1
|
Choi J, Kim H, Ahn YR, Kim M, Yu S, Kim N, Lim SY, Park JA, Ha SJ, Lim KS, Kim HO. Recent advances in microbial and enzymatic engineering for the biodegradation of micro- and nanoplastics. RSC Adv 2024; 14:9943-9966. [PMID: 38528920 PMCID: PMC10961967 DOI: 10.1039/d4ra00844h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024] Open
Abstract
This review examines the escalating issue of plastic pollution, specifically highlighting the detrimental effects on the environment and human health caused by microplastics and nanoplastics. The extensive use of synthetic polymers such as polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) has raised significant environmental concerns because of their long-lasting and non-degradable characteristics. This review delves into the role of enzymatic and microbial strategies in breaking down these polymers, showcasing recent advancements in the field. The intricacies of enzymatic degradation are thoroughly examined, including the effectiveness of enzymes such as PETase and MHETase, as well as the contribution of microbial pathways in breaking down resilient polymers into more benign substances. The paper also discusses the impact of chemical composition on plastic degradation kinetics and emphasizes the need for an approach to managing the environmental impact of synthetic polymers. The review highlights the significance of comprehending the physical characteristics and long-term impacts of micro- and nanoplastics in different ecosystems. Furthermore, it points out the environmental and health consequences of these contaminants, such as their ability to cause cancer and interfere with the endocrine system. The paper emphasizes the need for advanced analytical methods and effective strategies for enzymatic degradation, as well as continued research and development in this area. This review highlights the crucial role of enzymatic and microbial strategies in addressing plastic pollution and proposes methods to create effective and environmentally friendly solutions.
Collapse
Affiliation(s)
- Jaewon Choi
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hongbin Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Seona Yu
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Nanhyeon Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Su Yeon Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Suk-Jin Ha
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Kwang Suk Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| |
Collapse
|
2
|
James-Pearson LF, Dudley KJ, Te'o VSJ, Patel BKC. A hot topic: thermophilic plastic biodegradation. Trends Biotechnol 2023; 41:1117-1126. [PMID: 37121828 DOI: 10.1016/j.tibtech.2023.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023]
Abstract
Biological degradation of plastic waste is an environmentally and economically friendlier alternative to current recycling practices and enables the cycling of plastic monomers back into virgin-quality plastics. However, due to slow reaction rates, there is a lack of an industrially viable biodegradation strategy for most plastics. Here, we highlight the applicability of a thermophilic biodegradation strategy over a mesophilic approach, to enhance enzyme accessibility and catalyze plastic biodegradation. Thus, at reactions closer to the melting temperature or glass transition temperature of plastics, thermophilic reactions can offer an alternative direction to conventional plastic biodegradation strategies.
Collapse
Affiliation(s)
- Louisa F James-Pearson
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kevin J Dudley
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Valentino Setoa Junior Te'o
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Bharat K C Patel
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Tournier V, Duquesne S, Guillamot F, Cramail H, Taton D, Marty A, André I. Enzymes' Power for Plastics Degradation. Chem Rev 2023; 123:5612-5701. [PMID: 36916764 DOI: 10.1021/acs.chemrev.2c00644] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Plastics are everywhere in our modern way of living, and their production keeps increasing every year, causing major environmental concerns. Nowadays, the end-of-life management involves accumulation in landfills, incineration, and recycling to a lower extent. This ecological threat to the environment is inspiring alternative bio-based solutions for plastic waste treatment and recycling toward a circular economy. Over the past decade, considerable efforts have been made to degrade commodity plastics using biocatalytic approaches. Here, we provide a comprehensive review on the recent advances in enzyme-based biocatalysis and in the design of related biocatalytic processes to recycle or upcycle commodity plastics, including polyesters, polyamides, polyurethanes, and polyolefins. We also discuss scope and limitations, challenges, and opportunities of this field of research. An important message from this review is that polymer-assimilating enzymes are very likely part of the solution to reaching a circular plastic economy.
Collapse
Affiliation(s)
- Vincent Tournier
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Sophie Duquesne
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Frédérique Guillamot
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Henri Cramail
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Daniel Taton
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Alain Marty
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| |
Collapse
|
4
|
N-Amidation of Nitrogen-Containing Heterocyclic Compounds: Can We Apply Enzymatic Tools? Bioengineering (Basel) 2023; 10:bioengineering10020222. [PMID: 36829716 PMCID: PMC9951958 DOI: 10.3390/bioengineering10020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Amide bond is often seen in value-added nitrogen-containing heterocyclic compounds, which can present promising chemical, biological, and pharmaceutical significance. However, current synthesis methods in the preparation of amide-containing N-heterocyclic compounds have low specificity (large amount of by-products) and efficiency. In this study, we focused on reviewing the feasible enzymes (nitrogen acetyltransferase, carboxylic acid reductase, lipase, and cutinase) for the amidation of N-heterocyclic compounds; summarizing their advantages and weakness in the specific applications; and further predicting candidate enzymes through in silico structure-functional analysis. For future prospects, current enzymes demand further engineering and improving for practical industrial applications and more enzymatic tools need to be explored and developed for a broader range of N-heterocyclic substrates.
Collapse
|
5
|
Qi X, Yan W, Cao Z, Ding M, Yuan Y. Current Advances in the Biodegradation and Bioconversion of Polyethylene Terephthalate. Microorganisms 2021; 10:39. [PMID: 35056486 PMCID: PMC8779501 DOI: 10.3390/microorganisms10010039] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 01/04/2023] Open
Abstract
Polyethylene terephthalate (PET) is a widely used plastic that is polymerized by terephthalic acid (TPA) and ethylene glycol (EG). In recent years, PET biodegradation and bioconversion have become important in solving environmental plastic pollution. More and more PET hydrolases have been discovered and modified, which mainly act on and degrade the ester bond of PET. The monomers, TPA and EG, can be further utilized by microorganisms, entering the tricarboxylic acid cycle (TCA cycle) or being converted into high value chemicals, and finally realizing the biodegradation and bioconversion of PET. Based on synthetic biology and metabolic engineering strategies, this review summarizes the current advances in the modified PET hydrolases, engineered microbial chassis in degrading PET, bioconversion pathways of PET monomers, and artificial microbial consortia in PET biodegradation and bioconversion. Artificial microbial consortium provides novel ideas for the biodegradation and bioconversion of PET or other complex polymers. It is helpful to realize the one-step bioconversion of PET into high value chemicals.
Collapse
Affiliation(s)
- Xinhua Qi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Wenlong Yan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zhibei Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Gao R, Pan H, Lian J. Recent advances in the discovery, characterization, and engineering of poly(ethylene terephthalate) (PET) hydrolases. Enzyme Microb Technol 2021; 150:109868. [PMID: 34489027 DOI: 10.1016/j.enzmictec.2021.109868] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Poly(ethylene terephthalate) (PET) is a class of polyester plastic composed of terephthalic acid (TPA) and ethylene glycol (EG). The accumulation of large amount of PET waste has resulted in severe environmental and health problems. Microbial polyester hydrolases with the ability to degrade PET provide an economy- and environment-friendly approach for the treatment of PET waste. In recent years, many PET hydrolases have been discovered and characterized from various microorganisms and engineered for better performance under practical application conditions. Here, recent progress in the discovery, characterization, and enzymatic mechanism elucidation of PET hydrolases is firstly reviewed. Then, structure-guided protein engineering of PET hydrolases with increased enzymatic activities, expanded substrate specificity, as well as improved protein stability is summarized. In addition, strategies for efficient expression of recombinant PET hydrolases, including secretory expression and cell-surface display, are briefly introduced. This review is concluded with future perspectives in biodegradation and subsequent biotransformation of PET wastes to produce value-added compounds.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haojie Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
7
|
Tõlgo M, Hüttner S, Rugbjerg P, Thuy NT, Thanh VN, Larsbrink J, Olsson L. Genomic and transcriptomic analysis of the thermophilic lignocellulose-degrading fungus Thielavia terrestris LPH172. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:131. [PMID: 34082802 PMCID: PMC8176577 DOI: 10.1186/s13068-021-01975-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Biomass-degrading enzymes with improved activity and stability can increase substrate saccharification and make biorefineries economically feasible. Filamentous fungi are a rich source of carbohydrate-active enzymes (CAZymes) for biomass degradation. The newly isolated LPH172 strain of the thermophilic Ascomycete Thielavia terrestris has been shown to possess high xylanase and cellulase activities and tolerate low pH and high temperatures. Here, we aimed to illuminate the lignocellulose-degrading machinery and novel carbohydrate-active enzymes in LPH172 in detail. RESULTS We sequenced and analyzed the 36.6-Mb genome and transcriptome of LPH172 during growth on glucose, cellulose, rice straw, and beechwood xylan. 10,128 predicted genes were found in total, which included 411 CAZy domains. Compared to other fungi, auxiliary activity (AA) domains were particularly enriched. A higher GC content was found in coding sequences compared to the overall genome, as well as a high GC3 content, which is hypothesized to contribute to thermophilicity. Primarily auxiliary activity (AA) family 9 lytic polysaccharide monooxygenase (LPMO) and glycoside hydrolase (GH) family 7 glucanase encoding genes were upregulated when LPH172 was cultivated on cellulosic substrates. Conventional hemicellulose encoding genes (GH10, GH11 and various CEs), as well as AA9 LPMOs, were upregulated when LPH172 was cultivated on xylan. The observed co-expression and co-upregulation of genes encoding AA9 LPMOs, other AA CAZymes, and (hemi)cellulases point to a complex and nuanced degradation strategy. CONCLUSIONS Our analysis of the genome and transcriptome of T. terrestris LPH172 elucidates the enzyme arsenal that the fungus uses to degrade lignocellulosic substrates. The study provides the basis for future characterization of potential new enzymes for industrial biomass saccharification.
Collapse
Affiliation(s)
- Monika Tõlgo
- Wallenberg Wood Science Centre, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Silvia Hüttner
- Wallenberg Wood Science Centre, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Peter Rugbjerg
- Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Nguyen Thanh Thuy
- Center for Industrial Microbiology, Food Industries Research Institute, Thanh Xuan, Hanoi, Vietnam
| | - Vu Nguyen Thanh
- Center for Industrial Microbiology, Food Industries Research Institute, Thanh Xuan, Hanoi, Vietnam
| | - Johan Larsbrink
- Wallenberg Wood Science Centre, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Lisbeth Olsson
- Wallenberg Wood Science Centre, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
- Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
8
|
Zhu B, Wang D, Wei N. Enzyme Discovery and Engineering for Sustainable Plastic Recycling. Trends Biotechnol 2021; 40:22-37. [PMID: 33676748 DOI: 10.1016/j.tibtech.2021.02.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
The drastically increasing amount of plastic waste is causing an environmental crisis that requires innovative technologies for recycling post-consumer plastics to achieve waste valorization while meeting environmental quality goals. Biocatalytic depolymerization mediated by enzymes has emerged as an efficient and sustainable alternative for plastic treatment and recycling. A variety of plastic-degrading enzymes have been discovered from microbial sources. Meanwhile, protein engineering has been exploited to modify and optimize plastic-degrading enzymes. This review highlights the recent trends and up-to-date advances in mining novel plastic-degrading enzymes through state-of-the-art omics-based techniques and improving the enzyme catalytic efficiency and stability via various protein engineering strategies. Future research prospects and challenges are also discussed.
Collapse
Affiliation(s)
- Baotong Zhu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA
| | - Dong Wang
- Department of Computer Science and Engineering, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA
| | - Na Wei
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA.
| |
Collapse
|
9
|
Maurya A, Bhattacharya A, Khare SK. Enzymatic Remediation of Polyethylene Terephthalate (PET)-Based Polymers for Effective Management of Plastic Wastes: An Overview. Front Bioeng Biotechnol 2020; 8:602325. [PMID: 33330434 PMCID: PMC7710609 DOI: 10.3389/fbioe.2020.602325] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Globally, plastic-based pollution is now recognized as one of the serious threats to the environment. Among different plastics, polyethylene terephthalate (PET) occupies a pivotal place, its excess presence as a waste is a major environmental concern. Mechanical, thermal, and chemical-based treatments are generally used to manage PET pollution. However, these methods are usually expensive or generate secondary pollutants. Hence, there is a need for a cost-effective and environment-friendly method for efficient management of PET-based plastic wastes. Considering this, enzymatic treatment or recycling is one of the important methods to curb PET pollution. In this regard, PET hydrolases have been explored for the treatment of PET wastes. These enzymes act on PET and end its breakdown into monomeric units and subsequently results in loss of weight. However, various factors, specifically PET crystallinity, temperature, and pH, are known to affect this enzymatic process. For effective hydrolysis of PET, high temperature is required, which facilitates easy accessibility of substrate (PET) to enzymes. However, to function at this high temperature, there is a requirement of thermostable enzymes. The thermostability could be enhanced using glycosylation, immobilization, and enzyme engineering. Furthermore, the use of surfactants, additives such as Ca2+, Mg2+, and hydrophobins (cysteine-rich proteins), has also been reported to enhance the enzymatic PET hydrolysis through facilitating easy accessibility of PET polymers. The present review encompasses a brief overview of the use of enzymes toward the management of PET wastes. Various methods affecting the treatment process and different constraints arising thereof are also systematically highlighted in the review.
Collapse
Affiliation(s)
- Ankita Maurya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
10
|
Andjelković U, Gudelj I, Klarić T, Hinneburg H, Vinković M, Wittine K, Dovezenski N, Vikić-Topić D, Lauc G, Vujčić Z, Josić D. Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase. Electrophoresis 2020; 42:2626-2636. [PMID: 33026663 DOI: 10.1002/elps.202000092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 11/10/2022]
Abstract
Invertases are glycosidases applied for synthesis of alkyl glycosides that are important and effective surfactants. Stability of invertases in the environment with increased content of organic solvent is crucial for increase of productivity of glycosidases. Their stability is significantly influenced by N-glycosylation. However, yeast N-glycosylation pathways may synthesize plethora of N-glycan structures. A total natural crude mixture of invertase glycoforms (EINV) extracted from Saccharomyces cerevisiae was subfractionated by anion-exchange chromatography on industrial monolithic supports to obtain different glycoforms (EINV1-EINV3). Separated glycoforms exhibited different stabilities in water-alcohol solutions that are in direct correlation with the amount of phosphate bound to N-glycans. Observed differences in stability of different invertase glycoforms were used to improve productivity of methyl β-d-fructofuranoside (MF) synthesis. The efficiency and yield of MF synthesis were improved more than 50% when the most stabile glycoform bearing the lowest amount of phosphorylated N-glycans is selected and utilized. These data underline the importance of analysis of glycan structures attached to glycoproteins, demonstrate different impact of N-glycans on the surface charge and enzyme stability in regard to particular reaction environment, and provide a platform for improvement of yield of industrial enzymatic synthesis by chromatographic selection of glycoforms on monolithic supports.
Collapse
Affiliation(s)
- Uroš Andjelković
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy-National Institute of the Republic of Serbia, Belgrade, Serbia.,Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Thomas Klarić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Hannes Hinneburg
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | - Karlo Wittine
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Nebojša Dovezenski
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Dražen Vikić-Topić
- NMR Centre, Ruđer Bošković Institute, Zagreb, Croatia.,Department of Natural and Health Sciences, Juraj Dobrila University of Pula, Pula, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Zoran Vujčić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Djuro Josić
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
11
|
Su A, Kiokekli S, Naviwala M, Shirke AN, Pavlidis IV, Gross RA. Cutinases as stereoselective catalysts: Specific activity and enantioselectivity of cutinases and lipases for menthol and its analogs. Enzyme Microb Technol 2020; 133:109467. [PMID: 31874689 DOI: 10.1016/j.enzmictec.2019.109467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
The specific activity and enantioselectivity of immobilized cutinases from Aspergillus oryzae (AoC) and Humicola insolens (HiC) were compared with those of lipases from Thermomyces lanuginosus (TLL), Rhizomucor miehei (RML) and Lipase B from Candida antarctica (CALB) for menthol and its analogs that include isopulegol, trans-2-tert-butylcyclohexanol (2TBC), and dihydrocarveol (DHC). Common features of these alcohols are two bulky substituents: a cyclohexyl ring and an alkyl substituent. Dissimilarities are that the alkyl group reside at different positions or have dissimilar structures. The aim was to develop an understanding at a molecular level of similarities and differences in the catalytic behavior of the selected cutinases and lipases as a function of substrate structural elements. The experimental results reflect the (-)-enantioselectivity for AoC, HiC, TLL, and RML, while CALB is only active on DHC with (+)-enantioselectivity. In most cases, AoC has the highest activity while HiC is significantly more active than other enzymes on 2TBC. The E values of AoC, HiC, TLL, and RML for menthol are 27.8, 16.5, 155, and 125, respectively. HiC has a higher activity (>10-fold) on (-)-2TBC than AoC while they exhibit similar activities on menthol. Docking results reveal that the bulky group adjacent to the hydroxyl group determines the enantioselectivity of AoC, HiC, TLL, and RML. Amino acid residues that dominate the enantioselectivity of these enzymes are AoC's Phe195 aromatic ring; HiC's hydrophobic Leu 174 and Ile 169 groups; TLL's ring structures of Trp89, His258 and Tyr21; and Trp88 for RML. Results of this study highlight that cutinases can provide important advantages relative to lipases for enantioselective transformation, most notably with bulky and sterically hindered substrates.
Collapse
Affiliation(s)
- An Su
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Department of Biological Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA
| | - Serpil Kiokekli
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Mariam Naviwala
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Abhijit N Shirke
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Department of Biological Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA
| | - Ioannis V Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece.
| | - Richard A Gross
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Department of Biological Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| |
Collapse
|
12
|
Duan X, Jiang Z, Liu Y, Yan Q, Xiang M, Yang S. High-level expression of codon-optimized Thielavia terrestris cutinase suitable for ester biosynthesis and biodegradation. Int J Biol Macromol 2019; 135:768-775. [DOI: 10.1016/j.ijbiomac.2019.05.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
|
13
|
Abstract
Cutinases are α/β hydrolases, and their role in nature is the degradation of cutin. Such enzymes are usually produced by phytopathogenic microorganisms in order to penetrate their hosts. The first focused studies on cutinases started around 50 years ago. Since then, numerous cutinases have been isolated and characterized, aiming at the elucidation of their structure–function relations. Our deeper understanding of cutinases determines the applications by which they could be utilized; from food processing and detergents, to ester synthesis and polymerizations. However, cutinases are mainly efficient in the degradation of polyesters, a natural function. Therefore, these enzymes have been successfully applied for the biodegradation of plastics, as well as for the delicate superficial hydrolysis of polymeric materials prior to their functionalization. Even though research on this family of enzymes essentially began five decades ago, they are still involved in many reports; novel enzymes are being discovered, and new fields of applications arise, leading to numerous related publications per year. Perhaps the future of cutinases lies in their evolved descendants, such as polyesterases, and particularly PETases. The present article reviews the biochemical and structural characteristics of cutinases and cutinase-like hydrolases, and their applications in the field of bioremediation and biocatalysis.
Collapse
|
14
|
Immobilized cutinases: Preparation, solvent tolerance and thermal stability. Enzyme Microb Technol 2018; 116:33-40. [DOI: 10.1016/j.enzmictec.2018.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022]
|
15
|
Su A, Tyrikos-Ergas T, Shirke AN, Zou Y, Dooley AL, Pavlidis IV, Gross RA. Revealing Cutinases’ Capabilities as Enantioselective Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- An Su
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Theodore Tyrikos-Ergas
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Abhijit N. Shirke
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Yi Zou
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Abigail L. Dooley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ioannis V. Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Richard A. Gross
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
16
|
Ding X, Zheng RC, Tang XL, Zheng YG. Engineering of Talaromyces thermophilus lipase by altering its crevice-like binding site for highly efficient biocatalytic synthesis of chiral intermediate of Pregablin. Bioorg Chem 2018; 77:330-338. [DOI: 10.1016/j.bioorg.2018.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 02/02/2023]
|
17
|
Shirke AN, White C, Englaender JA, Zwarycz A, Butterfoss GL, Linhardt RJ, Gross RA. Stabilizing Leaf and Branch Compost Cutinase (LCC) with Glycosylation: Mechanism and Effect on PET Hydrolysis. Biochemistry 2018; 57:1190-1200. [PMID: 29328676 DOI: 10.1021/acs.biochem.7b01189] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cutinases are polyester hydrolases that show a remarkable capability to hydrolyze polyethylene terephthalate (PET) to its monomeric units. This revelation has stimulated research aimed at developing sustainable and green cutinase-catalyzed PET recycling methods. Leaf and branch compost cutinase (LCC) is particularly suited toward these ends given its relatively high PET hydrolysis activity and thermostability. Any practical enzymatic PET recycling application will require that the protein have kinetic stability at or above the PET glass transition temperature (Tg, i.e., 70 °C). This paper elucidates the thermodynamics and kinetics of LCC conformational and colloidal stability. Aggregation emerged as a major contributor that reduces LCC kinetic stability. In its native state, LCC is prone to aggregation owing to electrostatic interactions. Further, with increasing temperature, perturbation of LCC's tertiary structure and corresponding exposure of hydrophobic domains leads to rapid aggregation. Glycosylation was employed in an attempt to impede LCC aggregation. Owing to the presence of three putative N-glycosylation sites, expression of native LCC in Pichia pastoris resulted in the production of glycosylated LCC (LCC-G). LCC-G showed improved stability to native state aggregation while increasing the temperature for thermal induced aggregation by 10 °C. Furthermore, stabilization against thermal aggregation resulted in improved catalytic PET hydrolysis both at its optimum temperature and concentration.
Collapse
Affiliation(s)
- Abhijit N Shirke
- Department of Chemistry and Chemiscal Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Christine White
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Jacob A Englaender
- Department of Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Allison Zwarycz
- Department of Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Glenn L Butterfoss
- Center for Genomics and Systems Biology, New York University Abu Dhabi , Abu Dhabi, UAE
| | - Robert J Linhardt
- Department of Chemistry and Chemiscal Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Department of Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Richard A Gross
- Department of Chemistry and Chemiscal Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
18
|
de Castro AM, Carniel A, Nicomedes Junior J, da Conceição Gomes A, Valoni É. Screening of commercial enzymes for poly(ethylene terephthalate) (PET) hydrolysis and synergy studies on different substrate sources. ACTA ACUST UNITED AC 2017; 44:835-844. [DOI: 10.1007/s10295-017-1942-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/31/2017] [Indexed: 11/30/2022]
Abstract
Abstract
Poly(ethylene terephthalate) (PET) is one of the most consumed plastics in the world. The development of efficient technologies for its depolymerization for monomers reuse is highly encouraged, since current recycling rates are still very low. In this study, 16 commercial lipases and cutinases were evaluated for their abilities to catalyze the hydrolysis of two PET samples. Humicola insolens cutinase showed the best performance and was then used in reactions on other PET sources, solely or in combination with the efficient mono(hydroxyethyl terephthalate)-converting lipase from Candida antarctica. Synergy degrees of the final titers of up to 2.2 (i.e., more than double of the concentration when both enzymes were used, as compared to their use alone) were found, with increased terephthalic acid formation rates, reaching a maximum of 59,989 µmol/L (9.36 g/L). These findings open up new possibilities for the conversion of post-consumer PET packages into their minimal monomers, which can be used as drop in at existing industrial facilities.
Collapse
Affiliation(s)
- Aline Machado de Castro
- 0000 0001 2192 4294 grid.423526.4 Biotechnology Division, Research and Development Center PETROBRAS Av. Horácio Macedo, 950. Ilha do Fundão 21941-915 Rio de Janeiro Brazil
| | - Adriano Carniel
- Falcão Bauer R. Aquinos111. Água Branca 05036-070 São Paulo Brazil
| | - José Nicomedes Junior
- 0000 0001 2192 4294 grid.423526.4 Biotechnology Division, Research and Development Center PETROBRAS Av. Horácio Macedo, 950. Ilha do Fundão 21941-915 Rio de Janeiro Brazil
| | - Absai da Conceição Gomes
- 0000 0001 2192 4294 grid.423526.4 Biotechnology Division, Research and Development Center PETROBRAS Av. Horácio Macedo, 950. Ilha do Fundão 21941-915 Rio de Janeiro Brazil
| | - Érika Valoni
- 0000 0001 2192 4294 grid.423526.4 Biotechnology Division, Research and Development Center PETROBRAS Av. Horácio Macedo, 950. Ilha do Fundão 21941-915 Rio de Janeiro Brazil
| |
Collapse
|
19
|
Shirke AN, Butterfoss GL, Saikia R, Basu A, Maria L, Svendsen A, Gross RA. Engineered
Humicola insolens
cutinase for efficient cellulose acetate deacetylation. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/02/2017] [Accepted: 05/09/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Abhijit N. Shirke
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Institute Troy NY USA
- Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| | - Glenn L. Butterfoss
- Center for Genomics and Systems Biology New York University Abu Dhabi Abu Dhabi UAE
| | | | | | | | | | - Richard A. Gross
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Institute Troy NY USA
- Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| |
Collapse
|
20
|
Englaender JA, Zhu Y, Shirke AN, Lin L, Liu X, Zhang F, Gross RA, Koffas MAG, Linhardt RJ. Expression and secretion of glycosylated heparin biosynthetic enzymes using Komagataella pastoris. Appl Microbiol Biotechnol 2016; 101:2843-2851. [PMID: 27975137 DOI: 10.1007/s00253-016-8047-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023]
Abstract
Heparin, an anticoagulant drug, is biosynthesized in selected animal cells. The heparin biosynthetic enzymes mainly consist of sulfotransferases and all are integral transmembrane glycoproteins. These enzymes are generally produced in engineered Escherichia coli as without their transmembrane domains as non-glycosylated fusion proteins. In this study, we used the yeast, Komagataella pastoris, to prepare four sulfotransferases involved in heparin biosynthesis as glycoproteins. While the yields of these yeast-expressed enzymes were considerably lower than E. coli-expressed enzymes, these enzymes were secreted into the fermentation media simplifying their purification and were endotoxin free. The activities of these sulfotransferases, expressed as glycoproteins in yeast, were compared to the bacterially expressed proteins. The yeast-expressed sulfotransferase glycoproteins showed improved kinetic properties than the bacterially expressed proteins.
Collapse
Affiliation(s)
- Jacob A Englaender
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Yuanyuan Zhu
- Department of Chemical Processing Engineering of Forest Products, Nanjing Forestry University, Nanjing, China
| | - Abhijit N Shirke
- Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Lei Lin
- Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xinyue Liu
- Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Fuming Zhang
- Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Richard A Gross
- Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mattheos A G Koffas
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Robert J Linhardt
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
21
|
Shirke AN, Su A, Jones JA, Butterfoss GL, Koffas MA, Kim JR, Gross RA. Comparative thermal inactivation analysis ofAspergillus oryzaeandThiellavia terrestriscutinase: Role of glycosylation. Biotechnol Bioeng 2016; 114:63-73. [DOI: 10.1002/bit.26052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Abhijit N. Shirke
- Department of Chemistry and Chemical Biology; Rensselaer Polytechnic Institute; Troy New York
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York
| | - An Su
- Department of Chemistry and Chemical Biology; Rensselaer Polytechnic Institute; Troy New York
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York
| | - J. Andrew Jones
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Troy New York
| | - Glenn L. Butterfoss
- Center for Genomics and Systems Biology; New York University Abu Dhabi; Abu Dhabi UAE
| | - Mattheos A.G. Koffas
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Troy New York
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering; New York University Tandon School of Engineering; Brooklyn New York
| | - Richard A. Gross
- Department of Chemistry and Chemical Biology; Rensselaer Polytechnic Institute; Troy New York
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York
| |
Collapse
|