1
|
Gao L, Yuan J, Hong K, Ma NL, Liu S, Wu X. Technological advancement spurs Komagataella phaffii as a next-generation platform for sustainable biomanufacturing. Biotechnol Adv 2025; 82:108593. [PMID: 40339766 DOI: 10.1016/j.biotechadv.2025.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/11/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
Biomanufacturing stands as a cornerstone of sustainable industrial development, necessitating a shift toward non-food carbon feedstocks to alleviate agricultural resource competition and advance a circular bioeconomy. Methanol, a renewable one‑carbon substrate, has emerged as a pivotal candidate due to its abundance, cost-effectiveness, and high reduction potential, further bolstered by breakthroughs in CO₂ hydrogenation-based synthesis. Capitalizing on this momentum, the methylotrophic yeast Komagataella phaffii has undergone transformative technological upgrades, evolving from a conventional protein expression workhorse into an intelligent bioproduction chassis. This paradigm shift is fundamentally driven by converging innovations across CRISPR-empowered advancement in genome editing and AI-powered metabolic pathway design in K. phaffii. The integration of CRISPR systems with droplet microfluidics high-throughput screening has redefined strain engineering efficiency, achieving much higher editing precision than traditional homologous recombination while compressing the "design-build-test-learn" cycle. Concurrently, machine learning-enhanced genome-scale metabolic models facilitate dynamic flux balancing, enabling simultaneous improvements in product titers, carbon yields, and volumetric productivity. Finally, technological advancement promotes the application of K. phaffii, including directing more efficiently metabolic flux toward nutrient products, and strengthening efficient synthesis of excreted proteins. As DNA synthesis automation and robotic experimentation platforms mature, next-generation breakthroughs in genome modification, cofactor engineering, and AI-guided autonomous evolution will further cement K. phaffii as a next-generation platform for decarbonizing global manufacturing paradigms. This technological trajectory positions methanol-based biomanufacturing as a cornerstone of the low-carbon circular economy.
Collapse
Affiliation(s)
- Le Gao
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China.
| | - Jie Yuan
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Kai Hong
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Nyuk Ling Ma
- Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, Malaysia
| | - Shuguang Liu
- Beijing Chasing future Biotechnology Co., Ltd, Beijing, China
| | - Xin Wu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China.
| |
Collapse
|
2
|
Yang Y, Dalvie NC, Brady JR, Naranjo CA, Lorgeree T, Rodriguez‐Aponte SA, Johnston RS, Tracey MK, Elenberger CM, Lee E, Tié M, Love KR, Love JC. Adaptation of Aglycosylated Monoclonal Antibodies for Improved Production in Komagataella phaffii. Biotechnol Bioeng 2025; 122:361-372. [PMID: 39543843 PMCID: PMC11718428 DOI: 10.1002/bit.28878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/17/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals manufactured by well-established processes using Chinese Hamster Ovary (CHO) cells. Next-generation biomanufacturing using alternative hosts like Komagataella phaffii could improve the accessibility of these medicines, address broad societal goals for sustainability, and offer financial advantages for accelerated development of new products. Antibodies produced by K. phaffii, however, may manifest unique molecular quality attributes, like host-dependent, product-related variants, that could raise potential concerns for clinical use. We demonstrate here conservative modifications to the amino acid sequence of aglycosylated antibodies based on the human IgG1 isotype that minimize product-related variations when secreted by K. phaffii. A combination of 2-3 changes of amino acids reduced variations across six different aglycosylated versions of commercial mAbs. Expression of a modified sequence of NIST mAb in both K. phaffii and CHO cells showed comparable biophysical properties and molecular variations. These results suggest a path toward the production of high-quality mAbs that could be expressed interchangeably by either yeast or mammalian cells. Improving molecular designs of proteins to enable a range of manufacturing strategies for well-characterized biopharmaceuticals could accelerate global accessibility and innovations.
Collapse
Affiliation(s)
- Yuchen Yang
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Neil C. Dalvie
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Joseph R. Brady
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Christopher A. Naranjo
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Timothy Lorgeree
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Sergio A. Rodriguez‐Aponte
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Ryan S. Johnston
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Mary K. Tracey
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Carmen M. Elenberger
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | | | - Kerry R. Love
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - J. Christopher Love
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
3
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Pathway engineering facilitates efficient protein expression in Pichia pastoris. Appl Microbiol Biotechnol 2022; 106:5893-5912. [PMID: 36040488 DOI: 10.1007/s00253-022-12139-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Pichia pastoris has been recognized as an important platform for the production of various heterologous proteins in recent years. The strong promoter AOX1, induced by methanol, with the help of the α-pre-pro signal sequence, can lead to a high expression level of extracellular protein. However, this combination was not always efficient, as protein secretion in P. pastoris involves numerous procedures mediated by several cellular proteins, including folding assisted by endoplasmic reticulum (ER) molecular chaperones, degradation through ubiquitination, and an efficient vesicular transport system. Efficient protein expression requires the cooperation of various intracellular pathways. This article summarizes the process of protein secretion, modification, and transportation in P. pastoris. In addition, the roles played by the key proteins in these processes and the corresponding co-expression effects are also listed. It is expected to lay the foundation for the industrial protein production of P. pastoris. KEY POINTS: • Mechanisms of chaperones in protein folding and their co-expression effects are summarized. • Protein glycosylation modifications are comprehensively reviewed. • Current dilemmas in the overall protein secretion pathway of Pichia pastoris and corresponding solutions are demonstrated.
Collapse
|
5
|
Potential of the Signal Peptide Derived from the PAS_chr3_0030 Gene Product for Secretory Expression of Valuable Enzymes in Pichia pastoris. Appl Environ Microbiol 2022; 88:e0029622. [PMID: 35435711 DOI: 10.1128/aem.00296-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pichia pastoris is widely used for the production of valuable recombinant proteins. An advantage of P. pastoris over other expression systems is that it secretes low levels of endogenous proteins, which facilitates the purification processes if the desired recombinant proteins are efficiently secreted into the culture medium. However, not all recombinant proteins can be successfully secreted by P. pastoris, especially enzymes that are located in intracellular compartments in their native hosts. Few studies have reported strategies for releasing recombinant proteins which cannot be secreted by standard protocols. Here, we investigated whether this challenge can be addressed using novel secretion leaders. Analysis of the secretome and transcriptome of P. pastoris indicated that the four genes with the highest protein-to-transcript ratios were EPX1, PAS_chr3_0030, SCW10, and UTH1, suggesting that their gene products contain efficient secretion leaders. Our data revealed that the signal peptide derived from the PAS_chr3_0030 gene product conferred secretion competence to certain industrial enzymes, e.g., a nitrilase of Alcaligenes faecalis ZJUTB10, a ribosylnicotinamide kinase of P. pastoris, and a glucose dehydrogenase of Exiguobacterium sibiricum. Therefore, the signal peptide derived from the PAS_chr3_0030 gene product represents a novel secretion sequence for the secretory expression of recombinant enzymes in P. pastoris. IMPORTANCE Although P. pastoris is widely used for the secretory production of pharmaceutical proteins, its successful applications in the secretory production of industrial enzymes are limited. The α-mating factor pre-pro leader is the most widely used secretion signal in P. pastoris, but numerous industrial enzymes cannot be secreted using it. The importance of this study is that we identified a signal peptide derived from the PAS_chr3_0030 gene product which conferred secretion competence to three-quarters of the enzymes tested. This signal peptide derived from the PAS_chr3_0030 gene product may facilitate the application of P. pastoris in industrial biocatalysis.
Collapse
|
6
|
Tadi SRR, Nehru G, Sivaprakasam S. One-Pot Biosynthesis of 3-Aminopropionic Acid from Fumaric Acid Using Recombinant Bacillus megaterium Containing a Linear Dual-Enzyme Cascade. Appl Biochem Biotechnol 2022; 194:1740-1754. [DOI: 10.1007/s12010-021-03783-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 01/12/2023]
|
7
|
Xiang ZX, Gong JS, Li H, Shi WT, Jiang M, Xu ZH, Shi JS. Heterologous expression, fermentation strategies and molecular modification of collagen for versatile applications. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34907819 DOI: 10.1080/10408398.2021.2016599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collagen is a kind of high macromolecular protein with unique tissue distribution and distinctive functions in the body. At present, most collagen products are extracted from the tissues and organs of mammals or marine fish. However, this method exhibits several disadvantages, including low efficiency and serious waste generation, which makes it difficult to meet the current market demand. With the rapid development of synthetic biology and the deepening of high-density fermentation technology, the collagen preparation by biosynthesis strategy emerges as the times require. Co-expression with the proline hydroxylase gene can solve the problem of non-hydroxylated collagen, but the yield may be affected. Therefore, improving the expression through molecular modification and dynamic regulation of synthesis is an entry point for future research. Due to the defects in certain properties of the natural collagen, modification of properties would be benefit for meeting the requirements of practical application. In this paper, in-depth investigations on recombinant expression, fermentation, and modification studies of collagen are conducted. Also, it summarizes the research progress of collagen in food, medicine, and beauty industry in recent years. Furthermore, the future development trend and application prospect of collagen are discussed, which would provide guidance for its preparation and application.
Collapse
Affiliation(s)
- Zhi-Xiang Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Wei-Ting Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, PR China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| |
Collapse
|
8
|
Han M, Wang W, Gong X, Zhou J, Xu C, Li Y. Increased expression of recombinant chitosanase by co-expression of Hac1p in the yeast Pichia pastoris. Protein Pept Lett 2021; 28:1434-1441. [PMID: 34749599 DOI: 10.2174/0929866528666211105111155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pichia pastoris is one of the most popular eukaryotic hosts for producing heterologous proteins, while increasing secretion of target proteins is still a top priority for their application in industrial fields. Recently, the research effort to enhance protein production therein has focused on up-regulating the unfolded protein response (UPR). OBJECTIVE We evaluated the effects of activated UPR via Hac1p co-expression with the promoter AOX1 (PAOX1) or GAP (PGAP) on expression of recombinant chitosanase (rCBS) in P. pastoris. METHOD The DNA sequence encoding the chitosanase was chemically synthesized and cloned into pPICZαA and the resulted pPICZαA/rCBS was transformed into P. pastoris for expressing rCBS. The P. pastoris HAC1i cDNA was chemically synthesized and cloned into pPIC3.5K to give pPIC3.5K/Hac1p. The HAC1i cDNA was cloned into pGAPZB and then inserted with HIS4 gene from pAO815 to construct the vector pGAPZB/Hac1p/HIS4. For co-expression of Hac1p, the two plasmids pPIC3.5K/Hac1p and pGAPZB/Hac1p/HIS4 were transformed into P. pastoris harboring the CBS gene. The rCBS was assessed based on chitosanase activity and analyzed by SDS-PAGE. The enhanced Kar2p was detected with western blotting to evaluate UPR. RESULTS Hac1p co-expression with PAOX1 enhanced rCBS secretion by 41% at 28°C. Although the level of UPR resulted from Hac1p co-expression with PAOX1 was equivalent to that with PGAP in terms of the quantity of Kar2p (a hallmark of the UPR), substitution of PGAP for PAOX1 further increased rCBS production by 21%. The methanol-utilizing phenotype of P. pastoris did not affect rCBS secretion with co-expression of Hac1p or not. Finally, Hac1p co-expression with PAOX1 or PGAP promoted rCBS secretion from 22 to 30°C and raised the optimum induction temperature. CONCLUSION The study indicated that Hac1p co-expression with PAOX1 or PGAP is an effective strategy to trigger UPR of P. pastoris and a feasible means for improving production of rCBS therein.
Collapse
Affiliation(s)
- Minghai Han
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Weixian Wang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Xun Gong
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Jianli Zhou
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Cunbin Xu
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Yinfeng Li
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| |
Collapse
|
9
|
Ma M, Zhao Z, Liang Q, Shen H, Zhao Z, Chen Z, He R, Feng S, Cao D, Gan G, Ye H, Qiu W, Deng J, Ming F, Jia J, Sun C, Li J, Zhang L. Overexpression of pEGF improved the gut protective function of Clostridium butyricum partly through STAT3 signal pathway. Appl Microbiol Biotechnol 2021; 105:5973-5991. [PMID: 34396488 DOI: 10.1007/s00253-021-11472-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022]
Abstract
Clostridium butyricum (C. butyricum) is a probiotic that could promote animal growth and protect gut health. So far, current studies mainly keep up with the basic biological functions of C. butyricum, missing the effective strategy to further improve its protective efficiency. A recent report about C. butyricum alleviating intestinal injury through epidermal growth factor receptor (EGFR) inspired us to bridge this gap by porcine epidermal growth factor (EGF) overexpression. Lacking a secretory overexpression system, we constructed the recombinant strains overexpressing pEGF in C. butyricum for the first time and obtained 4 recombinant strains for highly efficient secretion of pEGF (BC/pPD1, BC/pSPP, BC/pGHF, and BC/pDBD). Compared to the wild-type strain, we confirmed that the expression level ranges of the intestinal development-related genes (Claudin-1, GLUT-2, SUC, GLP2R, and EGFR) and anti-inflammation-related gene (IL-10) in IPECs were upregulated under recombinant strain stimulation, and the growth of Staphylococcus aureus and Salmonella typhimurium was significantly inhibited as well. Furthermore, a particular inhibitor (stattic) was used to block STAT3 tyrosine phosphorylation, resulting in the downregulation on antibacterial effect of recombinant strains. This study demonstrated that the secretory overexpression of pEGF in C. butyricum could upregulate the expression level of EGFR, consequently improving the intestinal protective functions of C. butyricum partly following STAT3 signal activation in IPECs and making it a positive loop. These findings on the overexpression strains pointed out a new direction for further development and utilization of C. butyricum. KEY POINTS: • By 12 signal peptide screening in silico, 4 pEGF overexpression strains of C. butyricum/pMTL82151-pEGF for highly efficient secretion of pEGF were generated for the first time. • The secretory overexpression of pEGF promoted the intestinal development, antimicrobial action, and anti-inflammatory function of C. butyricum. • The overexpressed pEGF upregulated the expression level of EGFR and further magnified the gut protective function of recombinant strains which in turn partly depended on STAT3 signal pathway in IPECs.
Collapse
Affiliation(s)
- Miaopeng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Zitong Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Qianyi Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Haokun Shen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Zengjue Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Zhiyang Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Rongxiao He
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Saixiang Feng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Ding Cao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Guanhua Gan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Hejia Ye
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Weihong Qiu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Jinbo Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Feiping Ming
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Junhao Jia
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Chongjun Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Jiayi Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Linghua Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
10
|
Raschmanová H, Weninger A, Knejzlík Z, Melzoch K, Kovar K. Engineering of the unfolded protein response pathway in Pichia pastoris: enhancing production of secreted recombinant proteins. Appl Microbiol Biotechnol 2021; 105:4397-4414. [PMID: 34037840 PMCID: PMC8195892 DOI: 10.1007/s00253-021-11336-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Folding and processing of proteins in the endoplasmic reticulum (ER) are major impediments in the production and secretion of proteins from Pichia pastoris (Komagataella sp.). Overexpression of recombinant genes can overwhelm the innate secretory machinery of the P. pastoris cell, and incorrectly folded proteins may accumulate inside the ER. To restore proper protein folding, the cell naturally triggers an unfolded protein response (UPR) pathway, which upregulates the expression of genes coding for chaperones and other folding-assisting proteins (e.g., Kar2p, Pdi1, Ero1p) via the transcription activator Hac1p. Unfolded/misfolded proteins that cannot be repaired are degraded via the ER-associated degradation (ERAD) pathway, which decreases productivity. Co-expression of selected UPR genes, along with the recombinant gene of interest, is a common approach to enhance the production of properly folded, secreted proteins. Such an approach, however, is not always successful and sometimes, protein productivity decreases because of an unbalanced UPR. This review summarizes successful chaperone co-expression strategies in P. pastoris that are specifically related to overproduction of foreign proteins and the UPR. In addition, it illustrates possible negative effects on the cell's physiology and productivity resulting from genetic engineering of the UPR pathway. We have focused on Pichia's potential for commercial production of valuable proteins and we aim to optimize molecular designs so that production strains can be tailored to suit a specific heterologous product. KEY POINTS: • Chaperones co-expressed with recombinant genes affect productivity in P. pastoris. • Enhanced UPR may impair strain physiology and promote protein degradation. • Gene copy number of the target gene and the chaperone determine the secretion rate.
Collapse
Affiliation(s)
- Hana Raschmanová
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic.
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland.
| | - Astrid Weninger
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Zdeněk Knejzlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karel Melzoch
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Karin Kovar
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
- daspool Association, Wädenswil, Switzerland
| |
Collapse
|
11
|
Kerr H, Herbert AP, Makou E, Abramczyk D, Malik TH, Lomax-Browne H, Yang Y, Pappworth IY, Denton H, Richards A, Marchbank KJ, Pickering MC, Barlow PN. Murine Factor H Co-Produced in Yeast With Protein Disulfide Isomerase Ameliorated C3 Dysregulation in Factor H-Deficient Mice. Front Immunol 2021; 12:681098. [PMID: 34054871 PMCID: PMC8149785 DOI: 10.3389/fimmu.2021.681098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/05/2022] Open
Abstract
Recombinant human factor H (hFH) has potential for treating diseases linked to aberrant complement regulation including C3 glomerulopathy (C3G) and dry age-related macular degeneration. Murine FH (mFH), produced in the same host, is useful for pre-clinical investigations in mouse models of disease. An abundance of FH in plasma suggests high doses, and hence microbial production, will be needed. Previously, Pichia pastoris produced useful but modest quantities of hFH. Herein, a similar strategy yielded miniscule quantities of mFH. Since FH has 40 disulfide bonds, we created a P. pastoris strain containing a methanol-inducible codon-modified gene for protein-disulfide isomerase (PDI) and transformed this with codon-modified DNA encoding mFH under the same promoter. What had been barely detectable yields of mFH became multiple 10s of mg/L. Our PDI-overexpressing strain also boosted hFH overproduction, by about tenfold. These enhancements exceeded PDI-related production gains reported for other proteins, all of which contain fewer disulfide-stabilized domains. We optimized fermentation conditions, purified recombinant mFH, enzymatically trimmed down its (non-human) N-glycans, characterised its functions in vitro and administered it to mice. In FH-knockout mice, our de-glycosylated recombinant mFH had a shorter half-life and induced more anti-mFH antibodies than mouse serum-derived, natively glycosylated, mFH. Even sequential daily injections of recombinant mFH failed to restore wild-type levels of FH and C3 in mouse plasma beyond 24 hours after the first injection. Nevertheless, mFH functionality appeared to persist in the glomerular basement membrane because C3-fragment deposition here, a hallmark of C3G, remained significantly reduced throughout and beyond the ten-day dosing regimen.
Collapse
Affiliation(s)
- Heather Kerr
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P. Herbert
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Elisavet Makou
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Dariusz Abramczyk
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Talat H. Malik
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Hannah Lomax-Browne
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Yi Yang
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- National Renal Complement Therapeutics Center, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Isabel Y. Pappworth
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- National Renal Complement Therapeutics Center, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Harriet Denton
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- National Renal Complement Therapeutics Center, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Anna Richards
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin J. Marchbank
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- National Renal Complement Therapeutics Center, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Matthew C. Pickering
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Paul N. Barlow
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Bioprocess performance analysis of novel methanol-independent promoters for recombinant protein production with Pichia pastoris. Microb Cell Fact 2021; 20:74. [PMID: 33757505 PMCID: PMC7986505 DOI: 10.1186/s12934-021-01564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/12/2021] [Indexed: 11/30/2022] Open
Abstract
Background Pichia pastoris is a powerful and broadly used host for recombinant protein production (RPP), where past bioprocess performance has often been directed with the methanol regulated AOX1 promoter (PAOX1), and the constitutive GAP promoter (PGAP). Since promoters play a crucial role in an expression system and the bioprocess efficiency, innovative alternatives are constantly developed and implemented. Here, a thorough comparative kinetic characterization of two expression systems based on the commercial PDF and UPP promoters (PPDF, PUPP) was first conducted in chemostat cultures. Most promising conditions were subsequently tested in fed-batch cultivations. These new alternatives were compared with the classical strong promoter PGAP, using the Candida antarctica lipase B (CalB) as model protein for expression system performance. Results Both the PPDF and PUPP-based expression systems outperformed similar PGAP-based expression in chemostat cultivations, reaching ninefold higher specific production rates (qp). CALB transcription levels were drastically higher when employing the novel expression systems. This higher expression was also correlated with a marked upregulation of unfolded protein response (UPR) related genes, likely from an increased protein burden in the endoplasmic reticulum (ER). Based on the chemostat results obtained, best culture strategies for both PPDF and PUPP expression systems were also successfully implemented in 15 L fed-batch cultivations where qp and product to biomass yield (YP/X*) values were similar than those obtained in chemostat cultivations. Conclusions As an outcome of the macrokinetic characterization presented, the novel PPDF and PUPP were observed to offer much higher efficiency for CalB production than the widely used PGAP-based methanol-free alternative. Thus, both systems arise as highly productive alternatives for P. pastoris-based RPP bioprocesses. Furthermore, the different expression regulation patterns observed indicate the level of gene expression can be adjusted, or tuned, which is interesting when using Pichia pastoris as a cell factory for different products of interest. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01564-9.
Collapse
|
13
|
Li J, Cai J, Ma M, Li L, Lu L, Wang Y, Wang C, Yang J, Xu Z, Yao M, Shen X, Wang H. Preparation of a Bombyx mori acetylcholinesterase enzyme reagent through chaperone protein disulfide isomerase co-expression strategy in Pichia pastoris for detection of pesticides. Enzyme Microb Technol 2020; 144:109741. [PMID: 33541576 DOI: 10.1016/j.enzmictec.2020.109741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 01/15/2023]
Abstract
The cholinesterase-based spectrophotometric methods for detection of organophosphate pesticides (OPs) and carbamate pesticides (CPs) have been proposed as a good choice for their high efficiency, simplicity and low cost. The enzyme, as a core reagent, is of great importance for the developed method. In this study, a protein disulfide isomerase (PDI) co-expression strategy in Pichia pastoris was employed to enhance the yield of recombinant Bombyx mori acetylcholinesterase 2 (rBmAChE2). Subsequently, the prepared enzyme reagent was used to detect the pesticides in real samples. The results showed that the co-expression of rBmAChE2 with PDI increased the enzyme activity of the supernatant and the yield of purified rBmAChE2 up to 60 U/mL and 6 mg/L respectively, both almost 5-fold higher than those of original recombinant strain. In addition, 5 g/L gelatin reagent could help to preserve nearly 90% of the rBmAChE2 activity for 90 days in 4°C and the limits of detections (LODs) of the rBmAChE2-based assay for 20 kinds of OPs or CPs ranged from 0.010 to 2.725 mg/kg, which were lower than most of indexes present in current Chinese National Standard (GB/T 5009.199-2003) or the maximum residue limits (GB 2763-2019). Furthermore, the detection results of 23 vegetable samples were verified by the ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method, which indicated that the rBmAChE2-based assay in this work is suitable for pesticide residues rapid detection.
Collapse
Affiliation(s)
- Jiadong Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Jun Cai
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Minting Ma
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Liping Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Linping Lu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Yu Wang
- Guangzhou Institute for Food Inspection, Guangzhou, 510080, PR China.
| | - Chenglong Wang
- Guangzhou Institute for Food Inspection, Guangzhou, 510080, PR China.
| | - Jinyi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, 060-0810, Japan.
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
14
|
Huang J, Zhao Q, Chen L, Zhang C, Bu W, Zhang X, Zhang K, Yang Z. Improved production of recombinant Rhizomucor miehei lipase by coexpressing protein folding chaperones in Pichia pastoris, which triggered ER stress. Bioengineered 2020; 11:375-385. [PMID: 32175802 PMCID: PMC7161542 DOI: 10.1080/21655979.2020.1738127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rhizomucor miehei lipase (RML) is a biocatalyst that widely used in laboratory and industrial. Previously, RML with a 70-amino acid propeptide (pRML) was cloned and expressed in P. pastoris. Recombinant strains with (strain containing 4-copy prml) and without ER stress (strain containing 2-copy prml) were obtained. However, the effective expression of pRML in P. pastoris by coexpressing ER-related elements in pRML-produced strain with or without ER stress has not been reported to date. In this study, an efficient way to produce functional pRML was explored in P. pastoris. The coexpression of protein folding chaperones, including PDI and ERO1, in different strains with or without ER stress, was investigated. PDI overexpression only increased pRML production in 4-copy strain from 705 U/mL to 1430 U/mL because it alleviated the protein folded stress, increased the protein concentration from 0.56 mg/mL to 0.65 mg/mL, and improved enzyme-specific activity from 1238 U/mg to 2186 U/mg. However, PDI coexpression could not improve pRML production in the 2-copy strain because it increased protein folded stress, while ERO1 coexpression in the two strains all had a negative effect on pRML expression. We also investigated the effect of the propeptide on the substrate specificity and the condition for pRML enzyme powder preparation. Results showed that the relative activity exceeded 80% when the substrates C8–C10 were detected at 35°C and pH 6, and C8–C12 at 45°C and pH 8. The optimal enzyme powder preparation pH was 7, and the maximum recovery rate for pRML was 73.19%.
Collapse
Affiliation(s)
- Jinjin Huang
- The key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China.,State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingyi Zhao
- The key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| | - Lingxiao Chen
- The key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| | - Chunmei Zhang
- The key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| | - Wei Bu
- The key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| | - Xin Zhang
- The key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| | - Kaini Zhang
- The key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| | - Zhen Yang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Deng J, Li J, Ma M, Zhao P, Ming F, Lu Z, Shi J, Fan Q, Liang Q, Jia J, Li J, Zhang S, Zhang L. Co-expressing GroEL-GroES, Ssa1-Sis1 and Bip-PDI chaperones for enhanced intracellular production and partial-wall breaking improved stability of porcine growth hormone. Microb Cell Fact 2020; 19:35. [PMID: 32070347 PMCID: PMC7027120 DOI: 10.1186/s12934-020-01304-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/09/2020] [Indexed: 12/18/2022] Open
Abstract
Porcine growth hormone (pGH) is a class of peptide hormones secreted from the pituitary gland, which can significantly improve growth and feed utilization of pigs. However, it is unstable and volatile in vitro. It needs to be encapsulated in liposomes when feeding livestock, whose high cost greatly limits its application in pig industry. Therefore we attempted to express pGH as intracellular soluble protein in Pichia pastoris and feed these yeasts with partial wall-breaking for swine, which could release directly pGH in intestine tract in case of being degraded in intestinal tract with low cost. In order to improve the intracellular soluble expression of pGH protein in Pichia pastoris and stability in vitro, we optimized the pGH gene, and screened molecular chaperones from E. coli and Pichia pastoris respectively for co-expressing with pGH. In addition, we had also explored conditions of mechanical crushing and fermentation. The results showed that the expression of intracellular soluble pGH protein was significantly increased after gene optimized and co-expressed with Ssa1-Sis1 chaperone from Pichia pastoris. Meanwhile, the optimal conditions of partial wall-breaking and fermentation of Pichia pastoris were confirmed, the data showed that the intracellular expression of the optimized pGH protein co-expressed with Ssa1-Sis1 could reach 340 mg/L with optimal conditions of partial wall-breaking and fermentation. Animal experiments verified that the optimized pGH protein co-expression with Ssa1-Sis1 had the best promoting effects on the growth of piglets. Our study demonstrated that Ssa1-Sis1 could enhance the intracellular soluble expression of pGH protein in Pichia pastoris and that partial wall-breaking of yeast could prevent pGH from degradation in vitro, release targetedly in the intestine and play its biological function effectively. Our study could provide a new idea to cut the cost effectively, establishing a theoretical basis for the clinic application of unstable substances in vitro.
Collapse
Affiliation(s)
- Jinbo Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Jiaoqing Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Miaopeng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Peijing Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Feiping Ming
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Zhipeng Lu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Juqing Shi
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Qin Fan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Qianyi Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Junhao Jia
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Jiayi Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Shuxia Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Linghua Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
16
|
Liu J, Han Q, Cheng Q, Chen Y, Wang R, Li X, Liu Y, Yan D. Efficient Expression of Human Lysozyme Through the Increased Gene Dosage and Co-expression of Transcription Factor Hac1p in Pichia pastoris. Curr Microbiol 2020; 77:846-854. [DOI: 10.1007/s00284-019-01872-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
|
17
|
Huang J, Wang Q, Bu W, Chen L, Yang Z, Zheng W, Li Y, Li J. Different construction strategies affected on the physiology of Pichia pastoris strains highly expressed lipase by transcriptional analysis of key genes. Bioengineered 2019; 10:150-161. [PMID: 31079540 PMCID: PMC6527059 DOI: 10.1080/21655979.2019.1614422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We demonstrated previously that expression of Rhizomucor miehei lipase (RML) in Pichia pastoris could be significantly increased by addition of gene propeptide, optimized signal peptide codons and manipulation of gene dosage. In this study, effects of various strategies on the protein synthesis and secretion pathways were analyzed. Using nine strains previously constructed, we evaluated cell culture properties, enzymatic activities, and analyzed transcriptional levels of nine genes involved in protein synthesis and secretion pathways by qPCR. We observed that (i) Addition of propeptide decreased lipase folding stress by down-regulated four UPR-related genes. (ii) Signal peptide codons optimization had no effect on host with no change in the nine detected genes. (iii) Folding stress and limited transport capacity produced when rml gene dosage exceed 2. Different limiting factors on lipase expression in strains with different construction strategies were identified. This study provides a theoretical basis for further improving RML by transforming host.
Collapse
Affiliation(s)
- Jinjin Huang
- a Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences , Jiangsu Normal University , Xuzhou , P. R. China.,b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China
| | - Qing Wang
- b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China.,c School of Life Sciences , Beijing University of Chinese Medicine , Beijing , P. R. China
| | - Wei Bu
- a Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences , Jiangsu Normal University , Xuzhou , P. R. China
| | - Lingxiao Chen
- a Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences , Jiangsu Normal University , Xuzhou , P. R. China
| | - Zhen Yang
- b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China
| | - Weifa Zheng
- a Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences , Jiangsu Normal University , Xuzhou , P. R. China
| | - Ying Li
- b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China
| | - Jilun Li
- b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China
| |
Collapse
|
18
|
Li D, Wu J, Chen J, Zhang D, Zhang Y, Qiao X, Yu X, Zheng Q, Hou J. Optimized expression of classical swine fever virus E2 protein via combined strategy in Pichia pastoris. Protein Expr Purif 2019; 167:105527. [PMID: 31678666 DOI: 10.1016/j.pep.2019.105527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
Precaution of classical swine fever (CSF) is an important mission for the worldwide swine industry. Glycoprotein E2 is the leading antigen candidate for subunit vaccine of classical swine fever virus (CSFV). In this study, two Spy-tagged E2 genes were synthesized in vitro and subcloned into pMCO-AOX vector for intracellular expression in Pichia pastoris after methanol induction. Western blot analysis and semi-quantitative analysis showed that the yield of recombinant E2 protein was improved 17.87 folds by using co-translocational signal peptide cSIG. After the construction of the tandem multiple copy expression vectors, further increase of E2 production was observed by repetitive transforming expression vectors into P. pastoris genome. Finally, the yeast transformants harboring 8 or 16 copies of cSIG-E2-Spy increased the E2 expression level by 27.01-fold or 30.72-fold, respectively. These results demonstrate that utilizing co-translocational signal peptide together with multi-copy integration strategy can increase the production of recombinant E2 protein efficiently.
Collapse
Affiliation(s)
- Ding Li
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China
| | - Junchen Wu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China
| | - Jin Chen
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China
| | - Dong Zhang
- Shandong Provincial Center for Animal Disease Control and Prevention, Shandong, China
| | - Yuanpeng Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China
| | - Xuwen Qiao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China
| | - Xiaoming Yu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China
| | - Qisheng Zheng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China.
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China.
| |
Collapse
|
19
|
Nieto-Taype MA, Garrigós-Martínez J, Sánchez-Farrando M, Valero F, Garcia-Ortega X, Montesinos-Seguí JL. Rationale-based selection of optimal operating strategies and gene dosage impact on recombinant protein production in Komagataella phaffii (Pichia pastoris). Microb Biotechnol 2019; 13:315-327. [PMID: 31657146 PMCID: PMC7017824 DOI: 10.1111/1751-7915.13498] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/26/2022] Open
Abstract
Its features as a microbial and eukaryotic organism have turned Komagataella phaffii (Pichia pastoris) into an emerging cell factory for recombinant protein production (RPP). As a key step of the bioprocess development, this work aimed to demonstrate the importance of tailor designing the cultivation strategy according to the production kinetics of the cell factory. For this purpose, K. phaffii clones constitutively expressing (PGAP) Candida rugosa lipase 1 (Crl1) with different gene dosage were used as models in continuous and fed‐batch cultures. Production parameters were much greater with a multicopy clone (MCC) than with the single‐copy clone (SCC). Regarding production kinetics, the specific product generation rate (qP) increased linearly with increasing specific growth rate (µ) in SCC; by contrast, qP exhibited saturation in MCC. A transcriptional analysis in chemostat cultures suggested the presence of eventual post‐transcriptional bottlenecks in MCC. After the strain characterization, in order to fulfil overall development of the bioprocess, the performance of both clones was also evaluated in fed‐batch mode. Strikingly, different optimal strategies were determined for both models due to the different production kinetic patterns observed as a trade‐off for product titre, yields and productivity. The combined effect of gene dosage and adequate µ enables rational process development with a view to optimize K. phaffii RPP bioprocesses.
Collapse
Affiliation(s)
- Miguel Angel Nieto-Taype
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Javier Garrigós-Martínez
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Marc Sánchez-Farrando
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Xavier Garcia-Ortega
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - José Luis Montesinos-Seguí
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
20
|
Yu Y, Liu Z, Chen M, Yang M, Li L, Mou H. Enhancing the expression of recombinant κ-carrageenase in Pichia pastoris using dual promoters, co-expressing chaperones and transcription factors. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1655001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yuan Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Meng Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Min Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Li Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
21
|
Duan G, Ding L, Wei D, Zhou H, Chu J, Zhang S, Qian J. Screening endogenous signal peptides and protein folding factors to promote the secretory expression of heterologous proteins in Pichia pastoris. J Biotechnol 2019; 306:193-202. [PMID: 31202796 DOI: 10.1016/j.jbiotec.2019.06.297] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/23/2022]
Abstract
Secretory expression is most often desired but usually hampered by limitations of signal peptide processing and protein folding in the methylotrophic yeast Pichia pastoris. To alleviate such limitations, novel endogenous signal peptides (Dan4, Gas1, Msb2, and Fre2) and folding factors (Mpd1p, Pdi2p, and Sil1p) were predicted based on the reported P. pastoris secretome and genome. Their effects were investigated using three reporter proteins: yeast-enhanced green fluorescent protein (yEGFP), β-galactosidase (Gal) and cephalosporin C acylase (SECA), in comparison with the commonly used Saccharomyces cerevisiae alpha-mating factor pre-pro leader sequence (α-MF) or folding factors (Pdi1p, BiP, and Hac1p). The newly identified signal sequences were superior over α-MF for production of heterologous proteins. The signal peptide Msb2 increased the specific extracellular production of all reporter proteins, ranging from 1.5- to 8.0-fold, and Dan4 enhanced all total protein production up to 172-fold. Co-expression of folding factors exhibited a protein-specific effect on cell growth, transcription and expression of different reporter genes. All of the novel folding factors enhanced total production of SECA, and Sil1p performed best in the extracellular SECA production, showing a 3.3-fold increase. These novel signal peptides and folding factors can be used for promoting secretion of heterologous proteins in P. pastoris.
Collapse
Affiliation(s)
- Guangdong Duan
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Lumei Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Dongsheng Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Hangcheng Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Siliang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, PR China.
| |
Collapse
|
22
|
Sallada ND, Harkins LE, Berger BW. Effect of gene copy number and chaperone coexpression on recombinant hydrophobin HFBI biosurfactant production in Pichia pastoris. Biotechnol Bioeng 2019; 116:2029-2040. [PMID: 30934110 DOI: 10.1002/bit.26982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/07/2019] [Accepted: 03/28/2019] [Indexed: 11/07/2022]
Abstract
Hydrophobins are small highly surface-active fungal proteins with potential as biosurfactants in a wide array of applications. However, practical implementation of hydrophobins at large scale has been hindered by low recombinant yields. In this study, the effects of increasing hydrophobin gene copy number and overexpressing endoplasmic reticulum resident chaperone proteins Kar2p, Pdi1p, and Ero1p were explored as a means to enhance recombinant yields of the class II hydrophobin HFBI in the eukaryotic expression host Pichia pastoris. One-, 2-, and 3-copy-HFBI strains were attained using an in vitro multimer ligation approach, with strains displaying copy number stability following subsequent transformations as measured by quantitative polymerase chain reaction. Increasing HFBI copy number alone had no effect on increasing HFBI secretion, but increasing copy number in concert with chaperone overexpression synergistically increased HFBI secretion. Overexpression of PDI1 or ERO1 caused insignificant changes in HFBI secretion in 1- and 2-copy strains, but a statistically significant HFBI secretion increase in 3-copy strain. KAR2 overexpression consistently resulted in enhanced HFBI secretion in all copy number strains, with 3-copy-HFBI secreting 22±1.6 fold more than the 1-copy-HFBI/no chaperone strain. The highest increase was seen in 3-copy-HFBI/Ero1p overexpressing strain with 30±4.0 fold increase in HFBI secretion over 1-copy-HFBI/no chaperone strain. This corresponded to an expression level of approximately 330 mg/L HFBI in the 5 ml small-scale format used in this study.
Collapse
Affiliation(s)
- Nathanael D Sallada
- Department of Biomedical Engineering, University of Virginia, Thornton Hall, Charlottesville, Virginia
| | - Lauren E Harkins
- Department of Biomedical Engineering, University of Virginia, Thornton Hall, Charlottesville, Virginia
| | - Bryan W Berger
- Department of Biomedical Engineering, University of Virginia, Thornton Hall, Charlottesville, Virginia.,Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
23
|
Li L, Zhang S, Wu W, Guan W, Deng Z, Qiao H. Enhancing thermostability of Yarrowia lipolytica lipase 2 through engineering multiple disulfide bonds and mitigating reduced lipase production associated with disulfide bonds. Enzyme Microb Technol 2019; 126:41-49. [PMID: 31000163 DOI: 10.1016/j.enzmictec.2019.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
The limited thermostability of Yarrowia lipolytica lipase 2 (Lip2) hampers its industrial application. To improve its thermostability, we combined single disulfide bonds which our group identified previously. In this study, combining different regional disulfide bonds had greater effect than combining same regional disulfide bonds. Furthermore, mutants with 4, 5, and 6 disulfide bonds exhibited dramatically enhanced thermostability. Compared with the wild-type, sextuple mutant 6s displayed a 22.53 and 31.23 ℃ increase in the melting temperature (Tm) and the half loss temperature at 15 min (T15 50), respectively, with greater pH stability and a wider reaction pH range. Molecular dynamics simulation revealed that multiple disulfide bonds resulted in more rigid structures of mutants 4s, 5s and 6s, and prolonged enzyme unfolding times. Moreover, secretions of mutants 5s and 6s were significantly increased by 60% and 80% by co-expressing with the chaperone protein disulfide isomerase (PDI), which mitigated the reduced production issue caused by multiple disulfide bonds. Results of this study indicated that enhanced heat endurance giving more potential for industrial application.
Collapse
Affiliation(s)
- Lilang Li
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Shihai Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Weikun Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Zixiao Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hanzhen Qiao
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
24
|
Li H, Xia Y. High cell density fed-batch production of insecticidal recombinant ribotoxin hirsutellin A from Pichia pastoris. Microb Cell Fact 2018; 17:145. [PMID: 30342541 PMCID: PMC6195745 DOI: 10.1186/s12934-018-0992-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 09/05/2018] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The fungal ribotoxin hirsutellin A (HtA) exhibits strong insecticidal activity; however, efficient systems for expressing recombinant HtA (rHtA) are lacking. Here, we established an efficient heterologous expression system to produce large amounts of rHtA. RESULTS Recombinant Pichia pastoris transformants with high levels of secretory rHtA were screened, and in a fed-batch reactor, rHtA was secreted at levels up to 80 mg/l following methanol induction, which was more than sixfold higher than that in shake flasks. Approximately 7 mg of highly pure rHtA was obtained from 300 ml of fed-batch culture supernatant by Ni+-nitriloacetic acid affinity chromatography and CM Sepharose ion-exchange chromatography. Mass spectrometry results revealed rHtA as a native N-terminal non-glycosylated monomeric protein with a molecular weight of 15.3 kDa. Purified rHtA exhibited excellent thermal and protease stability and dose-dependent cytotoxicity to Sf9 insect cells and insecticidal activity against Galleria mellonella larvae. CONCLUSIONS This is the first report of rHtA expression in P. pastoris. The rHtA was expressed at a high level under high-cell-density fed-batch fermentation and was efficiently purified using a two-step purification method. Purified rHtA exhibited thermal and protease stability, as well as appropriate bioactivities. Our results indicate that fed-batch production by P. pastoris is an efficient method to produce functional rHtA.
Collapse
Affiliation(s)
- Hongbo Li
- Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China
- College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Yuxian Xia
- Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China.
- Genetic Engineering Research Center, College of Life Sciences, Chongqing University, No. 55 South Road of University Town, Shapingba District, Chongqing, 401331, China.
| |
Collapse
|
25
|
Roth G, Vanz AL, Lünsdorf H, Nimtz M, Rinas U. Fate of the UPR marker protein Kar2/Bip and autophagic processes in fed-batch cultures of secretory insulin precursor producing Pichia pastoris. Microb Cell Fact 2018; 17:123. [PMID: 30092809 PMCID: PMC6083527 DOI: 10.1186/s12934-018-0970-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/31/2018] [Indexed: 11/23/2022] Open
Abstract
Background Secretory recombinant protein production with Pichia (syn. Komagataella) pastoris is commonly associated with the induction of an unfolded protein response (UPR) usually apparent through increased intracellular levels of endoplasmic reticulum (ER) resident chaperones such as Kar2/Bip. During methanol-induced secretory production of an insulin precursor (IP) under industrially relevant fed-batch conditions the initially high level of intracellular Kar2/Bip after batch growth on glycerol unexpectedly declined in the following methanol fed-batch phase misleadingly suggesting that IP production had a low impact on UPR activation. Results Analysis of the protein production independent level of Kar2/Bip revealed that high Kar2/Bip levels were reached in the exponential growth phase of glycerol batch cultures followed by a strong decline of Kar2/Bip during entry into stationary phase. Ultra-structural cell morphology studies revealed autophagic processes (e.g. ER phagy) at the end of the glycerol batch phase most likely responsible for the degradation of ER resident chaperones such as Kar2/Bip. The pre-induction level of Kar2/Bip did not affect the IP secretion efficiency in the subsequent methanol-induced IP production phase. During growth on methanol intracellular Kar2/Bip levels declined in IP producing and non-producing host cells. However, extracellular accumulation of Kar2/Bip was observed in IP-producing cultures but not in non-producing controls. Most importantly, the majority of the extracellular Kar2/Bip accumulated in the culture supernatant of IP producing cells as truncated protein (approx. 35 kDa). Conclusions Rapid growth leads to higher basal levels of the major UPR marker protein Kar2/Bip independent of recombinant protein production. Entry into stationary phase or slower growth on poorer substrate, e.g. methanol, leads to a lower basal Kar2/Bip level. Methanol-induced secretory IP production elicits a strong UPR activation which counteracts the reduced UPR during slow growth on methanol. The major ER chaperone Kar2/Bip is found together with recombinant IP in the culture medium where full-length Kar2/Bip accumulates in addition to large amounts of truncated Kar2/Bip. Thus, for judging UPR activating properties of the produced protein it is important to additionally analyze the medium not only for intact Kar2/Bip but also for truncated versions of this UPR reporter protein. Electronic supplementary material The online version of this article (10.1186/s12934-018-0970-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gustavo Roth
- Technical Chemistry-Life Science, Leibniz University of Hannover, Hannover, Germany
| | - Ana Letícia Vanz
- Technical Chemistry-Life Science, Leibniz University of Hannover, Hannover, Germany
| | - Heinrich Lünsdorf
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany
| | - Manfred Nimtz
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany
| | - Ursula Rinas
- Technical Chemistry-Life Science, Leibniz University of Hannover, Hannover, Germany. .,Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany.
| |
Collapse
|
26
|
Li H, Xia Y. High-level expression and purification of active scorpion long-chain neurotoxin BjαIT from Pichia pastoris. Protein Expr Purif 2018; 152:77-83. [PMID: 30071250 DOI: 10.1016/j.pep.2018.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/06/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
Abstract
As an insect-selective neurotoxin, scorpion long-chain BjαIT is a promising prospect for insecticidal application; however, the difficulty of obtaining natural BjαIT represents the major obstacle preventing analysis of its insecticidal activity against agricultural insect pests. Here, we screened recombinant Pichia pastoris transformants showing high levels of secretory recombinant (r)BjαIT. Secreted rBjαIT was expressed at levels as high as 340 mg/L following methanol induction in a fed-batch reactor, with ∼21 mg of pure rBjαIT obtained from 200-mL fed-batch culture supernatant by Ni2+-nitriloacetic acid affinity chromatography and CM Sepharose ion-exchange chromatography. Injection of purified rBjαIT induced neurotoxicity symptoms in locust (Locusta migratoria) larvae, and the half-lethal dose of rBjαIT for locusts at 24-h post-injection ranged from 11 to 14 μg/g body weight. These results demonstrated that large amounts of active rBjαIT were efficiently prepared from P. pastoris, suggesting this system as efficacious for determining rBjαIT insecticidal activity against other agricultural insect pests.
Collapse
Affiliation(s)
- Hongbo Li
- Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China; The Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Yuxian Xia
- Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
27
|
Li H, Xia Y. Improving the secretory expression of active recombinant AaIT in Pichia pastoris by changing the expression strain and plasmid. World J Microbiol Biotechnol 2018; 34:104. [PMID: 29951705 DOI: 10.1007/s11274-018-2484-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/16/2018] [Indexed: 11/28/2022]
Abstract
Scorpion long-chain insect selective neurotoxin AaIT has the potential to be used against agricultural insect pests. However, there is still a lack of a heterologous gene expression system that can express AaIT efficiently. Here, using X33 as the host strain and pPICZαA as the expression vector, one transformant had the highest expression of recombinant AaIT (rAaIT) was obtained, and secreted as high as 240 mg/l rAaIT in fed-batch fermentation. Secretory rAaIT was purified by Ni2+-nitriloacetic affinity and CM chromatography, and 8 mg of high purity rAaIT were purified from 200 ml fed-batch fermentation cultures. Injecting silkworm (Bombyx mori Linnaeus) and Galleria mellonella larvae with rAaIT resulted in obvious neurotoxin symptoms and led to death. These results demonstrate that a large amount of anti-insect active rAaIT could be prepared efficiently.
Collapse
Affiliation(s)
- Hongbo Li
- Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China. .,The Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China.
| | - Yuxian Xia
- Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
28
|
Li D, Zhang B, Li S, Zhou J, Cao H, Huang Y, Cui Z. A Novel Vector for Construction of Markerless Multicopy Overexpression Transformants in Pichia pastoris. Front Microbiol 2017; 8:1698. [PMID: 28955309 PMCID: PMC5601908 DOI: 10.3389/fmicb.2017.01698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
Pichia pastoris is widely used as a platform for heterologous protein expression because of its high volumetric productivity. Multicopy integration of the target gene is commonly used to improve the production of the target protein. Cre/lox recombination system is a powerful tool for the marker rescue during multiple integrations with one selection marker. Here we reported a novel expression vector based on the Cre/lox recombination system for multiple integrations of target gene to construct multicopy expression strain of P. pastoris. PAOX1 promoter was fused to cre to construct a methanol inducible Cre recombinase. The leakage expression of Cre recombinase in Escherichia coli was blocked by introducing the operator gene lacO. The expression vector designed pMCO-AOXα was stable in E. coli and could effectively rescue the Zeocin resistance gene for next round of integration in P. pastoris. Phytase AppA from E. coli was chosen as a reporter gene. Transformants with 2-16 copies of appA were constructed by using a single antibiotic. Expression of appA was gene dosage dependent when <12 copies were integrated. The protein yield increased 4.45-folds when 12 copies of appA were integrated comparing with the single copy integration. Our results showed that pMCO-AOXα was highly effective for rational construction of multicopy transformat in P. pastoris.
Collapse
Affiliation(s)
- Ding Li
- Key Laboratory of Agricultural Environmental Microbiology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Bo Zhang
- Key Laboratory of Agricultural Environmental Microbiology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Shuting Li
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Jie Zhou
- Key Laboratory of Agricultural Environmental Microbiology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
29
|
Cámara E, Landes N, Albiol J, Gasser B, Mattanovich D, Ferrer P. Increased dosage of AOX1 promoter-regulated expression cassettes leads to transcription attenuation of the methanol metabolism in Pichia pastoris. Sci Rep 2017; 7:44302. [PMID: 28295011 PMCID: PMC5353721 DOI: 10.1038/srep44302] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
The methanol-regulated alcohol oxidase promoter (PAOX1) of Pichia pastoris is one of the strongest promoters for heterologous gene expression in this methylotrophic yeast. Although increasing gene dosage is one of the most common strategies to increase recombinant protein productivities, the increase of gene dosage of Rhizopus oryzae lipase (ROL) in P. pastoris has been previously shown to reduce cell growth, lipase production and substrate consumption in high-copy strains. To better assess that physiological response, transcriptomics analysis was performed of a subset of strains with 1 to 15 ROL copies. The macroscopic physiological parameters confirm that growth yield and carbon uptake rate are gene dosage dependent, and were supported by the transcriptomic data, showing the impact of increased dosage of AOX1 promoter-regulated expression cassettes on P. pastoris physiology under steady methanolic growth conditions. Remarkably, increased number of cassettes led to transcription attenuation of the methanol metabolism and peroxisome biogenesis in P. pastoris, concomitant with reduced secretion levels of the heterologous product. Moreover, our data also point to a block in ROL mRNA translation in the higher ROL-copies constructs, while the low productivities of multi-copy strains under steady growth conditions do not appear to be directly related to UPR and ERAD induction.
Collapse
Affiliation(s)
- Elena Cámara
- Department of Chemical, Biological, and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès) 08193, Catalonia, Spain
| | - Nils Landes
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology, A-1190 Vienna, Austria
| | - Joan Albiol
- Department of Chemical, Biological, and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès) 08193, Catalonia, Spain
| | - Brigitte Gasser
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology, A-1190 Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology, A-1190 Vienna, Austria
| | - Pau Ferrer
- Department of Chemical, Biological, and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès) 08193, Catalonia, Spain
| |
Collapse
|
30
|
Liu W, Zhao W, Lai J, Shen Q, Xu Y, Pan L, Chen S. RSM optimization of HSA/IL1Ra in Pichia pastoris overexpression strain and study of its in vivo activity in reducing hyperglycemia of GK rats. Biotechnol Appl Biochem 2016; 64:627-637. [PMID: 27572239 DOI: 10.1002/bab.1532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/25/2016] [Indexed: 12/28/2022]
Abstract
Human serum albumin (HSA) and interleukin-1 receptor antagonist (IL1Ra) fusion protein is a potential long-acting drug in the treatment of type 2 diabetes. Previously, the expression level of HSA/IL1Ra in Pichia pastoris was successfully improved by increasing the gene copy number and coexpression with chaperone (protein disulfide isomerase) in our laboratory. However, the overexpression strain resulted in low production of high- cell-density fermentation. In this study, the culture medium was optimized in both flask and fermenter, and the optimum culture medium notably increased the productivity and stability of HSA/IL1Ra. To further improve the expression, response surface methodology was used to further optimize the culture condition through modeling three selected parameters (induction pH, induction temperature [T], and maximum methanol feed rate [Vm ]). The maximum yield of HSA/IL1Ra reached 1.1 g/L (10-fold higher than original fermentation condition) under the optimized culture condition (pH 7.0, T = 29 ℃ and Vm = 4.82 mL/L/H) in a 5-L fermenter. In addition, the degradation position of HSA/IL1Ra during fermentation was determined to be K571, serving as a potential target for genetic modification strategies to reduce the degradation. Finally, the in vivo activity study showed that HSA/IL1Ra maintained the therapeutic effect of IL1Ra in type 2 diabetes model rats meanwhile reducing the frequency of administration.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Drug Metabolism and Drug Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Wenbin Zhao
- Department of Drug Metabolism and Drug Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jun Lai
- Department of Drug Metabolism and Drug Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qi Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Yingchun Xu
- Department of Drug Metabolism and Drug Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Liqiang Pan
- Department of Drug Metabolism and Drug Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Shuqing Chen
- Department of Drug Metabolism and Drug Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|