the nature and function of antimicrobial peptides beyond the general assumption that they are mere defense molecules to fight competitors.
Collapse
Affiliation(s)
- Vera Meyer
- Department Applied and Molecular Microbiology, Technische Universität Berlin, Institute of Biotechnology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| | - Sascha Jung
- Department Applied and Molecular Microbiology, Technische Universität Berlin, Institute of Biotechnology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| |
Collapse
|
40
|
Huber A, Hajdu D, Bratschun-Khan D, Gáspári Z, Varbanov M, Philippot S, Fizil Á, Czajlik A, Kele Z, Sonderegger C, Galgóczy L, Bodor A, Marx F, Batta G. New Antimicrobial Potential and Structural Properties of PAFB: A Cationic, Cysteine-Rich Protein from Penicillium chrysogenum Q176. Sci Rep 2018; 8:1751. [PMID: 29379111 PMCID: PMC5788923 DOI: 10.1038/s41598-018-20002-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
Small, cysteine-rich and cationic proteins with antimicrobial activity are produced by diverse organisms of all kingdoms and represent promising molecules for drug development. The ancestor of all industrial penicillin producing strains, the ascomycete Penicillium chryosgenum Q176, secretes the extensively studied antifungal protein PAF. However, the genome of this strain harbours at least two more genes that code for other small, cysteine-rich and cationic proteins with potential antifungal activity. In this study, we characterized the pafB gene product that shows high similarity to PgAFP from P. chrysogenum R42C. Although abundant and timely regulated pafB gene transcripts were detected, we could not identify PAFB in the culture broth of P. chrysogenum Q176. Therefore, we applied a P. chrysogenum-based expression system to produce sufficient amounts of recombinant PAFB to address unanswered questions concerning the structure and antimicrobial function. Nuclear magnetic resonance (NMR)-based analyses revealed a compact β-folded structure, comprising five β-strands connected by four solvent exposed and flexible loops and an "abcabc" disulphide bond pattern. We identified PAFB as an inhibitor of growth of human pathogenic moulds and yeasts. Furthermore, we document for the first time an anti-viral activity for two members of the small, cysteine-rich and cationic protein group from ascomycetes.
Collapse
Affiliation(s)
- Anna Huber
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Dorottya Hajdu
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Doris Bratschun-Khan
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50A, 1083, Budapest, Hungary
| | - Mihayl Varbanov
- SRSMC, UMR 7565, Université de Lorraine - CNRS, Faculté de Pharmacie, 5 rue Albert Lebrun, BP 80402, 54001, Nancy, France
| | - Stéphanie Philippot
- SRSMC, UMR 7565, Université de Lorraine - CNRS, Faculté de Pharmacie, 5 rue Albert Lebrun, BP 80402, 54001, Nancy, France
| | - Ádám Fizil
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - András Czajlik
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Zoltán Kele
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dom Sq 8, 6720, Szeged, Hungary
| | - Christoph Sonderegger
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - László Galgóczy
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Andrea Bodor
- Institute of Chemistry, Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Gyula Batta
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| |
Collapse
|
41
|
Garrigues S, Gandía M, Popa C, Borics A, Marx F, Coca M, Marcos JF, Manzanares P. Efficient production and characterization of the novel and highly active antifungal protein AfpB from Penicillium digitatum. Sci Rep 2017; 7:14663. [PMID: 29116156 PMCID: PMC5677034 DOI: 10.1038/s41598-017-15277-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/24/2017] [Indexed: 12/28/2022] Open
Abstract
Filamentous fungi encode distinct antifungal proteins (AFPs) that offer great potential to develop new antifungals. Fungi are considered immune to their own AFPs as occurs in Penicillium chrysogenum, the producer of the well-known PAF. The Penicillium digitatum genome encodes only one afp gene (afpB), and the corresponding protein (AfpB) belongs to the class B phylogenetic cluster. Previous attempts to detect AfpB were not successful. In this work, immunodetection confirmed the absence of AfpB accumulation in wild type and previous recombinant constitutive P. digitatum strains. Biotechnological production and secretion of AfpB were achieved in P. digitatum with the use of a P. chrysogenum-based expression cassette and in the yeast Pichia pastoris with the α-factor signal peptide. Both strategies allowed proper protein folding, efficient production and single-step purification of AfpB from culture supernatants. AfpB showed antifungal activity higher than the P. chrysogenum PAF against the majority of the fungi tested, especially against Penicillium species and including P. digitatum, which was highly sensitive to the self-AfpB. Spectroscopic data suggest that native folding is not required for activity. AfpB also showed notable ability to withstand protease and thermal degradation and no haemolytic activity, making AfpB a promising candidate for the control of pathogenic fungi.
Collapse
Affiliation(s)
- Sandra Garrigues
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Mónica Gandía
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Crina Popa
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Bellaterra, Barcelona, Spain
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre of Hungarian Academy of Sciences, Szeged, Hungary
| | - Florentine Marx
- Biocenter, Division of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Bellaterra, Barcelona, Spain
| | - Jose F Marcos
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Paloma Manzanares
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
42
|
Garrigues S, Gandía M, Borics A, Marx F, Manzanares P, Marcos JF. Mapping and Identification of Antifungal Peptides in the Putative Antifungal Protein AfpB from the Filamentous Fungus Penicillium digitatum. Front Microbiol 2017; 8:592. [PMID: 28428776 PMCID: PMC5382200 DOI: 10.3389/fmicb.2017.00592] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Antifungal proteins (AFPs) from Ascomycetes are small cysteine-rich proteins that are abundantly secreted and show antifungal activity against non-producer fungi. A gene coding for a class B AFP (AfpB) was previously identified in the genome of the plant pathogen Penicillium digitatum. However, previous attempts to detect the AfpB protein were not successful despite the high expression of the corresponding afpB gene. In this work, the structure of the putative AfpB was modeled. Based on this model, four synthetic cysteine-containing peptides, PAF109, PAF112, PAF118, and PAF119, were designed and their antimicrobial activity was tested and characterized. PAF109 that corresponds to the γ-core motif present in defensin-like antimicrobial proteins did not show antimicrobial activity. On the contrary, PAF112 and PAF118, which are cationic peptides derived from two surface-exposed loops in AfpB, showed moderate antifungal activity against P. digitatum and other filamentous fungi. It was also confirmed that cyclization through a disulfide bridge prevented peptide degradation. PAF116, which is a peptide analogous to PAF112 but derived from the Penicillium chrysogenum antifungal protein PAF, showed activity against P. digitatum similar to PAF112, but was less active than the native PAF protein. The two AfpB-derived antifungal peptides PAF112 and PAF118 showed positive synergistic interaction when combined against P. digitatum. Furthermore, the synthetic hexapeptide PAF26 previously described in our laboratory also exhibited synergistic interaction with the peptides PAF112, PAF118, and PAF116, as well as with the PAF protein. This study is an important contribution to the mapping of antifungal motifs within the AfpB and other AFPs, and opens up new strategies for the rational design and application of antifungal peptides and proteins.
Collapse
Affiliation(s)
- Sandra Garrigues
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Mónica Gandía
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre of Hungarian Academy of SciencesSzeged, Hungary
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Medical University of InnsbruckInnsbruck, Austria
| | - Paloma Manzanares
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Jose F Marcos
- Institute of Biochemistry, Biological Research Centre of Hungarian Academy of SciencesSzeged, Hungary
| |
Collapse
|
43
|
Tóth L, Kele Z, Borics A, Nagy LG, Váradi G, Virágh M, Takó M, Vágvölgyi C, Galgóczy L. NFAP2, a novel cysteine-rich anti-yeast protein from Neosartorya fischeri NRRL 181: isolation and characterization. AMB Express 2016; 6:75. [PMID: 27637945 PMCID: PMC5025423 DOI: 10.1186/s13568-016-0250-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/07/2016] [Indexed: 11/24/2022] Open
Abstract
The increasing incidence of fungal infections and damages due to drug-resistant fungi urges the development of new antifungal strategies. The cysteine-rich antifungal proteins from filamentous ascomycetes provide a feasible base for protection against molds due to their potent antifungal activity on them. In contrast to this, they show no or weak activity on yeasts, hence their applicability against this group of fungi is questionable. In the present study a 5.6 kDa anti-yeast protein (NFAP2) is isolated, identified and characterized from the ferment broth of Neosartorya fischeri NRRL 181. Based on a phylogenetic analysis, NFAP2 and its putative homologs represent a new group of ascomycetous cysteine-rich antifungal proteins. NFAP2 proved to be highly effective against tested yeasts involving clinically relevant Candida species. NFAP2 did not cause metabolic inactivity and apoptosis induction, but its plasma membrane disruption ability was observed on Saccharomyces cerevisiae. The antifungal activity was maintained after high temperature treatment presumably due to the in silico predicted stable tertiary structure. The disulfide bond-stabilized, heat-resistant folded structure of NFAP2 was experimentally proved. After further investigations of antifungal mechanism, structure and toxicity, NFAP2 could be applicable as a potent antifungal agent against yeasts.
Collapse
Affiliation(s)
- Liliána Tóth
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726 Hungary
| | - Zoltán Kele
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, Szeged, 6720 Hungary
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726 Hungary
| | - László G. Nagy
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726 Hungary
| | - Györgyi Váradi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, Szeged, 6720 Hungary
| | - Máté Virágh
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726 Hungary
| | - Miklós Takó
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726 Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726 Hungary
| | - László Galgóczy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726 Hungary
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria
| |
Collapse
|
44
|
Pinheiro AM, Carreira A, Rollo F, Fernandes R, Ferreira RB, Monteiro SA. Blad-Containing Oligomer Fungicidal Activity on Human Pathogenic Yeasts. From the Outside to the Inside of the Target Cell. Front Microbiol 2016; 7:1803. [PMID: 27933037 PMCID: PMC5122710 DOI: 10.3389/fmicb.2016.01803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/27/2016] [Indexed: 12/02/2022] Open
Abstract
Blad polypeptide comprises residues 109-281 of Lupinus albus β-conglutin precursor. It occurs naturally as a major subunit of an edible, 210 kDa oligomer which accumulates to high levels, exclusively in the cotyledons of Lupinus seedlings between the 4th and 14th day after the onset of germination. Blad-containing oligomer (BCO) exhibits a potent and broad spectrum fungicide activity toward plant pathogens and is now on sale in the US under the tradename FractureTM. In this work we demonstrate its antifungal activity toward human pathogens and provide some insights on its mode of action. BCO bioactivity was evaluated in eight yeast species and compared to that of amphotericin B (AMB). BCO behaved similarly to AMB in what concerns both cellular inhibition and cellular death. As a lectin, BCO binds strongly to chitin. In addition, BCO is known to possess 'exochitinase' and 'endochitosanase' activities. However, no clear disruption was visualized at the cell wall after exposure to a lethal BCO concentration, except in cell buds. Immunofluorescent and immunogold labeling clearly indicate that BCO enters the cell, and membrane destabilization was also demonstrated. The absence of haemolytic activity, its biological origin, and its extraordinary antifungal activity are the major outcomes of this work, and provide a solid background for a future application as a new antifungal therapeutic drug. Furthermore, its predictable multisite mode of action suggests a low risk of inducing resistance mechanisms, which are now a major problem with other currently available antifungal drugs.
Collapse
Affiliation(s)
- Ana M. Pinheiro
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | | | - Filipe Rollo
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Rui Fernandes
- Histology and Electron Microscopy Service, Instituto de Investigação e Inovação em SaúdePorto, Portugal
| | - Ricardo B. Ferreira
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Sara A. Monteiro
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
- CEV, SACantanhede, Portugal
| |
Collapse
|
45
|
Sonderegger C, Galgóczy L, Garrigues S, Fizil Á, Borics A, Manzanares P, Hegedüs N, Huber A, Marcos JF, Batta G, Marx F. A Penicillium chrysogenum-based expression system for the production of small, cysteine-rich antifungal proteins for structural and functional analyses. Microb Cell Fact 2016; 15:192. [PMID: 27835989 PMCID: PMC5106836 DOI: 10.1186/s12934-016-0586-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/28/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Small, cysteine-rich and cationic antifungal proteins (APs) from filamentous ascomycetes, such as NFAP from Neosartorya fischeri and PAF from Penicillium chrysogenum, are promising candidates for novel drug development. A prerequisite for their application is a detailed knowledge about their structure-function relation and mode of action, which would allow protein modelling to enhance their toxicity and specificity. Technologies for structure analyses, such as electronic circular dichroism (ECD) or NMR spectroscopy, require highly purified samples and in case of NMR milligrams of uniformly 15N-/13C-isotope labelled protein. To meet these requirements, we developed a P. chrysogenum-based expression system that ensures sufficient amount and optimal purity of APs for structural and functional analyses. RESULTS The APs PAF, PAF mutants and NFAP were expressed in a P. chrysogenum ∆paf mutant strain that served as perfect microbial expression factory. This strain lacks the paf-gene coding for the endogenous antifungal PAF and is resistant towards several APs from other ascomycetes. The expression of the recombinant proteins was under the regulation of the strong paf promoter, and the presence of a paf-specific pre-pro sequence warranted the secretion of processed proteins into the supernatant. The use of defined minimal medium allowed a single-step purification of the recombinant proteins. The expression system could be extended to express PAF in the related fungus Penicillium digitatum, which does not produce detectable amounts of APs, demonstrating the versatility of the approach. The molecular masses, folded structures and antifungal activity of the recombinant proteins were analysed by ESI-MS, ECD and NMR spectroscopy and growth inhibition assays. CONCLUSION This study demonstrates the implementation of a paf promoter driven expression cassettes for the production of cysteine-rich, cationic, APs in different Penicillium species. The system is a perfect tool for the generation of correctly folded proteins with high quality for structure-function analyses.
Collapse
Affiliation(s)
- Christoph Sonderegger
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria
| | - László Galgóczy
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria
| | - Sandra Garrigues
- Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia Spain
| | - Ádám Fizil
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre of Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Paloma Manzanares
- Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia Spain
| | - Nikoletta Hegedüs
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria
- Sandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria
| | - Anna Huber
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria
| | - Jose F. Marcos
- Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia Spain
| | - Gyula Batta
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria
| |
Collapse
|
46
|
Manuscript title: antifungal proteins from moulds: analytical tools and potential application to dry-ripened foods. Appl Microbiol Biotechnol 2016; 100:6991-7000. [DOI: 10.1007/s00253-016-7706-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022]
|