1
|
Zhou J, Zhang X, Xu X, Wei Y, Zhang T, Tang F, Wei Y, Gong Y, Chen X, Wang T, Wang Y, Lamy de la Chapelle M, Li J, Zhao X, Fu W, Hu M. Single-Bacterium Diagnosis via Terahertz Near-Field Dielectric Nanoimaging. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18074-18082. [PMID: 40073032 DOI: 10.1021/acsami.4c22571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Single-bacterium diagnostic methods with unprecedented precision and rapid turnaround times are promising tools for facilitating the transition from empirical treatment to personalized anti-infection treatment. Terahertz (THz) radiation, a cutting-edge technology for identifying pathogens, enables the label-free and non-destructive detection of intermolecular vibrational modes and bacterial dielectric properties. However, this individual dielectric property-based detection and the mismatched spatial resolution are limited for the single-bacterium identification of various species of pathogens. Here, we demonstrate a single-bacterium THz dielectric nanoimaging (STDN) strategy by customized THz scattering-type scanning near-field optical microscopy. The THz nanoimages of bacteria are explained and confirmed by theoretical modeling and near-field measurement. By synchronously tracking the bacterial intrinsic dielectric property and extrinsic morphology, the strategy achieved 99.3% and 91.6% accuracy in species identification and antibiotic susceptibility testing with the trained classifier within 2 hours. This proof-of-concept STDN strategy may propel precise bacterial infection management and help to counteract antibiotic resistance.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Laboratory Medicine, Xingcheng Special Service Sanatorium of Strategic Support Force, Liaoning 125105, China
- Tian Fu Jiang Xi Laboratory, Chengdu 641419, China
| | - Xiaoqiuyan Zhang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
- Tian Fu Jiang Xi Laboratory, Chengdu 641419, China
| | - Xingxing Xu
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| | - Yuanpei Wei
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
- Tian Fu Jiang Xi Laboratory, Chengdu 641419, China
| | - Tianyu Zhang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
- Tian Fu Jiang Xi Laboratory, Chengdu 641419, China
| | - Fu Tang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| | - Yanyu Wei
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| | - Yubin Gong
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| | - Xuequan Chen
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
| | - Tianwu Wang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
| | - Yunxia Wang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Marc Lamy de la Chapelle
- Institut des Molécules et Matériaux Du Mans (IMMM-UMR CNRS 6283), Université Du Mans, Avenue Olivier Messiaen, Le Mans 72085, France
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Tian Fu Jiang Xi Laboratory, Chengdu 641419, China
| | - Min Hu
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| |
Collapse
|
2
|
Pu Z, Wu Y, Zhu Z, Zhao H, Cui D. A new horizon for neuroscience: terahertz biotechnology in brain research. Neural Regen Res 2025; 20:309-325. [PMID: 38819036 PMCID: PMC11317941 DOI: 10.4103/nrr.nrr-d-23-00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/18/2023] [Accepted: 01/03/2024] [Indexed: 06/01/2024] Open
Abstract
Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences. In this article, we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry. Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease, cerebrovascular disease, glioma, psychiatric disease, traumatic brain injury, and myelin deficit. In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases. Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood, the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications. However, the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications. This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
Collapse
Affiliation(s)
- Zhengping Pu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang, Zhejiang Province, China
| | - Yu Wu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, China
| | - Zhongjie Zhu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Hongwei Zhao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, China
| | - Donghong Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Zheng L, Hara K, Murakami H, Tonouchi M, Serita K. A Reflective Terahertz Point Source Meta-Sensor with Asymmetric Meta-Atoms for High-Sensitivity Bio-Sensing. BIOSENSORS 2024; 14:568. [PMID: 39727832 DOI: 10.3390/bios14120568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024]
Abstract
Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed. A near-field point THz source was locally generated at a femtosecond-laser-irradiation spot via optical rectification, exciting only the single central meta-atom, thereby inducing Fano resonance. The reflective resonance response demonstrated dependence on several aspects, including structure asymmetricity, geometrical size, excitation point position, thickness and array-period arrangement. DNA samples were examined using 1 μL applied to an effective sensing area of 0.234 mm2 (484 μm × 484 μm) for performance evaluation. The developed Fano resonance sensor exhibited nearly double sensitivity compared to that of symmetrical sensors and one-gap split ring resonators. Thus, this study advances liquid-based sensing by enabling easy, rapid and trace-level measurements while also driving the development of compact and highly sensitive THz sensors for biological samples.
Collapse
Affiliation(s)
- Luwei Zheng
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Kazuki Hara
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Hironaru Murakami
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Masayoshi Tonouchi
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Kazunori Serita
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
- Graduate School of Information, Production, and Systems, Waseda University, Kitakyusyu 808-0135, Fukuoka, Japan
| |
Collapse
|
4
|
Zhang Z, Wang Z, Zhang C, Yao Z, Zhang S, Wang R, Tian Z, Han J, Chang C, Lou J, Yan X, Qiu C. Advanced Terahertz Refractive Sensing And Fingerprint Recognition Through Metasurface-Excited Surface Waves. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308453. [PMID: 38180283 DOI: 10.1002/adma.202308453] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/27/2023] [Indexed: 01/06/2024]
Abstract
High-sensitive metasurface-based sensors are essential for effective substance detection and insightful bio-interaction studies, which compress light in subwavelength volumes to enhance light-matter interactions. However, current methods to improve sensing performance always focus on optimizing near-field response of individual meta-atom, and fingerprint recognition for bio-substances necessitates several pixelated metasurfaces to establish a quasi-continuous spectrum. Here, a novel sensing strategy is proposed to achieve Terahertz (THz) refractive sensing, and fingerprint recognition based on surface waves (SWs). Leveraging the long-range transmission, strong confinement, and interface sensitivity of SWs, a metasurface-supporting SWs excitation and propagation is experimentally verified to achieve sensing integrations. Through wide-band information collection of SWs, the proposed sensor not only facilitates refractive sensing up to 215.5°/RIU, but also enables the simultaneous resolution of multiple fingerprint information within a continuous spectrum. By covering 5 µm thickness of polyimide, quartz and silicon nitride layers, the maximum phase change of 91.1°, 101.8°, and 126.4° is experimentally obtained within THz band, respectively. Thus, this strategy broadens the research scope of metasurface-excited SWs and introduces a novel paradigm for ultrasensitive sensing functions.
Collapse
Affiliation(s)
- Zeyan Zhang
- School of Physics, Peking University, Beijing, 100871, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, China
| | - Zhuo Wang
- State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, 200433, China
| | - Chao Zhang
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhibo Yao
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Shoujun Zhang
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Ride Wang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, China
| | - Zhen Tian
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Jiaguang Han
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Chao Chang
- School of Physics, Peking University, Beijing, 100871, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, China
| | - Jing Lou
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, China
| | - Xueqing Yan
- School of Physics, Peking University, Beijing, 100871, China
| | - Chengwei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| |
Collapse
|
5
|
Kurland ZA, Goyette T. A Novel Electrophoretic Technique to Improve Metasurface Sensing of Low Concentration Particles in Solution. SENSORS (BASEL, SWITZERLAND) 2023; 23:8359. [PMID: 37896454 PMCID: PMC10610787 DOI: 10.3390/s23208359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 10/29/2023]
Abstract
A novel electrophoretic technique to improve metasurface sensing capabilities of charged particles in solution is presented. The proposed technique may improve the ability of metasurfaces to sense charged particles in solution in a manner not possible using the current standard of particle deposition (which allows particles to sediment randomly on a metasurface under evaporation) by inducing an external, nonuniform electric field through the metasurface apertures. Such a technique may be useful in various sensing applications, such as in biological, polymer, or environmental sciences, where low concentration particles in solution are of interest. The electrophoretic technique was simulated and experimentally tested using latex nanoparticles in solution. The results suggest that, using this technique, one may theoretically increase the particle density within the metasurface regions of greatest sensitivity by nearly 1900% in comparison to random sedimentation due to evaporation. Such an increase in particle density within the regions of greatest sensitivity may facilitate more precise material property measurements and enhance identification and detection capabilities of metasurfaces to particles in solution which constitute only a few hundred parts per million by mass. It was experimentally determined that the electrophoretic technique enhanced metasurface sensing capabilities of 333 parts per million by mass latex nanoparticle solutions by nearly 1700%.
Collapse
Affiliation(s)
- Zachary A Kurland
- Submillimeter-Wave Technology Laboratory, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Thomas Goyette
- Submillimeter-Wave Technology Laboratory, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
6
|
Couture N, Schlosser J, Ahmed A, Wahbeh M, Best G, Gamouras A, Ménard JM. Compact, low-cost, and broadband terahertz time-domain spectrometer. APPLIED OPTICS 2023; 62:4097-4101. [PMID: 37706722 DOI: 10.1364/ao.486938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/01/2023] [Indexed: 09/15/2023]
Abstract
Terahertz time-domain spectroscopy (THz-TDS) is a powerful technique that enables the characterization of a large range of bulk materials, devices, and products. Although this technique has been increasingly used in research and industry, the standard THz-TDS configuration relying on the use of a near-infrared (NIR) laser source remains experimentally complex and relatively costly, impeding its availability to those without the expertise to build a high-performance setup based on nonlinear optics or without the financial means to acquire a commercial unit. Broadband THz-TDS systems require an even larger financial investment, primarily because the generation and detection of spectral components exceeding 3 THz typically need an ultrafast NIR source delivering sub-100-fs pulses. Such an ultrafast source can be bulky and cost upwards of $100,000. Here, we present a broadband, compact, and portable THz-TDS system comprising three modules that allow for the implementation of a single low-cost ultrafast laser, hence significantly decreasing the overall cost of the system. In the first module, the output laser pulses are spectrally broadened through nonlinear propagation in a polarization-maintaining optical fiber and then temporally compressed to achieve a higher peak power. The other two modules utilize thick nonlinear crystals with periodically patterned surfaces that diffract NIR pulses and optimize the efficiency of THz generation and detection processes by enabling a noncollinear beam geometry. Phase-matching conditions in the nonlinear crystals are controlled by the period of the gratings to gain access to a large spectral THz bandwidth. The whole system, combining these three modules, provides access to a THz spectrum peaking at 3.5 THz and extending beyond 6 THz with a maximum dynamic range of 50 dB for time-resolved spectroscopy applications. We demonstrate the functionality of this configuration by performing THz spectroscopy measurements of water vapor contained within a closed cell. Our compact system design paves the way towards a high-performance, yet cost-effective, THz-TDS system that can be readily used in academia and industry.
Collapse
|
7
|
Wang H, Shi W, Hou L, Li C, Zhang Y, Yang L, Cao J. Detection of the minimum concentrations of α-lactose solution using high-power THz-ATR spectroscopy. Front Bioeng Biotechnol 2023; 11:1170218. [PMID: 37034259 PMCID: PMC10076835 DOI: 10.3389/fbioe.2023.1170218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Terahertz (THz) technology has emerged as a promising tool for the qualitative and quantitative identification of markers containing major diseases, enabling early diagnosis and staged treatment of diseases. Nevertheless, the detection of water-containing biological samples is facing significant challenges due to limitations in high-power THz radiation sources and high-sensitivity detection devices. In this paper, we present a designed and constructed set of Terahertz-Attenuated Total Reflection (THz-ATR) spectrometer for high-sensitivity detection of liquid biological samples, which can dynamically maintain the signal-to-noise ratio (SNR) of THz detection signal of liquid biological samples at 40-60 dB. Our high-power THz-ATR spectroscopy can identify and quantitatively detect α-lactose aqueous solution with a minimum concentration of 0.292 mol/L. Moreover, we observed that the rate of change in the absorption peak position varied greatly between high and low concentration samples. Our high-power, high-sensitivity THz-ATR spectroscopy detection provides a rapid, accurate, and low-cost method for detecting disease markers such as blood and urine indicators. Additionally, this approach offers new perspectives for the refinement and in-depth detection of biomedical samples.
Collapse
Affiliation(s)
- Haiqing Wang
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an, China
- School of Physics and Opto-Electronic Technology, Baoji Key Laboratory of Micro-Nano Optoelectronics and Terahertz Technology, Baoji University of Arts and Sciences, Baoji, Shaanxi, China
| | - Wei Shi
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an, China
| | - Lei Hou
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an, China
| | - Chunhui Li
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an, China
| | - Yusong Zhang
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an, China
| | - Lei Yang
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an, China
| | - Juncheng Cao
- Country the Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Fardelli E, D'Arco A, Lupi S, Billi D, Moeller R, Guidi MC. Spectroscopic evidence of the radioresistance of Chroococcidiopsis biosignatures: A combined Raman, FT-IR and THz-TDs spectroscopy study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122148. [PMID: 36462318 DOI: 10.1016/j.saa.2022.122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
In the last decades, Mars has been widely studied with on-site missions and observations, showing a planet that could have hosted life in the past. For this reason, the recent and future space missions on the red planet will search for traces of past and, possibly, present life. As a basis for these missions, Space Agencies, such as the European Space Agency, have conducted many experiments on living organisms, studying their behavior in extraterrestrial conditions, learning to recognize their biosignatures with techniques remotely controllable such as Raman spectroscopy. Among these organisms, the radioresistant cyanobacterium Chroococcidiopsis was irradiated during the STARLIFE campaign with strong radiative insults. In this article we have investigated this cyanobacterium using Raman spectroscopy and extended the characterization of its biosignatures and its response to the radiative stress to the mid- Infrared and Terahertz spectral region using the Fourier Transform InfraRed (FT-IR) and Terahertz Time Domain spectroscopy (THz- TDs), which demonstrates the compatibility and suitability of these techniques for future space missions.
Collapse
Affiliation(s)
- Elisa Fardelli
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy.
| | - Annalisa D'Arco
- University of La Sapienza, Department of Physics, P.le A. Moro, 5, Rome, 00185, Italy
| | - Stefano Lupi
- University of La Sapienza, Department of Physics, P.le A. Moro, 5, Rome, 00185, Italy; INFN - LNF, Via E. Fermi, 54, Frascati, 00044, Italy
| | - Daniela Billi
- University of Tor Vergata, Department of Biology, Via della ricerca scientifica, 1, Rome, 00133, Italy
| | - Ralf Moeller
- Institute of Aerospace Medicine, section Aerospace Microbiology, Linder Hohe, Cologne, 51147, Germany
| | | |
Collapse
|
9
|
Shi WN, Fan F, Zhang TR, Liu JY, Wang XH, Chang S. Terahertz phase shift sensing and identification of a chiral amino acid based on a protein-modified metasurface through the isoelectric point and peptide bonding. BIOMEDICAL OPTICS EXPRESS 2023; 14:1096-1106. [PMID: 36950227 PMCID: PMC10026576 DOI: 10.1364/boe.484181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The efficient sensing of amino acids, especially the distinction of their chiral enantiomers, is important for biological, chemical, and pharmaceutical research. In this work, a THz phase shift sensing method was performed for amino acid detection based on a polarization-dependent electromagnetically induced transparency (EIT) metasurface. More importantly, a method for binding the specific amino acids to the functional proteins modified on the metasurface was developed based on the isoelectric point theory so that the specific recognition for Arginine (Arg) was achieved among the four different amino acids. The results show that via high-Q phase shift, the detection precision for L-Arg is 2.5 × 10-5 g /ml, much higher than traditional sensing parameters. Due to the specific electrostatic adsorption by the functionalized metasurface to L-Arg, its detection sensitivity and precision are 22 times higher than the other amino acids. Furthermore, by comparing nonfunctionalized and functionalized metasurfaces, the D- and L-chiral enantiomers of Arg were distinguished due to their different binding abilities to the functionalized metasurface. Therefore, this EIT metasurface sensor and its specific binding method improve both detection precision and specificity in THz sensing for amino acids, and it will promote the development of THz highly sensitive detection of chiral enantiomers.
Collapse
Affiliation(s)
- Wei-Nan Shi
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Fei Fan
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Tian-Rui Zhang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Jia-Yue Liu
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Xiang-Hui Wang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - ShengJiang Chang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| |
Collapse
|
10
|
Fan M, Rakotondrabe TF, Chen G, Guo M. Advances in microbial analysis: based on volatile organic compounds of microorganisms in food. Food Chem 2023; 418:135950. [PMID: 36989642 DOI: 10.1016/j.foodchem.2023.135950] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/30/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
In recent years, microbial volatile organic compounds (mVOCs) produced by microbial metabolism have attracted more and more attention because they can be used to detect food early contamination and flaws. So far, many analytical methods have been reported for the determination of mVOCs in food, but few integrated review articles discussing these methods are published. Consequently, mVOCs as indicators of food microbiological contamination and their generation mechanism including carbohydrate, amino acid, and fatty acid metabolism are introduced. Meanwhile, a detailed summary of the mVOCs sampling methods such as headspace, purge trap, solid phase microextraction, and needle trap is presented, and a systematic and critical review of the analytical methods (ion mobility spectrometry, electronic nose, biosensor, and so on) of mVOCs and their application in the detection of food microbial contamination is highlighted. Finally, the future concepts that can help improve the detection of food mVOCs are prospected.
Collapse
Affiliation(s)
- Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Tojofaniry Fabien Rakotondrabe
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Han C, Qu F, Wang X, Zhai X, Li J, Yu K, Zhao Y. Terahertz Spectroscopy and Imaging Techniques for Herbal Medicinal Plants Detection: A Comprehensive Review. Crit Rev Anal Chem 2023; 54:2485-2499. [PMID: 36856792 DOI: 10.1080/10408347.2023.2183077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Herbal medicine (HM), derived from various therapeutic plants, has garnered considerable attention for its remarkable effectiveness in treating diseases. However, numerous issues including improved varieties selection, hazardous residue detection, and concoction management affect herb quality throughout the manufacturing process. Therefore, a practical, rapid, nondestructive detection technology is necessary. Terahertz (THz) spectroscopy, with low energy, penetration, and fingerprint features, becomes preferable method for herb quality appraisal. There are three parts in our review. THz techniques, data processing, and modeling methods were introduced in Part I. Three primary applications (authenticity, composition and active ingredients, and origin detection) of THz in medicinal plants quality detection in industrial processing and marketing were detailed in Part II. A thorough investigation and outlook on the well-known applications and advancements of this field were presented in Part III. This review aims to bring new enlightenment to the in-depth THz application research in herbal medicinal plants.
Collapse
Affiliation(s)
- Chaoyue Han
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangfang Qu
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Xiaohui Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuedong Zhai
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junmeng Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Keqiang Yu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China
| | - Yanru Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Kurland Z, Goyette T, Gatesman A. A Novel Technique for Ultrathin Inhomogeneous Dielectric Powder Layer Sensing Using a W-Band Metasurface. SENSORS (BASEL, SWITZERLAND) 2023; 23:842. [PMID: 36679638 PMCID: PMC9862623 DOI: 10.3390/s23020842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
A novel technique using a W-band metasurface for the purpose of transmissive fine powder layer sensing is presented. The proposed technique may allow for the detection, identification, and characterization of inhomogeneous ultrafine powder layers which are effectively hundreds of times thinner than the incident wavelengths used to sense them. Such a technique may be useful during personnel screening processes (i.e., at an airport) and in industrial manufacturing environments where early detection and quantization of harmful airborne particulates can be a matter of security or safety. The proposed sensing technique was experimentally and theoretically tested. The results suggest that, using this technique, one may identify, extract the effective complex dielectric properties, and measure the layer thicknesses of ultrafine powder layers present on a metasurface. Using this technique, it may be possible to identify and characterize diverse media in various physical, chemical, and biological metasurface sensing efforts at numerous bands of the electromagnetic spectrum.
Collapse
|
13
|
Xiao M, Lang T, Ren Z, Hong Z, Shen C, Zhang J, Cen W, Yu Z. Flexible graphene-based metamaterial sensor for highly sensitive detection of bovine serum albumin. APPLIED OPTICS 2022; 61:10574-10581. [PMID: 36607120 DOI: 10.1364/ao.476391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
A graphene-based metamaterial sensor working in the terahertz spectrum is proposed, simulated, and experimentally verified by measuring bovine serum albumin (BSA). Flexible, low-cost polyimide (PI) is used as the substrate, and aluminum with periodic square rings is chosen as the metal layer. Furthermore, the introduction of the graphene monolayer interacts with the molecules through π-π stacking, resulting in the highly sensitive detection of BSA by calculating the amplitude changes at the resonance frequency. The sensor, which is a biosensor platform that offers the advantages of a small size, high sensitivity, and easy fabrication, is a promising method for THz biological detection.
Collapse
|
14
|
Jiao Y, Lou J, Ma Z, Cong L, Xu X, Zhang B, Li D, Yu Y, Sun W, Yan Y, Hu S, Liu B, Huang Y, Sun L, Wang R, Singh R, Fan Y, Chang C, Du X. Photoactive terahertz metasurfaces for ultrafast switchable sensing of colorectal cells. MATERIALS HORIZONS 2022; 9:2984-2992. [PMID: 36073353 DOI: 10.1039/d2mh00787h] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metasurfaces with a strongly enhanced local field are envisioned as a powerful platform for ultrasensitive optical sensors to significantly amplify imperceptible differences between compatible bioanalytes. Through the use of phototunable silicon-based terahertz (THz) metasurfaces, we experimentally demonstrate ultrafast switchable sensing functions. It is found that the THz responses of the coupled-resonances in the metasurfaces shift from Lorentz-lattice mode to electromagnetism-induced transparency (EIT) mode under optical pumping within an ultrashort time of 32 ps, enabling an ultrafast sensitive sensor. For the Lorentz-lattice mode, the THz time-domain signal directly shows a highly sensitive response to detect tiny analytes without extra Fourier transformation as the mismatch between the two modes increases. Once the metasurfaces are switched to the EIT mode, the silicon-metal hybrid structure supports frequency-domain sensing ability due to strong field confinement with a sensitivity of 118.4 GHz/RIU. Both of the sensing configurations contribute to more subtle information and guarantee the accuracy of the sensor performance. Combined with the aforementioned advantages, the proposed metasurfaces have successfully identified colorectal cells between normal, adenoma, and cancer states in experiments. This work furnishes a new paradigm of constructing reliable and flexible metasurface sensors and can be extended to other optics applications.
Collapse
Affiliation(s)
- Yanan Jiao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Jing Lou
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
- Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China
| | - Zhaofu Ma
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Longqing Cong
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing Xu
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Bin Zhang
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Dingchang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| | - Ying Yu
- Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China
| | - Wen Sun
- Department of Anesthesiology, The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| | - Yang Yan
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| | - Shidong Hu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| | - Boyan Liu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| | - Yindong Huang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Lang Sun
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Ride Wang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Ranjan Singh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yuancheng Fan
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology and School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Xiaohui Du
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
15
|
Tan C, Wang S, Yang H, Huang Q, Li S, Liu X, Ye H, Zhang G. Hydrogenated Boron Phosphide THz-Metamaterial-Based Biosensor for Diagnosing COVID-19: A DFT Coupled FEM Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4024. [PMID: 36432307 PMCID: PMC9697324 DOI: 10.3390/nano12224024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Recent reports focus on the hydrogenation engineering of monolayer boron phosphide and simultaneously explore its promising applications in nanoelectronics. Coupling density functional theory and finite element method, we investigate the bowtie triangle ring microstructure composed of boron phosphide with hydrogenation based on structural and performance analysis. We determine the carrier mobility of hydrogenated boron phosphide, reveal the effect of structural and material parameters on resonance frequencies, and discuss the variation of the electric field at the two tips. The results suggest that the mobilities of electrons for hydrogenated BP monolayer in the armchair and zigzag directions are 0.51 and 94.4 cm2·V-1·s-1, whereas for holes, the values are 136.8 and 175.15 cm2·V-1·s-1. Meanwhile, the transmission spectra of the bowtie triangle ring microstructure can be controlled by adjusting the length of the bowtie triangle ring microstructure and carrier density of hydrogenated BP. With the increasing length, the transmission spectrum has a red-shift and the electric field at the tips of equilateral triangle rings is significantly weakened. Furthermore, the theoretical sensitivity of the BTR structure reaches 100 GHz/RIU, which is sufficient to determine healthy and COVID-19-infected individuals. Our findings may open up new avenues for promising applications in the rapid diagnosis of COVID-19.
Collapse
Affiliation(s)
- Chunjian Tan
- Electronic Components, Technology and Materials, Delft University of Technology, 2628 CD Delft, The Netherlands
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shaogang Wang
- Electronic Components, Technology and Materials, Delft University of Technology, 2628 CD Delft, The Netherlands
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huiru Yang
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qianming Huang
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shizhen Li
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xu Liu
- Electronic Components, Technology and Materials, Delft University of Technology, 2628 CD Delft, The Netherlands
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huaiyu Ye
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guoqi Zhang
- Electronic Components, Technology and Materials, Delft University of Technology, 2628 CD Delft, The Netherlands
| |
Collapse
|
16
|
Calibration-free, high-precision, and robust terahertz ultrafast metasurfaces for monitoring gastric cancers. Proc Natl Acad Sci U S A 2022; 119:e2209218119. [PMID: 36252031 PMCID: PMC9618089 DOI: 10.1073/pnas.2209218119] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Optical sensors, with great potential to convert invisible bioanalytical response into readable information, have been envisioned as a powerful platform for biological analysis and early diagnosis of diseases. However, the current extraction of sensing data is basically processed via a series of complicated and time-consuming calibrations between samples and reference, which inevitably introduce extra measurement errors and potentially annihilate small intrinsic responses. Here, we have proposed and experimentally demonstrated a calibration-free sensor for achieving high-precision biosensing detection, based on an optically controlled terahertz (THz) ultrafast metasurface. Photoexcitation of the silicon bridge enables the resonant frequency shifting from 1.385 to 0.825 THz and reaches the maximal phase variation up to 50° at 1.11 THz. The typical environmental measurement errors are completely eliminated in theory by normalizing the Fourier-transformed transmission spectra between ultrashort time delays of 37 ps, resulting in an extremely robust sensing device for monitoring the cancerous process of gastric cells. We believe that our calibration-free sensors with high precision and robust advantages can extend their implementation to study ultrafast biological dynamics and may inspire considerable innovations in the field of medical devices with nondestructive detection.
Collapse
|
17
|
Reflective Terahertz Metasurfaces Based on Non-Volatile Phase Change Material for Switchable Manipulation. PHOTONICS 2022. [DOI: 10.3390/photonics9080508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recently, metasurfaces have been investigated and exploited for various applications in the THz regime, including modulators and detectors. However, the responsive properties of the metasurface in THz stay fixed once the fabrication process is complete. This limitation can be modified when integrating the phase change material (PCM), whose states are switchable between crystalline and amorphous, into the metasurface structure. This characteristic of the PCM is appealing in achieving dynamic and customizable functionality. In this work, the reflective metasurface structure is designed as a hexagonal unit deposited on a polyimide substrate. The non-volatile PCM chosen for the numerical study is germanium antimony tellurium (GST). Our proposed phase change metasurface provides two resonant frequencies located at 1.72 and 2.70 THz, respectively; one of them shows a high contrast of reflectivity at almost 80%. The effects of geometrical parameters, incident angles, and polarization modes on the properties of the proposed structure are explored. Finally, the performances of the structure are evaluated in terms of the insertion loss and extinction ratio.
Collapse
|
18
|
Detection of Polystyrene Microplastic Particles in Water Using Surface-Functionalized Terahertz Microfluidic Metamaterials. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
We propose a novel method for detecting microplastic particles in water using terahertz metamaterials. Fluidic channels are employed to flow the water, containing polystyrene spheres, on the surface of the metamaterials. Polystyrene spheres are captured only near the gap structure of the metamaterials as the gap areas are functionalized. The resonant frequency of terahertz metamaterials increased while we circulated the microplastic solution, as polystyrene spheres in the solution are attached to the metamaterial gap areas, which saturates at a specific frequency as the gap areas are filled by the polystyrene spheres. Experimental results were revisited and supported by finite-difference time-domain simulations. We investigated how this method can be used for the detection of microplastics with various solution densities. The saturation time of the resonant frequency shift was found to decrease, while the saturated resonant frequency shift increased as the solution density increased.
Collapse
|
19
|
Lu X, Ge H, Jiang Y, Zhang Y. A Dual-Band High-Sensitivity THz Metamaterial Sensor Based on Split Metal Stacking Ring. BIOSENSORS 2022; 12:bios12070471. [PMID: 35884274 PMCID: PMC9313385 DOI: 10.3390/bios12070471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/22/2022]
Abstract
Terahertz (THz)-detection technology has been proven to be an effective and rapid non-destructive detection approach in biomedicine, quality control, and safety inspection, among other applications. However, the sensitivity of such a detection method is limited due to the insufficient power of the terahertz source and the low content, or ambiguous characteristics, of the analytes to be measured. Metamaterial (MM) is an artificial structure in which periodic sub-wavelength units are arranged in a regular manner, resulting in extraordinary characteristics beyond those possessed by natural materials. It is an effective method to improve the ability of terahertz spectroscopy detection by utilizing the metamaterial as a sensor. In this paper, a dual-band, high-sensitivity THz MM sensor based on the split metal stacking ring resonator (SMSRR) is proposed. The appliance exhibited two resonances at 0.97 and 2.88 THz in the range of 0.1 to 3 THz, realizing multi-point matching between the resonance frequency and the characteristic frequency of the analytes, which was able to improve the reliability and detection sensitivity of the system. The proposed sensor has good sensing performance at both resonant frequencies and can achieve highest sensitivities of 304 GHz/RIU and 912 GHz/RIU with an appropriate thickness of the analyte. Meanwhile, the advantage of multi-point matching of the proposed sensor has been validated by distinguishing four edible oils based on their different refractive indices and demonstrating that the characteristics obtained in different resonant frequency bands are consistent. This work serves as a foundation for future research on band extension and multi-point feature matching in terahertz detection, potentially paving the way for the development of high-sensitivity THz MM sensors.
Collapse
Affiliation(s)
- Xuejing Lu
- PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China;
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (H.G.); (Y.J.)
| | - Hongyi Ge
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (H.G.); (Y.J.)
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuying Jiang
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (H.G.); (Y.J.)
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuan Zhang
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Correspondence:
| |
Collapse
|
20
|
Yu W, Shi J, Huang G, Zhou J, Zhan X, Guo Z, Tian H, Xie F, Yang X, Fu W. THz-ATR Spectroscopy Integrated with Species Recognition Based on Multi-Classifier Voting for Automated Clinical Microbial Identification. BIOSENSORS 2022; 12:bios12060378. [PMID: 35735526 PMCID: PMC9221034 DOI: 10.3390/bios12060378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 12/31/2022]
Abstract
The demand for rapid and accurate identification of microorganisms is growing due to considerable importance in all areas related to public health and safety. Here, we demonstrate a rapid and label-free strategy for the identification of microorganisms by integrating terahertz-attenuated total reflection (THz-ATR) spectroscopy with an automated recognition method based on multi-classifier voting. Our results show that 13 standard microbial strains can be classified into three different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and fungi) by THz-ATR spectroscopy. To detect clinical microbial strains with better differentiation that accounts for their greater sample heterogeneity, an automated recognition algorithm is proposed based on multi-classifier voting. It uses three types of machine learning classifiers to identify five different groups of clinical microbial strains. The results demonstrate that common microorganisms, once time-consuming to distinguish by traditional microbial identification methods, can be rapidly and accurately recognized using THz-ATR spectra in minutes. The proposed automatic recognition method is optimized by a spectroscopic feature selection algorithm designed to identify the optimal diagnostic indicator, and the combination of different machine learning classifiers with a voting scheme. The total diagnostic accuracy reaches 80.77% (as high as 99.6% for Enterococcus faecalis) for 1123 isolates from clinical samples of sputum, blood, urine, and feces. This strategy demonstrates that THz spectroscopy integrated with an automatic recognition method based on multi-classifier voting significantly improves the accuracy of spectral analysis, thereby presenting a new method for true label-free identification of clinical microorganisms with high efficiency.
Collapse
Affiliation(s)
- Wenjing Yu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (W.Y.); (G.H.); (J.Z.); (X.Z.); (H.T.); (F.X.)
| | - Jia Shi
- Tianjin Key Laboratory of Optoelectronic Detection Technology and System, School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China; (J.S.); (Z.G.)
| | - Guorong Huang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (W.Y.); (G.H.); (J.Z.); (X.Z.); (H.T.); (F.X.)
| | - Jie Zhou
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (W.Y.); (G.H.); (J.Z.); (X.Z.); (H.T.); (F.X.)
| | - Xinyu Zhan
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (W.Y.); (G.H.); (J.Z.); (X.Z.); (H.T.); (F.X.)
| | - Zekang Guo
- Tianjin Key Laboratory of Optoelectronic Detection Technology and System, School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China; (J.S.); (Z.G.)
| | - Huiyan Tian
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (W.Y.); (G.H.); (J.Z.); (X.Z.); (H.T.); (F.X.)
| | - Fengxin Xie
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (W.Y.); (G.H.); (J.Z.); (X.Z.); (H.T.); (F.X.)
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (W.Y.); (G.H.); (J.Z.); (X.Z.); (H.T.); (F.X.)
- Correspondence: (X.Y.); (W.F.)
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (W.Y.); (G.H.); (J.Z.); (X.Z.); (H.T.); (F.X.)
- Correspondence: (X.Y.); (W.F.)
| |
Collapse
|
21
|
Rahman BMA, Viphavakit C, Chitaree R, Ghosh S, Pathak AK, Verma S, Sakda N. Optical Fiber, Nanomaterial, and THz-Metasurface-Mediated Nano-Biosensors: A Review. BIOSENSORS 2022; 12:bios12010042. [PMID: 35049670 PMCID: PMC8773603 DOI: 10.3390/bios12010042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 05/22/2023]
Abstract
The increasing use of nanomaterials and scalable, high-yield nanofabrication process are revolutionizing the development of novel biosensors. Over the past decades, researches on nanotechnology-mediated biosensing have been on the forefront due to their potential application in healthcare, pharmaceutical, cell diagnosis, drug delivery, and water and air quality monitoring. The advancement of nanoscale science relies on a better understanding of theory, manufacturing and fabrication practices, and the application specific methods. The topology and tunable properties of nanoparticles, a part of nanoscale science, can be changed by different manufacturing processes, which separate them from their bulk counterparts. In the recent past, different nanostructures, such as nanosphere, nanorods, nanofiber, core-shell nanoparticles, nanotubes, and thin films, have been exploited to enhance the detectability of labelled or label-free biological molecules with a high accuracy. Furthermore, these engineered-materials-associated transducing devices, e.g., optical waveguides and metasurface-based scattering media, widened the horizon of biosensors over a broad wavelength range from deep-ultraviolet to far-infrared. This review provides a comprehensive overview of the major scientific achievements in nano-biosensors based on optical fiber, nanomaterials and terahertz-domain metasurface-based refractometric, labelled and label-free nano-biosensors.
Collapse
Affiliation(s)
- B. M. Azizur Rahman
- School of Mathematics, Computer Science and Engineering, University of London, London EC1V 0HB, UK; (S.V.); (N.S.)
- Correspondence:
| | - Charusluk Viphavakit
- International School of Engineering and Intelligent Control Automation of Process Systems Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (C.V.); (A.K.P.)
| | - Ratchapak Chitaree
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Souvik Ghosh
- Department of Electronic and Electrical Engineering, University College London, Gower St., London WC1E 6AE, UK;
| | - Akhilesh Kumar Pathak
- International School of Engineering and Intelligent Control Automation of Process Systems Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (C.V.); (A.K.P.)
| | - Sneha Verma
- School of Mathematics, Computer Science and Engineering, University of London, London EC1V 0HB, UK; (S.V.); (N.S.)
| | - Natsima Sakda
- School of Mathematics, Computer Science and Engineering, University of London, London EC1V 0HB, UK; (S.V.); (N.S.)
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
22
|
Yang R, Li Y, Qin B, Zhao D, Gan Y, Zheng J. Pesticide detection combining the Wasserstein generative adversarial network and the residual neural network based on terahertz spectroscopy. RSC Adv 2022; 12:1769-1776. [PMID: 35425184 PMCID: PMC8979129 DOI: 10.1039/d1ra06905e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Feature extraction is a key factor to detect pesticides using terahertz spectroscopy. Compared to traditional methods, deep learning is able to obtain better insights into complex data features at high levels of abstraction. However, reports about the application of deep learning in THz spectroscopy are rare. The main limitation of deep learning to analyse terahertz spectroscopy is insufficient learning samples. In this study, we proposed a WGAN-ResNet method, which combines two deep learning networks, the Wasserstein generative adversarial network (WGAN) and the residual neural network (ResNet), to detect carbendazim based on terahertz spectroscopy. The Wasserstein generative adversarial network and pretraining model technology were employed to solve the problem of insufficient learning samples for training the ResNet. The Wasserstein generative adversarial network was used for generating more new learning samples. At the same time, pretraining model technology was applied to reduce the training parameters, in order to avoid residual neural network overfitting. The results demonstrate that our proposed method achieves a 91.4% accuracy rate, which is better than those of support vector machine, k-nearest neighbor, naïve Bayes model and ensemble learning. In summary, our proposed method demonstrates the potential application of deep learning in pesticide residue detection, expanding the application of THz spectroscopy.
Collapse
Affiliation(s)
- Ruizhao Yang
- School of Physics and Telecommunication Engineering, Yulin Normal University Yulin China
| | - Yun Li
- College of Chemistry and Food Science, Yulin Normal University Yulin China
| | - Binyi Qin
- School of Physics and Telecommunication Engineering, Yulin Normal University Yulin China
- Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University Yulin China
| | - Di Zhao
- School of Physics and Telecommunication Engineering, Yulin Normal University Yulin China
| | - Yongjin Gan
- School of Physics and Telecommunication Engineering, Yulin Normal University Yulin China
| | - Jincun Zheng
- School of Physics and Telecommunication Engineering, Yulin Normal University Yulin China
| |
Collapse
|
23
|
S K, M Y, Rawson A, C. K S. Recent Advances in Terahertz Time-Domain Spectroscopy and Imaging Techniques for Automation in Agriculture and Food Sector. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02132-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Zhuang J, Liu W, Yang L, Kang J, Zhang X. Bioluminescent Imaging and Tracking of Bacterial Transport in Soils. Methods Mol Biol 2020; 2081:53-65. [PMID: 31721118 DOI: 10.1007/978-1-4939-9940-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bioimaging instrumentation can be used to observe environmental phenomena such as the transport, retention, and distribution of bacteria in soils in situ in a real-time, nondestructive manner. Bacteria designed to emit bioluminescence light signals are injected into a transparent column packed with soils, and then the column is placed into a bioimaging instrument, such as a PerkinElmer IVIS Spectrum, while it is connected through thin teflon tubes to other parts of the column system located outside of the imaging chamber, including a fraction collector for collecting effluent solution and a pump for introducing bacterial suspension or experimental solution. After self-correction of soil autofluorescence and bioluminescence and setup of required imaging parameters, the transport experiment is initiated by introducing the bacterial suspension to the soil column while the spatiotemporal distribution of bioluminescent bacteria in the entire soil column is imaged. Finally, the images are processed to analyze bacterial migration in the soil under various environmental conditions in comparison with the breakthrough and elution curves of the bacteria obtained by analyzing the effluent samples.
Collapse
Affiliation(s)
- Jie Zhuang
- Department of Biosystems Engineering and Soil Science, Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA. .,Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.
| | - Weipeng Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,The University of Chinese Academy of Sciences, Beijing, China
| | - Liqiong Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,The University of Chinese Academy of Sciences, Beijing, China
| | - Jia Kang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,The University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- College of Desert Control Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
25
|
Abstract
Terahertz time-domain spectroscopy (THz-TDS) is a non-invasive, non-contact and label-free technique for biological and chemical sensing as THz-spectra are less energetic and lie in the characteristic vibration frequency regime of proteins and DNA molecules. However, THz-TDS is less sensitive for the detection of micro-organisms of size equal to or less than λ/100 (where, λ is the wavelength of the incident THz wave), and molecules in extremely low concentration solutions (like, a few femtomolar). After successful high-throughput fabrication of nanostructures, nanoantennas were found to be indispensable in enhancing the sensitivity of conventional THz-TDS. These nanostructures lead to strong THz field enhancement when in resonance with the absorption spectrum of absorptive molecules, causing significant changes in the magnitude of the transmission spectrum, therefore, enhancing the sensitivity and allowing the detection of molecules and biomaterials in extremely low concentration solutions. Herein, we review the recent developments in ultra-sensitive and selective nanogap biosensors. We have also provided an in-depth review of various high-throughput nanofabrication techniques. We also discussed the physics behind the field enhancements in the sub-skin depth as well as sub-nanometer sized nanogaps. We introduce finite-difference time-domain (FDTD) and molecular dynamics (MD) simulation tools to study THz biomolecular interactions. Finally, we provide a comprehensive account of nanoantenna enhanced sensing of viruses (like, H1N1) and biomolecules such as artificial sweeteners which are addictive and carcinogenic.
Collapse
Affiliation(s)
- Subham Adak
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi - 835215, Jharkhand, India.
| | | |
Collapse
|
26
|
Afsah-Hejri L, Hajeb P, Ara P, Ehsani RJ. A Comprehensive Review on Food Applications of Terahertz Spectroscopy and Imaging. Compr Rev Food Sci Food Saf 2019; 18:1563-1621. [PMID: 33336912 DOI: 10.1111/1541-4337.12490] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022]
Abstract
Food product safety is a public health concern. Most of the food safety analytical and detection methods are expensive, labor intensive, and time consuming. A safe, rapid, reliable, and nondestructive detection method is needed to assure consumers that food products are safe to consume. Terahertz (THz) radiation, which has properties of both microwave and infrared, can penetrate and interact with many commonly used materials. Owing to the technological developments in sources and detectors, THz spectroscopic imaging has transitioned from a laboratory-scale technique into a versatile imaging tool with many practical applications. In recent years, THz imaging has been shown to have great potential as an emerging nondestructive tool for food inspection. THz spectroscopy provides qualitative and quantitative information about food samples. The main applications of THz in food industries include detection of moisture, foreign bodies, inspection, and quality control. Other applications of THz technology in the food industry include detection of harmful compounds, antibiotics, and microorganisms. THz spectroscopy is a great tool for characterization of carbohydrates, amino acids, fatty acids, and vitamins. Despite its potential applications, THz technology has some limitations, such as limited penetration, scattering effect, limited sensitivity, and low limit of detection. THz technology is still expensive, and there is no available THz database library for food compounds. The scanning speed needs to be improved in the future generations of THz systems. Although many technological aspects need to be improved, THz technology has already been established in the food industry as a powerful tool with great detection and quantification ability. This paper reviews various applications of THz spectroscopy and imaging in the food industry.
Collapse
Affiliation(s)
- Leili Afsah-Hejri
- Mechanical Engineering Dept., School of Engineering, Univ. of California, Merced, 5200 N. Lake Rd., Merced, CA, 95343
| | - Parvaneh Hajeb
- Dept. of Environmental Science, Aarhus Univ., Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Parsa Ara
- College of Letters and Sciences, Univ. of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Reza J Ehsani
- Mechanical Engineering Dept., School of Engineering, Univ. of California, Merced, 5200 N. Lake Rd., Merced, CA, 95343
| |
Collapse
|
27
|
Hameed S, Xie L, Ying Y. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Yang X, Shi J, Wang Y, Yang K, Zhao X, Wang G, Xu D, Wang Y, Yao J, Fu W. Label-free bacterial colony detection and viability assessment by continuous-wave terahertz transmission imaging. JOURNAL OF BIOPHOTONICS 2018; 11:e201700386. [PMID: 29633578 DOI: 10.1002/jbio.201700386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/03/2018] [Indexed: 05/16/2023]
Abstract
Timely and accurate bacterial detection is critical for various health and safety applications, which promotes the continuous development of versatile optical sensors for bacterial investigations. Here, we report a new strategy for bacterial colony sensing using terahertz (THz) imaging with minimal assay procedures. The proposed method utilizes the acute sensitivity of THz wave to the changes in the water content and cellular structures. Single bacterial colonies of 4 bacterial species were directly distinguished using THz imaging by utilizing their differences in THz absorption. In addition, the distribution of mixed bacterial samples has been demonstrated by THz imaging, which demonstrated that the target bacterium could be easily recognized. Furthermore, we investigated the differentiation of bacterial viability, which indicated that bacteria under different living states could be distinguished by THz imaging because of their different hydration levels and cellular structures. Our results suggest that THz imaging has the potential to be used for mixed bacterial sample detection and bacterial viability assessment in a label-free and nondestructive manner.
Collapse
Affiliation(s)
- Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jia Shi
- Institute of Laser and Optoelectronics, School of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin, China
| | - Yuye Wang
- Institute of Laser and Optoelectronics, School of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin, China
| | - Ke Yang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiang Zhao
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guiyu Wang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Degang Xu
- Institute of Laser and Optoelectronics, School of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin, China
| | - Yunxia Wang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jianquan Yao
- Institute of Laser and Optoelectronics, School of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin, China
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
29
|
Yan S, Zhang H, Yang Z, Tang M, Zhang M, Du C, Cui HL, Wei D. Transformation and dehydration kinetics of methylene blue hydrates detected by terahertz time-domain spectroscopy. RSC Adv 2017. [DOI: 10.1039/c7ra07118c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Three methylene blue crystalline hydrates were identified by terahertz spectroscopy according to their different THz absorption features.
Collapse
Affiliation(s)
- Shihan Yan
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Hua Zhang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Zhongbo Yang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Mingjie Tang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Mingkun Zhang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Chunlei Du
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Hong-Liang Cui
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Dongshan Wei
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| |
Collapse
|