1
|
Dagar VS, Mishra M, Sharma A, Sankar M, Goyal S, Pal R, Kumar S. Ascertaining variations in the activity of larval midgut enzymes of Helicoverpa armigera by dietary emamectin benzoate through biochemical and in silico docking study. CHEMOSPHERE 2024; 359:142288. [PMID: 38750729 DOI: 10.1016/j.chemosphere.2024.142288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
Helicoverpa armigera, a ubiquitous polyphagous pest, poses a significant threat to global agriculture, causing substantial economic losses and demonstrating resistance to synthetic pesticides. This study investigates the potential of emamectin benzoate (EMB), an avermectin derivative, as an effective control agent against H. armigera. The larvae of the NBII-MP-NOC-01 strain of H. armigera were reared on an artificial diet. The impact of dietary EMB was examined on four midgut enzymes; alanine aminotransferase (ALT), aspartate aminotransferase (AST), acid phosphatase (ACP), and alkaline phosphatase (ALP). Results showed a dose-dependent and time-dependent reduction in ALT and AST activity, while an initial increase and subsequent decline in ACP and ALP activity at higher EMB concentrations. Computational modelling of enzyme structures and molecular docking studies revealed differential binding of EMB with the midgut enzymes. The strongest interaction was observed between EMB and ALT residues, contrasting with weakest interactions observed with AST. The study also showed that decreased activity of transaminases in H. armigera caused by EMB may be because of stability-activity trade-off, while in phosphatases reverse may be the case. This research provides crucial insights into the biochemical responses and the intricate insecticide-enzyme interactions in H. armigera caused by EMB exposure. This study lays the foundation for further research aimed at developing environmentally friendly approaches for managing H. armigera, addressing the challenges associated with conventional pesticides.
Collapse
Affiliation(s)
- Vinay Singh Dagar
- Department of Zoology, Acharya Narendra Dev College (University of Delhi), Govindpuri, New Delhi, India; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Sector-3, Dwarka, New Delhi, India.
| | - Monika Mishra
- Department of Zoology, Acharya Narendra Dev College (University of Delhi), Govindpuri, New Delhi, India.
| | - Aarti Sharma
- Galgotias University, School of Biological and Life Sciences, Greater Noida, Uttar Pradesh, India.
| | - Manu Sankar
- Department of Zoology, Acharya Narendra Dev College (University of Delhi), Govindpuri, New Delhi, India.
| | - Shubham Goyal
- Department of Microbiology, University of Manitoba, Winnipeg City, Manitoba Province, Canada.
| | - Ranjan Pal
- Department of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| | - Sarita Kumar
- Department of Zoology, Acharya Narendra Dev College (University of Delhi), Govindpuri, New Delhi, India.
| |
Collapse
|
2
|
Sharma S, Padhi S, Chourasia R, Dey S, Patnaik S, Sahoo D. Phytoconstituents from Urtica dioica (stinging nettle) of Sikkim Himalaya and their molecular docking interactions revealed their nutraceutical potential as α-amylase and α-glucosidase inhibitors. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2649-2658. [PMID: 37599855 PMCID: PMC10439086 DOI: 10.1007/s13197-023-05789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 08/22/2023]
Abstract
In this study, antioxidative methanolic leaf extract (MeOH-SIS) of Urtica dioica was characterized for anti-diabetic activity. The extract was purified on a column to yield seven homogenous fractions (F1-F7) which were further determined for DPPH radical scavenging activity. MeOH-SIS and the fraction F1 (selected based on % yield and activity) were evaluated for their in vitro α-amylase and α-glucosidase inhibitory activity. The results showed inhibition of both enzymes in a dose dependent manner and F1 exhibited relatively higher inhibition than its mother extract MeOH-SIS. GC-MS analyses of both the extracts identified 24 major compounds among which 10 were previously described as bioactive compounds. Among all, 5 compounds demonstrated to have quality pharmacokinetics profiles and were examined for possible binding affinity against the active sites of α-amylase and α-glucosidase using molecular docking. The binding interaction of 2R-acetoxymethyl-1,3,3-trimethyl-4 T-(3-methyl-2-buten-1-yl)-1 T-cyclohexanol within the active sites of the target receptors was found to be significant among others, and can be developed as a potential inhibitor of α-amylase and α-glucosidase. The leaf extract can be utilized to develop food additive for the control and management of oxidative stress induced diabetes.
Collapse
Affiliation(s)
- Swati Sharma
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, Sikkim India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, Sikkim India
| | - Rounak Chourasia
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, Sikkim India
| | - Sourav Dey
- Gauhati Biotech Park, Gauhati, 781031 India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, Sikkim India
- Department of Botany, University of Delhi, New Delhi, India
| |
Collapse
|
3
|
Aioub AAA, Hashem AS, El-Sappah AH, El-Harairy A, Abdel-Hady AAA, Al-Shuraym LA, Sayed S, Huang Q, Abdel-Wahab SIZ. Identification and Characterization of Glutathione S-transferase Genes in Spodoptera frugiperda (Lepidoptera: Noctuidae) under Insecticides Stress. TOXICS 2023; 11:542. [PMID: 37368642 DOI: 10.3390/toxics11060542] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Insect glutathione S-transferases (GSTs) serve critical roles in insecticides and other forms of xenobiotic chemical detoxification. The fall armyworm, Spodoptera frugiperda (J. E. Smith), is a major agricultural pest in several countries, especially Egypt. This is the first study to identify and characterize GST genes in S. frugiperda under insecticidal stress. The present work evaluated the toxicity of emamectin benzoate (EBZ) and chlorantraniliprole (CHP) against the third-instar larvae of S. frugiperda using the leaf disk method. The LC50 values of EBZ and CHP were 0.029 and 1.250 mg/L after 24 h of exposure. Moreover, we identified 31 GST genes, including 28 cytosolic and 3 microsomal SfGSTs from a transcriptome analysis and the genome data of S. frugiperda. Depending on the phylogenetic analysis, sfGSTs were divided into six classes (delta, epsilon, omega, sigma, theta, and microsomal). Furthermore, we investigated the mRNA levels of 28 GST genes using qRT-PCR under EBZ and CHP stress in the third-instar larvae of S. frugiperda. Interestingly, SfGSTe10 and SfGSTe13 stood out with the highest expression after the EBZ and CHP treatments. Finally, a molecular docking model was constructed between EBZ and CHP using the most upregulated genes (SfGSTe10 and SfGSTe13) and the least upregulated genes (SfGSTs1 and SfGSTe2) of S. frugiperda larvae. The molecular docking study showed EBZ and CHP have a high binding affinity with SfGSTe10, with docking energy values of -24.41 and -26.72 kcal/mol, respectively, and sfGSTe13, with docking energy values of -26.85 and -26.78 kcal/mol, respectively. Our findings are important for understanding the role of GSTs in S. frugiperda regarding detoxification processes for EBZ and CHP.
Collapse
Affiliation(s)
- Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed S Hashem
- Stored Product Pests Research Department, Plant Protection Research Institute, Agricultural Research Center, Sakha, Kafr El-Sheikh 33717, Egypt
| | - Ahmed H El-Sappah
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Amged El-Harairy
- Unit of Entomology, Plant Protection Department, Desert Research Center, Mathaf El-Matariya St. 1, El-Matariya, Cairo 11753, Egypt
- Department of Integrated Pest Management, Plant Protection Institute, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, 2103 Gödöllő, Hungary
| | - Amira A A Abdel-Hady
- Economic Entomology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Laila A Al-Shuraym
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Samy Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Qiulan Huang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Sarah I Z Abdel-Wahab
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
4
|
Nabi M, Zargar MI, Tabassum N, Ganai BA, Wani SUD, Alshehri S, Alam P, Shakeel F. Phytochemical Profiling and Antibacterial Activity of Methanol Leaf Extract of Skimmia anquetilia. PLANTS (BASEL, SWITZERLAND) 2022; 11:1667. [PMID: 35807619 PMCID: PMC9268939 DOI: 10.3390/plants11131667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 05/22/2023]
Abstract
Skimmia anquetilia is a plant species native to the Western Himalaya region that has tremendous potential for phytochemical activities. This study aimed to identify bioactive compounds and assess the antibacterial activity of S. anquetilia. To determine the major bioactive chemicals in the methanol leaf extract of S. anquetilia, we used a gas chromatography-mass spectrometer (GC-MS). The presence of 35 distinct phytoconstituents was discovered using GC-MS, which could contribute to the therapeutic capabilities of this plant species. The most predominant compound was 2R-acetoxymethyl-1,3,3-trimethyl-4t-(3-methyl-2-buten-1-yl)-1t-cyclohexanol (23.9%). Further, the leaf extract was evaluated for antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, and Staphylococcus aureus. The extract showed the highest zone of inhibition against E. coli (19 mm) followed by P. aeruginosa (18 mm) and K. Pneumoniae (17 mm) at 160 mg mL-1. The minimum inhibitory concentration (MIC) of methanol extract against the strain of P. aeruginosa (2 mg mL-1) demonstrated significant antibacterial activity. The findings of the present study highlight the potential of S. anquetilia for the development of herbal medicines for the treatment of various pathogenic infections.
Collapse
Affiliation(s)
- Masarat Nabi
- Department of Environmental Science, University of Kashmir, Srinagar 190006, Jammu & Kashmir, India;
| | - Mohammed Iqbal Zargar
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar 190006, Jammu & Kashmir, India; (M.I.Z.); (N.T.); (S.U.D.W.)
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar 190006, Jammu & Kashmir, India; (M.I.Z.); (N.T.); (S.U.D.W.)
| | - Bashir Ahmad Ganai
- Center of Research for Development, University of Kashmir, Srinagar 190006, Jammu & Kashmir, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar 190006, Jammu & Kashmir, India; (M.I.Z.); (N.T.); (S.U.D.W.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.S.)
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.S.)
| |
Collapse
|
5
|
Ramalingam V, Rajaram R, Archunan G, Padmanabhan P, Gulyás B. Structural Characterization, Antimicrobial, Antibiofilm, Antioxidant, Anticancer and Acute Toxicity Properties of N-(2-hydroxyphenyl)-2-phenazinamine From Nocardiopsis exhalans (KP149558). Front Cell Infect Microbiol 2022; 12:794338. [PMID: 35663469 PMCID: PMC9161293 DOI: 10.3389/fcimb.2022.794338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to isolate and identify potential drugs from marine actinomycete Nocardiopsis exhalans and screen them for biomedical applications. The cell-free culture of N. exhalans was extracted with ethyl acetate and the solvent extract showed six fractions in thin-layer chromatography. The fractions were subjected to column chromatography for purification and evaluated for activity against human clinical pathogens. Fraction 4 showed significant activity and was identified as N-(2-hydroxyphenyl)-2-phenazinamine (NHP) using spectral analyses. Further, NHP showed excellent biofilm inhibitory activity against human clinical pathogens Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antioxidant activity confirmed that NHP is scavenging the oxidative stress-enhancing molecules. The anti-proliferative activity of NHP against human breast cancer cells showed significant activity at 300 µg/ml and less cytotoxic activity against normal cells. Additionally, the toxicity assessment against zebrafish revealed that NHP does not cause any toxicity in the important organs. The results highlight N. exhalans as a promising candidate for the development of antibiotics with potential therapeutic applications.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Centre for Natural Products and Traditional Knowledge, Indian Institute of Chemical Technology, Hyderabad, India
- DNA Barcoding and Marine Genomics Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, India
- *Correspondence: Vaikundamoorthy Ramalingam, ; Parasuraman Padmanabhan,
| | - Rajendran Rajaram
- DNA Barcoding and Marine Genomics Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, India
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University Tiruchirappalli, Tamil Nadu, India
- Dean of Research, Marudupandiyar College, Thanjavur, India
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University, Nanyang Technological University, Singapore, Singapore
- Imaging Probe Development Platform (IPDP), Nanyang Technological University, Singapore, Singapore
- *Correspondence: Vaikundamoorthy Ramalingam, ; Parasuraman Padmanabhan,
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University, Nanyang Technological University, Singapore, Singapore
- Imaging Probe Development Platform (IPDP), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
Sarkar G, Suthindhiran K. Diversity and Biotechnological Potential of Marine Actinomycetes from India. Indian J Microbiol 2022; 62:475-493. [PMID: 35601673 PMCID: PMC9107781 DOI: 10.1007/s12088-022-01024-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/01/2022] [Indexed: 01/23/2023] Open
Abstract
Actinomycetes are potential antibiotic producers that have been isolated from various terrestrial ecosystems and are exploited for their bioactive compounds. On the contrary, the marine environments were less explored and the research on marine actinomycetes had gained momentum only for the past three decades. Marine actinomycetes are one of the most significant producers of diverse groups of secondary metabolites and provide a huge scope for pharmaceutical and other industries. These organisms are proved to be important, both biotechnologically and economically considering their global presence. The marine ecosystem in India is less explored for the isolation of actinomycetes and several ecological niches are left unattended. Compared to the global scenario, the contribution from Indian researchers towards the isolation and exploitation of marine actinomycetes from the Indian sub-continent is noteworthy. Exploration of actinomycetes from these ecosystems will certainly yield new species and metabolites. Considering the declining rate of drug discovery from terrestrial actinomycetes, the marine counterparts, especially from unexplored regions from the Indian coast will hold a promising way ahead. Apart from drugs, these organisms are reported for the production of different industrially important enzymes like cellulase, amylase, protease, lipase, etc. They are also used in environmental applications, agriculture, and aquacultures sectors. With the rapid advancement in the study of actinomycetes from different marine sources in India, new metabolites are being discovered which have an important role from the economic and industrial point of view. As the world is witnessing newer diseases such as Sars-Cov 2 and the pandemic due to its demands drugs and other metabolites are increasing day by day. Therefore, the necessity for the quest for unique and rare marine actinomycetes is enhancing too. This review highlights the research on marine actinomycetes in India and also the challenges associated with its research.
Collapse
Affiliation(s)
- Gargi Sarkar
- Marine Biotechnology and Bioproducts Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - K. Suthindhiran
- Marine Biotechnology and Bioproducts Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
7
|
Nabi M, Tabassum N, Ganai BA. Phytochemical screening and antibacterial activity of Skimmia anquetilia N.P. Taylor and Airy Shaw: A first study from Kashmir Himalaya. FRONTIERS IN PLANT SCIENCE 2022; 13:937946. [PMID: 36035710 PMCID: PMC9412939 DOI: 10.3389/fpls.2022.937946] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/11/2022] [Indexed: 05/07/2023]
Abstract
The present study aimed to explore the antibacterial activity of various organic root extracts of Skimmia anquetilia N.P. Taylor and Airy Shaw and the identification of major functional groups and phytoconstituents through fourier transform infrared spectrometer (FTIR) and gas chromatography-mass spectrometer (GC-MS). The extracts were evaluated for antibacterial activity against multidrug-resistant (MDR) strains viz., Pseudomonas aeruginosa (MTCC424), Escherichia coli (MTCC739), Klebsiella pneumoniae (MTCC139), Salmonella typhi (MTCC3224), and Staphylococcus aureus (MTCC96). ESKAPE pathogens such as S. aureus, K. pneumoniae, and P. aeruginosa are responsible for a majority of all healthcare acquired infections. The ethyl acetate extract showed the highest zone of inhibition against P. aeruginosa (18 mm) followed by S. aureus (17 mm). The minimum inhibitory concentration (MIC) of ethyl acetate extract against strain of S. aureus (4 mg mL-1) demonstrated therapeutically significant antibacterial activity. The FTIR spectra of root extracts revealed the occurrence of functional characteristic peaks of alcohols, carboxylic acids, aromatic compounds, alkanes, alkenes, and amines that indicates the presence of various metabolites in the extracts. The GC-MS investigation led to the identification of diverse phytoconstituents in each of the extracts with varying concentrations and molecular masses. The highest number of compounds were identified from the methanol extract (112), followed by n-hexane extract (88) and ethyl acetate extract (74). The most predominant compounds were 5, 10-pentadecadien-1-ol, (Z,Z)-(33.94%), n-hexadecanoic acid (13.41%) in n-hexane extract, 5,10-pentadecadien-1-ol, (Z,Z)-(10.48%), 1-hexyl-2-nitrocyclohexane (7.94%) in ethyl acetate extract, and 1-hexyl-2-nitrocyclohexane (15.43%), cis,cis,cis-7,10,13-hexadecatrienal (13.29%) in methanol extract. The results of the present study will create a way for the invention of plant-based medicines for various life-threatening microbial infections using S. anquetilia, which may lead to the development of novel drugs against drug-resistant microbial infections.
Collapse
Affiliation(s)
- Masarat Nabi
- Department of Environmental Science, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, Jammu and Kashmir, India
- *Correspondence: Bashir Ahmad Ganai,
| |
Collapse
|
8
|
Wang L, Qin Y, Wang Y, Zhou Y, Liu B, Bai M, Tong X, Fang R, Huang X. Inhibitory mechanism of two homoisoflavonoids from Ophiopogon japonicus on tyrosinase activity: insight from spectroscopic analysis and molecular docking. RSC Adv 2021; 11:34343-34354. [PMID: 35497266 PMCID: PMC9042378 DOI: 10.1039/d1ra06091k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
The inhibition mechanism of two homoisoflavonoids from Ophiopogon japonicus including methylophiopogonanone A (MO-A) and methylophiopogonanone B (MO-B) on tyrosinase (Tyr) was studied by multiple spectroscopic techniques and molecular docking. The results showed that the two homoisoflavonoids both inhibited Tyr activity via a reversible mixed-inhibition, with a half inhibitory concentration (IC50) of (10.87 ± 0.25) × 10-5 and (18.76 ± 0.14) × 10-5 mol L-1, respectively. The fluorescence quenching and secondary structure change of Tyr caused by MO-A and B are mainly driven by hydrophobic interaction and hydrogen bonding. Molecular docking analysis indicated that phenylmalandioxin in MO-A and methoxy in MO-B could coordinate with a Cu ion in the active center of Tyr, and interacted with amino acid Glu322 to form hydrogen bonding, occupying the catalytic center to block the entry of the substrate and consequently inhibit Tyr activity. This study may provide new perspectives on the inhibition mechanism of MO-A and MO-B on Tyr and serve a scientific basis for screening effective Tyr inhibitors.
Collapse
Affiliation(s)
- Liling Wang
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Yuchuan Qin
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Yanbin Wang
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Yifeng Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology Hangzhou 310023 China
| | - Bentong Liu
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Minge Bai
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | | | - Ru Fang
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Xubo Huang
- Zhejiang Academy of Forestry Hangzhou 310023 China
| |
Collapse
|
9
|
Li C, Xie Y, Guo Y, Cheng Y, Yu H, Qian H, Yao W. Effects of ozone-microbubble treatment on the removal of residual pesticides and the adsorption mechanism of pesticides onto the apple matrix. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
β-Sitosterol: An Antibacterial Agent in Aquaculture Management of Vibrio Infections. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.4.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study aims at investigation of antibacterial property of Parthenium hysterophorous against aquatic bacterial pathogens and to identify the key bioactive compound of the same. Antibacterial activity of the crude extracts confirmed that chloroform extract PHC has strong antibacterial activity against aquatic pathogens V.anguillarum and V.harveyi with 16mm and 15mm ZOI at 1mg/well concentration. The crude extracts were subjected for GC-MS analysis to identify the secondary metabolites. PHC was subjected to silica-gel column chromatography to separate the individual phytochemicals. PHC was separated into 9 fractions, among which Fraction No.2 demonstrated significant antibacterial activity against V.anguillarum and V.harveyi with 19mm and 17mm ZOI at 10µg/well concentration. Fraction No.2 was identified to be β-sitosterol based on mass spectrometry analysis and fragmentation analysis. In-silico protein ligand docking demonstrated that β-sitosterol has highest affinity to inhibit dihydrofolate reductase (DHFR) enzyme with -10.10Kcal/mol binding energy. This prediction was further validated using molecular dynamic simulation for 20ns. Based on these computational analyses, it was proposed that β-sitosterol exhibits antibacterial activity via inhibition of DHFR enzyme. β-sitosterol is a well known nutritionally valuable compound that reduces cholesterol levels in humans. It is also been used as supplement feed to increase the nutritional value of cultured fishes. β-sitosterol has also been proven to have positive effect in growth and reproduction of cultivated fishes. Findings of this study strongly suggest the usage of β-sitosterol in aquaculture, as nutritional supplement and also as disease control agent to prevent and control fish diseases caused by Vibrio species.
Collapse
|
11
|
Mechanism of action of secondary metabolites from marine-derived Streptoymces on bacterial isolates by membrane permeability. Microb Pathog 2020; 149:104532. [DOI: 10.1016/j.micpath.2020.104532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022]
|
12
|
Han Z, Lian C, Ma Y, Zhang C, Liu Z, Tu Y, Ma Y, Gu Y. A frog-derived bionic peptide with discriminative inhibition of tumors based on integrin αvβ3 identification. Biomater Sci 2020; 8:5920-5930. [PMID: 32959810 DOI: 10.1039/d0bm01187h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aureins, natural active peptides extracted from skin secretions of Australian bell frogs, have become a research focus due to the antitumor effects caused by lysing cell membranes. However, clinical translation of Aureins is still limited by non-selective toxicity between normal and cancer cells. Herein, by structure-activity relationship analysis and rational linker design, a dual-function fusion peptide RA3 is designed by tactically fusing Aurein peptide A1 with strong anticancer activity, with a tri-peptide with integrin αvβ3-binding ability which was screened in our previous work. Rational design and selection of fusion linkers ensures α-helical conformation and active functions of this novel fusion peptide, inducing effective membrane rupture and selective apoptosis of cancer cells. The integrin binding and tumor recognition ability of the fusion peptide is further validated by fluorescence imaging in cell and mouse models, in comparison with the non-selective A1 peptide. Meanwhile, increased stability and superior therapeutic efficacy are achieved in vivo for the RA3 fusion peptide. Our study highlights that aided by computational simulation technologies, the biomimetic fusion RA3 peptide has been successfully designed, surmounting the poor tumor-selectivity of the natural defensive peptide, serving as a promising therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Zhihao Han
- State Key Laboratory of Natural Medicines, Department of Biomedicine Engineering, School of Engineering, China Pharmaceutical University, Nanjing, No. 24 Tongjia Lane, 210009, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sánchez-Suárez J, Coy-Barrera E, Villamil L, Díaz L. Streptomyces-Derived Metabolites with Potential Photoprotective Properties-A Systematic Literature Review and Meta-Analysis on the Reported Chemodiversity. Molecules 2020; 25:E3221. [PMID: 32679651 PMCID: PMC7397340 DOI: 10.3390/molecules25143221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Sun overexposure is associated with the development of diseases that primarily affect the skin, which can lead to skin cancer. Among the main measures of photoprotection is the use of sunscreens. However, there is currently concern about the reported harmful effects to both humans and the environment due to several of the sunscreen ingredients available on the market. For this reason, the search for and development of new agents with photoprotective properties is required. In searching for these metabolites, researchers have turned their attention to microbial sources, especially the microbiota in unusual hostile environments. Among the diverse microorganisms available in nature, Actinobacteria and specifically Streptomyces, have been shown to be a source of metabolites with various biological activities of interest, such as antimicrobial, antitumor and immunomodulator activities. Herein, we present the results of a systematic review of the literature in which Streptomyces isolates were studied as a source of compounds with photoprotective properties. A meta-analysis of the structure-property and structure-activity relationships of those metabolites identified in the qualitative analysis phase was also carried out. These findings indicate that Streptomyces are a source of metabolites with potential applications in the development of new, safe and more eco-friendly sunscreens.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Bogotá 110111, Cajicá, Cundinamarca, Colombia;
| | - Luisa Villamil
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
| | - Luis Díaz
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia
| |
Collapse
|
14
|
Kumar A, Singh PP, Gupta V, Prakash B. Assessing the antifungal and aflatoxin B 1 inhibitory efficacy of nanoencapsulated antifungal formulation based on combination of Ocimum spp. essential oils. Int J Food Microbiol 2020; 330:108766. [PMID: 32659522 DOI: 10.1016/j.ijfoodmicro.2020.108766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 01/14/2023]
Abstract
The aim of the study was to explore the antifungal and aflatoxin B1 inhibitory efficacy of nanoencapsulated antifungal formulation. Mixture design response surface methodology (RSM) was utilized to design the antifungal formulation (SBC 4:1:1) based on the combination of chemically characterized Ocimum sanctum (S), O. basilicum (B), and O. canum (C) against Aspergillus flavus. The SBC was incorporated inside the chitosan nanomatrix (Ne-SBC) using an ultrasonic probe (40 kHz) and interactions were confirmed by SEM, FTIR and XRD analysis. The results showed that the Ne-SBC possessed enhanced antifungal and aflatoxin B1 inhibitory effect over the free form of SBC. The biochemical and in silico results indicate that the antifungal and aflatoxin B1 inhibitory effect was related to perturbance in the plasma membrane function (ergosterol biosynthesis and membrane cation) mitochondrial membrane potential, C-sources utilization, antioxidant defense system, and the targeted gene products Erg 28, cytochrome c oxidase subunit Va, and Nor-1. In-situ observation revealed that Ne-SBC effectively protects the Avena sativa seeds from A. flavus and AFB1 contamination and preserves its sensory profile. The findings suggest that the fabrication of SBC inside the chitosan nano-matrix has promising use in the food industries as an antifungal agent.
Collapse
Affiliation(s)
- Akshay Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prem Pratap Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vishal Gupta
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhanu Prakash
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
15
|
Kumar A, Pratap Singh P, Prakash B. Unravelling the antifungal and anti-aflatoxin B1 mechanism of chitosan nanocomposite incorporated with Foeniculum vulgare essential oil. Carbohydr Polym 2020; 236:116050. [DOI: 10.1016/j.carbpol.2020.116050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/20/2020] [Accepted: 02/20/2020] [Indexed: 01/12/2023]
|
16
|
Hurtado DX, Castellanos FA, Coy-Barrera E, Tello E. Prostaglandins Isolated from the Octocoral Plexaura homomalla: In Silico and In Vitro Studies Against Different Enzymes of Cancer. Mar Drugs 2020; 18:md18030141. [PMID: 32121035 PMCID: PMC7143862 DOI: 10.3390/md18030141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/20/2022] Open
Abstract
Prostaglandin A2-AcMe (1) and Prostaglandin A2 (2) were isolated from the octocoral Plexaurahomomalla and three semisynthetic derivatives (3–5) were then obtained using a reduction protocol. All compounds were identified through one- and two-dimensional (1D and 2D) nuclear magnetic resonance (NMR) experiments. Additionally, evaluation of in vitro cytotoxic activity against the breast (MDA-MB-213) and lung (A549) cancer cell lines, in combination with enzymatic activity and molecular docking studies with the enzymes p38α-kinase, Src-kinase, and topoisomerase IIα, were carried out for compounds 1–5 in order to explore their potential as inhibitors of cancer-related molecular targets. Results showed that prostaglandin A2 (2) was the most potent compound with an IC50 of 16.46 and 25.20 μg/mL against MDA-MB-213 and A549 cell lines, respectively. In addition, this compound also inhibited p38α-kinase in 49% and Src-kinase in 59% at 2.5 μM, whereas topoisomerase IIα was inhibited in 64% at 10 μM. Enzymatic activity was found to be consistent with molecular docking simulations, since compound 2 also showed the lowest docking scores against the topoisomerase IIα and Src-kinase (−8.7 and −8.9 kcal/mol, respectively). Thus, molecular docking led to establish some insights into the predicted binding modes. Results suggest that prostaglandin 2 can be considered as a potential lead for development inhibitors against some enzymes present in cancer processes.
Collapse
Affiliation(s)
- Diana Ximena Hurtado
- Bioprospecting Research Group, Faculty of Engineering, Maestría en diseño y Gestión de Procesos, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca 250001, Colombia; (D.X.H.); (F.A.C.)
| | - Fabio A. Castellanos
- Bioprospecting Research Group, Faculty of Engineering, Maestría en diseño y Gestión de Procesos, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca 250001, Colombia; (D.X.H.); (F.A.C.)
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| | - Edisson Tello
- Bioprospecting Research Group, Faculty of Engineering, Maestría en diseño y Gestión de Procesos, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca 250001, Colombia; (D.X.H.); (F.A.C.)
- Correspondence: ; Tel.: +57-1-8615555 (ext. 25219)
| |
Collapse
|
17
|
An "olivomycin A" derivative from a sponge-associated Streptomyces sp. strain SP 85. 3 Biotech 2019; 9:439. [PMID: 31750037 DOI: 10.1007/s13205-019-1964-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022] Open
Abstract
We isolated an actinobacterium, Streptomyces sp. strain SP 85 from the marine sponge Dysidea avara. Polyphasic identification of the microorganism showed that the strain SP 85 had high 16S rRNA gene similarity (99%) with Streptomyces olivaceus strain NBRC 12805, while some physiological and biochemical differences were observed. A cytotoxic compound, SP 85 was isolated from the active culture extract of the strain SP 85 by bioassay-guided purification over silica gel column chromatography, preparative TLC, and HPLC. The structure elucidation based on the spectroscopic analysis, including UV, ESI-MS, and 13C NMR data revealed that SP 85 compound is an analog of anti-tumor drug, "olivomycin A". The SP 85 compound showed high cytotoxic activity against three human cancer cell lines, including SW480, HepG2, and MCF7 with IC50 values of 16, 93, and 78 nM, respectively. SP 85 exhibited significantly (2-10 times) higher cytotoxicity against the tumor cell lines in comparison with HUVECs as the normal cell line, which also induced apoptosis in the tested cancerous cell line. This is the first report on the production of an "olivomycin A" derivative by a sponge-associated Streptomyces, showing the great potential of sponge-associated actinobacteria in producing cytotoxic natural products.
Collapse
|
18
|
Selvakumar JN, Chandrasekaran SD, Doss GPC, Kumar TD. Inhibition of the ATPase Domain of Human Topoisomerase IIa on HepG2 Cells by 1, 2-benzenedicarboxylic Acid, Mono (2-ethylhexyl) Ester: Molecular Docking and Dynamics Simulations. Curr Cancer Drug Targets 2019; 19:495-503. [DOI: 10.2174/1568009619666181127122230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 08/07/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
Abstract
Background:
The major attention has been received by the natural products in the
prevention of diseases due to their pharmacological role.
Objective:
The major focus of the study was to search for highly potential anti-cancer compounds
from marine Streptomyces sp. VITJS4 (NCIM No. 5574).
Methods:
Cytotoxic assay was examined by MTT assay on HepG2 cells. Bioassay-guided fractionation
of the ethyl acetate extract from the fermented broth led to the isolation of the compound. The
lead compound structure was elucidated by combined NMR and MS analysis, and the absolute configuration
was assigned by extensive spectroscopic analysis.
Results:
On the basis of spectroscopic data, the compound was identified as 1, 2
benzenedicarboxylic acid, mono 2-ethylhexyl (BMEH). The compound exhibited in vitro anticancer
potential against liver (HepG2) cancer cells. Based on the flow cytometric analysis, it was evident
that the BMEH was also effective in arresting the cell cycle at G1 phase. Further, the Western blotting
analysis confirmed the down-regulation of Bcl-2 family proteins, and activation of caspase-9
and 3. The molecular docking and dynamics simulation were performed to reveal the activity of the
compound over a time period of 10ns. From the molecular dynamics studies, it was found that the
stability and compactness were attained by the protein by means of the compound interaction.
Conclusion:
This study highlights our collaborative efforts to ascertain lead molecules from marine
actinomycete. This is the first and foremost report to prove the mechanistic studies of the purified
compound 1, 2-benzene dicarboxylic acid, mono(2-ethylhexyl) ester isolated from marine Streptomyces
sp.VITJS4 against HepG2 cells.
Collapse
Affiliation(s)
- Jemimah Naine Selvakumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | - George Priya C. Doss
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Thirumal D. Kumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
19
|
A computational model to predict the structural and functional consequences of missense mutations in O6-methylguanine DNA methyltransferase. DNA Repair (Amst) 2019; 115:351-369. [DOI: 10.1016/bs.apcsb.2018.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
20
|
Thirumal Kumar D, Eldous HG, Mahgoub ZA, George Priya Doss C, Zayed H. Computational modelling approaches as a potential platform to understand the molecular genetics association between Parkinson's and Gaucher diseases. Metab Brain Dis 2018; 33:1835-1847. [PMID: 29978341 DOI: 10.1007/s11011-018-0286-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022]
Abstract
Gaucher's disease (GD) is a genetic disorder in which glucocerebroside accumulates in cells and specific organs. It is broadly classified into type I, type II and type III. Patients with GD are at high risk of Parkinson's disease (PD), and the clinical and pathological presentation of GD patients with PD is almost identical to idiopathic PD. Several experimental models like cell culture, animal models, and transgenic mice models were used to understand the molecular mechanism behind GD and PD association; however, such mechanism remains unclear. In this context, based on literature reports, we identified the most common mutations K198T, E326K, T369M, N370S, V394L, D409H, L444P, and R496H, in the Glucosylceramidase (GBA) protein that are known to cause GD1, and represent a risk of developing PD. However, to date, no computational analyses have designed to elucidate the potential functional role of GD mutations with increased risk of PD. The present computational pipeline allows us to understand the structural and functional significance of these GBA mutations with PD. Based on the published data, the most common and severe mutations were E326K, N370S, and L444P, which further selected for our computational analysis. PredictSNP and iStable servers predicted L444P mutant to be the most deleterious and responsible for the protein destabilization, followed by the N370S mutation. Further, we used the structural analysis and molecular dynamics approach to compare the most frequent deleterious mutations (N370S and L444P) with the mild mutation E326K. The structural analysis demonstrated that the location of E326K and N370S in the alpha helix region of the protein whereas the mutant L444P was in the starting region of the beta sheet, which might explain the predicted pathogenicity level and destabilization effect of the L444P mutant. Finally, Molecular Dynamics (MD) at 50 ns showed the highest deviation and fluctuation pattern in the L444P mutant compared to the two mutants E326K and N370S and the native protein. This was consistent with more loss of intramolecular hydrogen bonds and less compaction of the radius of gyration in the L444P mutant. The proposed study is anticipated to serve as a potential platform to understand the mechanism of the association between GD and PD, and might facilitate the process of drug discovery against both GD and PD.
Collapse
Affiliation(s)
- D Thirumal Kumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Hend Ghasan Eldous
- College of Health Sciences, Department of Biomedical Sciences, Qatar University, Doha, Qatar
| | - Zainab Alaa Mahgoub
- College of Health Sciences, Department of Biomedical Sciences, Qatar University, Doha, Qatar
| | - C George Priya Doss
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Hatem Zayed
- College of Health Sciences, Department of Biomedical Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
21
|
Investigation of interaction modes involved in alkaline phosphatase and organophosphorus pesticides via molecular simulations. Food Chem 2018; 254:80-86. [DOI: 10.1016/j.foodchem.2018.01.187] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/06/2018] [Accepted: 01/31/2018] [Indexed: 11/24/2022]
|
22
|
Bi C, Jiang B. Downregulation of RPN2 induces apoptosis and inhibits migration and invasion in colon carcinoma. Oncol Rep 2018; 40:283-293. [PMID: 29749494 PMCID: PMC6059750 DOI: 10.3892/or.2018.6434] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/27/2018] [Indexed: 12/12/2022] Open
Abstract
The morbidity of colorectal cancer (CRC) increases annualy, which accounts to higher mortality worldwide. Therefore, it is important to study the pathogenesis of colon cancer. Ribophorin II (RPN2), part of the N-oligosaccharyltransferase complex, is highly expressed in CRC. In the present study, we investigated whether RPN2 can regulate apoptosis, migration and invasion by RNA interference in CRC and sought to clarify the molecular mechanism involved. Based on previous research, an abnormal high expression of RPN2 was observed in CRC tissues and cell lines by real-time (RT)-PCR, immunohistochemistry (IHC) and western blot analysis. RPN2 knockdown via small RNA interference (siRNA) strategy attenuated the expression of RPN2 at the mRNA and protein levels in vivo, leading to decreased cell viability and increased cell apoptosis. In addition, RNAi-RPN2 effectively arrested the cell cycle at the G0/G1-phase in SW1116 and SW480 cells. Furthermore, the Transwell assay demonstrated that cell migration and invasion abilities were significantly inhibited after cell transfection with RPN2 interference plasmid. The apoptosis-related protein (caspase-3) expression was increased and the cell cycle-related protein (cyclin D1) expression was decreased in the siRNA-RPN2 group. RT-PCR and western blot analysis results indicated that migration- and invasion-related proteins including E-cadherin, matrix metalloproteinases (MMP)-2 and TIMP-2 were markedly regulated by RPN2 siRNA. Phosphorylation levels of signal transducer and activator of transcription (STAT)3 and Janus kinase (JAK)2 were inhibited by RPN2 siRNA. These findings indicated a novel pathway of tumor-promoting activity by RPN2 in CRC, with significant implications for unraveling the tumorigenesis of CRC.
Collapse
Affiliation(s)
- Chongyao Bi
- Department of General Surgery, Jiaozhou Central Hospital of Qingdao, Qingdao, Shandong 266300, P.R. China
| | - Baofei Jiang
- Department of General Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
23
|
Thirumal Kumar D, Sneha P, Uppin J, Usha S, George Priya Doss C. Investigating the Influence of Hotspot Mutations in Protein–Protein Interaction of IDH1 Homodimer Protein: A Computational Approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 111:243-261. [DOI: 10.1016/bs.apcsb.2017.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Hemachandran H, Jain F, Mohan S, Kumar D T, Priya Doss C G, Ramamoorthy S. Glandular hair constituents of Mallotus philippinensis Muell. fruit act as tyrosinase inhibitors: Insights from enzyme kinetics and simulation study. Int J Biol Macromol 2017; 107:1675-1682. [PMID: 29054523 DOI: 10.1016/j.ijbiomac.2017.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022]
Abstract
The glandular hair extracts from the fruit rind of Mallotus philippinensis Muell. is employed to treat various skin infections, however the anti-tyrosinase activity remains unknown. Hence the present study inspected on the anti-melanogenic activity of M. philippinensis constituents. Lineweaver Burk plot revealed mixed inhibition for Rottlerin; non-competitive type of inhibition for mallotophilippen A and B respectively. Thermodynamic studies resulted in static quenching forming ground state complex with higher binding constant temperature dependently. Fluorescence and circular dichroism study implicated conformational change in secondary and tertiary structure of tyrosinase. Molecular docking suggests rottlerin has high binding affinity to the active site pocket of tyrosinase. Simulation study further proved that the compactness of inhibitor with tyrosinase by hydrogen bonding influenced the stability of the enzyme. Depigmentation efficacy is further proved in Aspergillus niger spores. Thus our findings delineate that rottlerin could be utilized as a depigmentation agent in food pharmaceutical and agricultural industries.
Collapse
Affiliation(s)
- Hridya Hemachandran
- School of Bio Sciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India
| | - Fagun Jain
- School of Bio Sciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India
| | - Sankari Mohan
- School of Bio Sciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India
| | - Thirumal Kumar D
- School of Bio Sciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India
| | - George Priya Doss C
- School of Bio Sciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India.
| |
Collapse
|
25
|
Hemachandran H, Anantharaman A, Mohan S, Mohan G, Kumar DT, Dey D, Kumar D, Dey P, Choudhury A, George Priya Doss C, Ramamoorthy S. Unraveling the inhibition mechanism of cyanidin-3-sophoroside on polyphenol oxidase and its effect on enzymatic browning of apples. Food Chem 2017; 227:102-110. [PMID: 28274409 DOI: 10.1016/j.foodchem.2017.01.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/26/2016] [Accepted: 01/10/2017] [Indexed: 01/12/2023]
Abstract
The hunt for anti-browning agents in the food and agricultural industries aims to minimize nutritional loss and prolong post harvest storage. In the present study, the effect of cyanidin-3-sophoroside (CS) from Garcinia mangostana rind, on polyphenol oxidase (PPO) activity was investigated. The non-competitive inhibition mode of CS was determined by Lineweaver Burk plot. CS forms a ground-state complex by quenching the intrinsic fluorescence of PPO. The static quenching was temperature-dependent with an activation energy of 4.654±0.1091kJmol-1 to withstand the disruption of amino acid residues of the enzyme binding site. The enzyme conformational change was validated by 3D fluorescence and CD spectrum. Docking (binding energy -8.124kcal/mol) and simulation studies confirmed the binding pattern and stability. CS decreased PPO activity and browning index of fresh cut apples and prolonged the shelf life. Thus, CS appears to be a promising anti-browning agent to control enzymatic browning.
Collapse
Affiliation(s)
- Hridya Hemachandran
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Amrita Anantharaman
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Sankari Mohan
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | | | - D Thirumal Kumar
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Diksha Dey
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Drishty Kumar
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Priyanka Dey
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Amrita Choudhury
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
26
|
Sneha P, Doss CGP. Gliptins in managing diabetes - Reviewing computational strategy. Life Sci 2016; 166:108-120. [PMID: 27744054 DOI: 10.1016/j.lfs.2016.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
The pace of anti-diabetic drug discovery is very slow in spite of increasing rate of prevalence of Type 2 Diabetes which remains a major public health concern. Though extensive research steps are taken in the past decade, yet craves for better new treatment strategies to overcome the current scenario. One such general finding is the evolution of gliptins which discriminately inhibits DPP4 (Dipeptidyl peptidase-4) enzyme. Although the mechanism of action of gliptin is highly target oriented and accurate, still its long-term use stands unknown. This step calls for a fast, flexible, and cost-effective strategies to meet the demands of producing arrays of high-content lead compounds with improved efficiency for better clinical success. The present review highlights the available gliptins in the market and also other naturally occurring DPP4 enzyme inhibitors. Along with describing the known inhibitors and their origin in this review, we attempted to identify a probable new lead compounds using advanced computational techniques. In this context, computational methods that integrate the knowledge of proteins and drug responses were utilized in prioritizing targets and designing drugs towards clinical trials with better efficacy. The compounds obtained as a result of virtual screening were compared with the commercially available gliptin in the market to have better efficiency in the identification and validation of the potential DPP4 inhibitors. The combinatorial computational methods used in the present study identified Compound 1: 25022354 as promising inhibitor.
Collapse
Affiliation(s)
- P Sneha
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| | - C George Priya Doss
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
27
|
Thirumal Kumar D, George Priya Doss C. Role of E542 and E545 missense mutations of PIK3CA in breast cancer: a comparative computational approach. J Biomol Struct Dyn 2016; 35:2745-2757. [DOI: 10.1080/07391102.2016.1231082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D. Thirumal Kumar
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| | - C. George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| |
Collapse
|