1
|
Chlipała P, Bienia J, Mazur M, Dymarska M, Janeczko T. Efficient Production of 4'-Hydroxydihydrochalcones Using Non-Conventional Yeast Strains. Int J Mol Sci 2024; 25:10735. [PMID: 39409064 PMCID: PMC11476679 DOI: 10.3390/ijms251910735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/21/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
The quest for novel therapeutic agents has rekindled interest in natural products, particularly those derived from biotransformation processes. Dihydrochalcones, a class of plant secondary metabolites, exhibit a range of pharmacological properties. Chalcone and dihydrochalcone compounds with the characteristic 4'-hydroxy substitution are present in 'dragon's blood' resin, known for its traditional medicinal uses and complex composition, making the isolation of these compounds challenging. This study investigates the efficient production of 4'-hydroxydihydrochalcones using non-conventional yeast strains. We evaluated the biotransformation efficiency of various 4'-hydroxychalcone substrates utilizing yeast strains such as Yarrowia lipolytica KCh 71, Saccharomyces cerevisiae KCh 464, Rhodotorula rubra KCh 4 and KCh 82, and Rhodotorula glutinis KCh 242. Our findings revealed that Yarrowia lipolytica KCh 71, Rhodotorula rubra KCh 4 and KCh 82, and Rhodotorula glutinis KCh 242 exhibited the highest conversion efficiencies, exceeding 98% within one hour for most substrates. The position of methoxy substituents in the chalcone ring significantly influenced hydrogenation efficiency. Moreover, we observed isomerization of trans-4'-hydroxy-2-methoxychalcone to its cis isomer, catalyzed by light exposure. This study underscores the potential of using yeast strains for the sustainable and efficient production of dihydrochalcones, providing a foundation for developing new therapeutic agents and nutraceuticals.
Collapse
Affiliation(s)
- Paweł Chlipała
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (J.B.); (M.M.); (M.D.)
| | | | | | | | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (J.B.); (M.M.); (M.D.)
| |
Collapse
|
2
|
Chlipała P, Janeczko T, Mazur M. Bioreduction of 4'-Hydroxychalcone in Deep Eutectic Solvents: Optimization and Efficacy with Various Yeast Strains. Int J Mol Sci 2024; 25:7152. [PMID: 39000255 PMCID: PMC11241015 DOI: 10.3390/ijms25137152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
4'-dihydrochalcones are secondary metabolites isolated from many medicinal plants and from the resin known as 'dragon's blood'. Due to their biological potential, our research objective was to determine the possibilities of using biocatalysis processes carried out in deep eutectic solvents (DESs) to obtain 4'-dihydrochalcones as a model compound. The processes were carried out in a culture of the yeast Yarrowia lipolytica KCh 71 and also in cultures of strains of the genera Rhodotorula and Debaryomyces. Based on the experiments carried out, an optimum process temperature of 35 °C was chosen, and the most suitable DES contained glycerol as a hydrogen bond donor (HBD). For a medium with 30% water content (DES 11), the conversion observed after 24 h exceeded 70%, while increasing the amount of water to 50% resulted in a similar level of conversion after just 1 h. A fivefold increase in the amount of added substrate resulted in a reduction in conversion, which reached 30.3%. Of the other yeast strains tested, Rhodotorula marina KCh 77 and Rhodotorula rubra KCh 4 also proved to be good biocatalysts for the bioreduction process. For these strains, the conversion reached 95.4% and 95.1%, respectively. These findings highlight the potential of yeast as a biocatalyst for the selective reduction of α,β-unsaturated ketones and the possibility of using a DESs as a reaction medium in this process.
Collapse
Affiliation(s)
| | | | - Marcelina Mazur
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (P.C.); (T.J.)
| |
Collapse
|
3
|
Mazumder R, Ichudaule, Ghosh A, Deb S, Ghosh R. Significance of Chalcone Scaffolds in Medicinal Chemistry. Top Curr Chem (Cham) 2024; 382:22. [PMID: 38937401 DOI: 10.1007/s41061-024-00468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024]
Abstract
Chalcone is a simple naturally occurring α,β-unsaturated ketone with biological importance, which can also be easily synthesized in laboratories by reaction between two aromatic scaffolds. In plants, chalcones occur as polyphenolic compounds of different frameworks which are bioactive molecules that have been in traditional medicinal practice for many years. Chalcone-based lead molecules have been developed, possessing varied potentials such as antimicrobial, antiviral, anti-inflammatory, anticancer, anti-oxidant, antidiabetic, antihyperurecemic, and anti-ulcer effects. Chalcones contribute considerable fragments to give important heterocyclic molecules with therapeutic utilities targeting various diseases. These characteristic features have made chalcone a topic of interest among researchers and have attracted investigations into this widely applicable structure. This review highlights the extensive exploration carried out on the synthesis, biotransformations, chemical reactions, hybridization, and pharmacological potentials of chalcones, and aims to provide an extensive, thorough, and critical review of their importance, with emphasis on their properties, chemistry, and biomedical applications to boost future investigations into this potential scaffold in medicinal chemistry.
Collapse
Affiliation(s)
- Rishav Mazumder
- Laboratory of Developing Drug Candidates, Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Ichudaule
- Laboratory of Developing Drug Candidates, Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Ashmita Ghosh
- Department of Microbiology and Biotechnology, School of Natural Sciences, Techno India University Tripura, Maheshkhola, Anandanagar, Agartala, Tripura, 799004, India
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| | - Rajat Ghosh
- Laboratory of Developing Drug Candidates, Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India.
| |
Collapse
|
4
|
Zou Y, Li X, Xin X, Xu H, Zhao G. Microbial-Driven Synthesis and Hydrolysis of Neohesperidin Dihydrochalcone: Biotransformation Process and Feasibility Investigation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4246-4256. [PMID: 38317352 DOI: 10.1021/acs.jafc.3c08339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A novel yeast-mediated hydrogenation was developed for the synthesis of neohesperidin dihydrochalcone (NHDC) in high yields (over 83%). Moreover, whole-cell catalytic hydrolysis was also designed to hydrolyze NHDC into potential sweeteners, hesperetin dihydrochalcone-7-O-glucoside (HDC-G) and hesperetin dihydrochalcone (HDC). The biohydrogenation was further combined with whole-cell hydrolysis to achieve a one-pot two-step biosynthesis, utilizing yeast to hydrogenate C═C in the structure, while Aspergillus niger cells hydrolyze glycosides. The conversion of NHDC and the proportion of hydrolysis products could be controlled by adjusting the catalysts, the components of the reaction system, and the addition of glucose. Furthermore, yeast-mediated biotransformation demonstrated superior reaction stability and enhanced safety and employed more cost-effective catalysts compared to the traditional chemical hydrogenation of NHDC synthesis. This research not only provides a new route for NHDC production but also offers a safe and flexible one-pot cascade biosynthetic platform for the production of high-value compounds from citrus processing wastes.
Collapse
Affiliation(s)
- Yucong Zou
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Xuan Xin
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Dongsha Street 24, Guangzhou, Guangdong 510225, China
| | - Haixia Xu
- Jiangxi Key Laboratory National Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 3300045, China
| | - Guanglei Zhao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| |
Collapse
|
5
|
Liao G, Mi C, Yang L, Zhang H, Ding X, Cai M, Wang H, Mei W, Dai H, Tang X. p-Quinone Methide-Mediated Nonenzymatic Formation of Chalcane-Containing Dimers in Dragon's Blood. Org Lett 2022; 24:9275-9280. [PMID: 36512336 DOI: 10.1021/acs.orglett.2c03850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chalcane-containing dimers are major compounds identified from dragon's blood, the red resin that accumulates in Dracaena trees after injury. The key step for the formation of these dimers was a p-quinone methide (p-QM, 3) mediated nonenzymatic Michael addition. Compound 3 is derived from the spontaneous dehydration of chalcane alcohol-M274 (2). Two dihydroflavonol-4-reductases, discovered in D. cambodiana, reduce dihydrochalcone-M272 (7) to 2. Moreover, the application potential of p-QMs was demonstrated using a 3-like p-QM to synthesize diverse dimeric derivatives.
Collapse
Affiliation(s)
- Ge Liao
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.,Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Chengneng Mi
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.,College of Pharmacy, Xiangnan University, Chenzhou 423000, China
| | - Li Yang
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Haili Zhang
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xupo Ding
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Mingwei Cai
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Hao Wang
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wenli Mei
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Haofu Dai
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaoyu Tang
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
6
|
Łużny M, Kaczanowska D, Gawdzik B, Wzorek A, Pawlak A, Obmińska-Mrukowicz B, Dymarska M, Kozłowska E, Kostrzewa-Susłow E, Janeczko T. Regiospecific Hydrogenation of Bromochalcone by Unconventional Yeast Strains. Molecules 2022; 27:molecules27123681. [PMID: 35744806 PMCID: PMC9228445 DOI: 10.3390/molecules27123681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 02/01/2023] Open
Abstract
This research aimed to select yeast strains capable of the biotransformation of selected 2′-hydroxybromochalcones. Small-scale biotransformations were carried out using four substrates obtained by chemical synthesis (2′-hydroxy-2″-bromochalcone, 2′-hydroxy-3″-bromochalcone, 2′-hydroxy-4″-bromochalcone and 2′-hydroxy-5′-bromochalcone) and eight strains of non-conventional yeasts. Screening allowed for the determination of the substrate specificity of selected microorganisms and the selection of biocatalysts that carried out the hydrogenation of tested compounds in the most effective way. It was found that the position of the bromine atom has a crucial influence on the degree of substrate conversion by the tested yeast strains. As a result of the biotransformation of the 2′-hydroxybromochalcones, the corresponding 2′-hydroxybromodihydrochalcones were obtained. The products obtained belong to the group of compounds with high potential as precursors of sweet substances.
Collapse
Affiliation(s)
- Mateusz Łużny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Dagmara Kaczanowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland; (B.G.); (A.W.)
| | - Alicja Wzorek
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland; (B.G.); (A.W.)
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Ewa Kozłowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
- Correspondence: ; Tel.: +48-713-205-195
| |
Collapse
|
7
|
Aguiar LO, Silva EDO, David JM. Biotransformation of chalcones and flavanones: An update on their bio-based derivatizations. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2073226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | - Jorge M. David
- Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
8
|
Krawczyk-Łebek A, Dymarska M, Janeczko T, Kostrzewa-Susłow E. Glycosylation of Methylflavonoids in the Cultures of Entomopathogenic Filamentous Fungi as a Tool for Obtaining New Biologically Active Compounds. Int J Mol Sci 2022; 23:ijms23105558. [PMID: 35628367 PMCID: PMC9146141 DOI: 10.3390/ijms23105558] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
Flavonoid compounds are secondary plant metabolites with numerous biological activities; they naturally occur mainly in the form of glycosides. The glucosyl moiety attached to the flavonoid core makes them more stable and water-soluble. The methyl derivatives of flavonoids also show increased stability and intestinal absorption. Our study showed that such flavonoids can be obtained by combined chemical and biotechnological methods with entomopathogenic filamentous fungi as glycosylation biocatalysts. In the current paper, two flavonoids, i.e., 2′-hydroxy-4-methylchalcone and 4′-methylflavone, have been synthesized and biotransformed in the cultures of two strains of entomopathogenic filamentous fungi Isaria fumosorosea KCH J2 and Beauveria bassiana KCH J1.5. Biotransformation of 2′-hydroxy-4-methylchalcone resulted in the formation of two dihydrochalcone glucopyranoside derivatives in the culture of I. fumosorosea KCH J2 and chalcone glucopyranoside derivative in the case of B. bassiana KCH J1.5. 4′-Methylflavone was transformed in the culture of I. fumosorosea KCH J2 into four products, i.e., 4′-hydroxymethylflavone, flavone 4′-methylene-O-β-d-(4″-O-methyl)-glucopyranoside, flavone 4′-carboxylic acid, and 4′-methylflavone 3-O-β-d-(4″-O-methyl)-glucopyranoside. 4′-Methylflavone was not efficiently biotransformed in the culture of B. bassiana KCH J1.5. The computer-aided simulations based on the chemical structures of the obtained compounds showed their improved physicochemical properties and antimicrobial, anticarcinogenic, hepatoprotective, and cardioprotective potential.
Collapse
|
9
|
Kalay E, Dertli E, Şahin E. Biocatalytic asymmetric synthesis of (S)-1-indanol using Lactobacillus paracasei BD71. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.2004133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Erbay Kalay
- Kars Vocational School, Kafkas University, Kars, Turkey
| | - Enes Dertli
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Engin Şahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bayburt University, Bayburt, Turkey
| |
Collapse
|
10
|
Krawczyk-Łebek A, Dymarska M, Janeczko T, Kostrzewa-Susłow E. New Glycosylated Dihydrochalcones Obtained by Biotransformation of 2'-Hydroxy-2-methylchalcone in Cultures of Entomopathogenic Filamentous Fungi. Int J Mol Sci 2021; 22:9619. [PMID: 34502528 PMCID: PMC8431761 DOI: 10.3390/ijms22179619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 01/07/2023] Open
Abstract
Flavonoids, including chalcones, are more stable and bioavailable in the form of glycosylated and methylated derivatives. The combined chemical and biotechnological methods can be applied to obtain such compounds. In the present study, 2'-hydroxy-2-methylchalcone was synthesized and biotransformed in the cultures of entomopathogenic filamentous fungi Beauveria bassiana KCH J1.5, Isaria fumosorosea KCH J2 and Isaria farinosa KCH J2.6, which have been known for their extensive enzymatic system and ability to perform glycosylation of flavonoids. As a result, five new glycosylated dihydrochalcones were obtained. Biotransformation of 2'-hydroxy-2-methylchalcone by B. bassiana KCH J1.5 resulted in four glycosylated dihydrochalcones: 2'-hydroxy-2-methyldihydrochalcone 3'-O-β-d-(4″-O-methyl)-glucopyranoside, 2',3-dihydroxy-2-methyldihydrochalcone 3'-O-β-d-(4″-O-methyl)-glucopyranoside, 2'-hydroxy-2-hydroxymethyldihydrochalcone 3'-O-β-d-(4″-O-methyl)-glucopyranoside, and 2',4-dihydroxy-2-methyldihydrochalcone 3'-O-β-d-(4″-O-methyl)-glucopyranoside. In the culture of I. fumosorosea KCH J2 only one product was formed-3-hydroxy-2-methyldihydrochalcone 2'-O-β-d-(4″-O-methyl)-glucopyranoside. Biotransformation performed by I. farinosa KCH J2.6 resulted in the formation of two products: 2'-hydroxy-2-methyldihydrochalcone 3'-O-β-d-(4″-O-methyl)-glucopyranoside and 2',3-dihydroxy-2-methyldihydrochalcone 3'-O-β-d-(4″-O-methyl)-glucopyranoside. The structures of all obtained products were established based on the NMR spectroscopy. All products mentioned above may be used in further studies as potentially bioactive compounds with improved stability and bioavailability. These compounds can be considered as flavor enhancers and potential sweeteners.
Collapse
Affiliation(s)
- Agnieszka Krawczyk-Łebek
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (M.D.); (T.J.)
| | | | | | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (M.D.); (T.J.)
| |
Collapse
|
11
|
Highly Effective, Regiospecific Hydrogenation of Methoxychalcone by Yarrowia lipolytica Enables Production of Food Sweeteners. Catalysts 2020. [DOI: 10.3390/catal10101135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We describe the impact of the number and location of methoxy groups in the structure of chalcones on the speed and efficiency of their transformation by unconventional yeast strains. The effect of substrate concentration on the conversion efficiency in the culture of the Yarrowia lipolytica KCh 71 strain was tested. In the culture of this strain, monomethoxychalcones (2′-hydroxy-2″-, 3″- and 4″-methoxychalcone) were effectively hydrogenated at over 40% to the specific dihydrochalcones at a concentration of 0.5 g/L of medium after just 1 h of incubation. A conversion rate of over 40% was also observed for concentrations of these compounds of 1 g/L of medium after three hours of transformation. As the number of methoxy substituents increases in the chalcone substrate, the rate and efficiency of transformation to dihydrochalcones decreased. The only exception was 2′-hydroxy-2″,5″-dimethoxychalcone, which was transformed into dihydrochalcone by strain KCh71 with a yield comparable to that of chalcone containing a single methoxy group.
Collapse
|
12
|
Stompor M, Broda D, Bajek-Bil A. Dihydrochalcones: Methods of Acquisition and Pharmacological Properties-A First Systematic Review. Molecules 2019; 24:molecules24244468. [PMID: 31817526 PMCID: PMC6943545 DOI: 10.3390/molecules24244468] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Dihydrochalcones are a class of secondary metabolites, for which demand in biological and pharmacological applications is still growing. They posses several health-endorsing properties and, therefore, are promising candidates for further research and development. However, low content of dihydrochalcones in plants along with their low solubility and bioavailability restrict the development of these compounds as clinical therapeutics. Therefore, chemomicrobial and enzymatic modifications are required to expand their application. This review aims at analyzing and summarizing the methods of obtaining dihydrochalcones and of presenting their pharmacological actions that have been described in the literature to support potential future development of this group of compounds as novel therapeutic drugs. We have also performed an evaluation of the available literature on beneficial effects of dihydrochalcones with potent antioxidant activity and multifactorial pharmacological effects, including antidiabetic, antitumor, lipometabolism regulating, antioxidant, anti-inflammatory, antibacterial, antiviral, and immunomodulatory ones. In addition, we provide useful information on their properties, sources, and usefulness in medicinal chemistry.
Collapse
Affiliation(s)
- Monika Stompor
- Institute of Medical Sciences, University of Rzeszów, 35-959 Rzeszów, Poland
- Correspondence:
| | - Daniel Broda
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Agata Bajek-Bil
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland;
| |
Collapse
|
13
|
Busch H, Hagedoorn PL, Hanefeld U. Rhodococcus as A Versatile Biocatalyst in Organic Synthesis. Int J Mol Sci 2019; 20:E4787. [PMID: 31561555 PMCID: PMC6801914 DOI: 10.3390/ijms20194787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
The application of purified enzymes as well as whole-cell biocatalysts in synthetic organic chemistry is becoming more and more popular, and both academia and industry are keen on finding and developing novel enzymes capable of performing otherwise impossible or challenging reactions. The diverse genus Rhodococcus offers a multitude of promising enzymes, which therefore makes it one of the key bacterial hosts in many areas of research. This review focused on the broad utilization potential of the genus Rhodococcus in organic chemistry, thereby particularly highlighting the specific enzyme classes exploited and the reactions they catalyze. Additionally, close attention was paid to the substrate scope that each enzyme class covers. Overall, a comprehensive overview of the applicability of the genus Rhodococcus is provided, which puts this versatile microorganism in the spotlight of further research.
Collapse
Affiliation(s)
- Hanna Busch
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
14
|
Łużny M, Krzywda M, Kozłowska E, Kostrzewa-Susłow E, Janeczko T. Effective Hydrogenation of 3-(2"-furyl)- and 3-(2"-thienyl)-1-(2'-hydroxyphenyl)-prop-2-en-1-one in Selected Yeast Cultures. Molecules 2019; 24:E3185. [PMID: 31480751 PMCID: PMC6749209 DOI: 10.3390/molecules24173185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 11/18/2022] Open
Abstract
Biotransformations were performed on eight selected yeast strains, all of which were able to selectively hydrogenate the chalcone derivatives 3-(2"-furyl)- (1) and 3-(2"-thienyl)-1-(2'-hydroxyphenyl)-prop-2-en-1-one (3) into 3-(2"-furyl)- (2) and 3-(2"-thienyl)-1-(2'-hydroxyphenyl)-propan-1-one (4) respectively. The highest efficiency of hydrogenation of the double bond in the substrate 1 was observed in the cultures of Saccharomyces cerevisiae KCh 464 and Yarrowia lipolytica KCh 71 strains. The substrate was converted into the product with > 99% conversion just in six hours after biotransformation started. The compound containing the sulfur atom in its structure was most effectively transformed by the Yarrowia lipolytica KCh 71 culture strain (conversion > 99%, obtained after three hours of substrate incubation). Also, we observed that, different strains of tested yeasts are able to carry out the bioreduction of the used substrate with different yields, depending on the presence of induced and constitutive ene reductases in their cells. The biggest advantage of this process is the efficient production of one product, practically without the formation of side products.
Collapse
Affiliation(s)
- Mateusz Łużny
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Martyna Krzywda
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Ewa Kozłowska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Tomasz Janeczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
15
|
de Matos IL, Nitschke M, Porto ALM. Hydrogenation of Halogenated 2'-Hydroxychalcones by Mycelia of Marine-Derived Fungus Penicillium raistrickii. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:430-439. [PMID: 30895403 DOI: 10.1007/s10126-019-09893-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
This study describes the chemoselective hydrogenation reaction of halogenated 2'-hydroxychalcones by the marine-derived fungus Penicillium raistrickii CBMAI 931. Initially, 2'-hydroxychalcone was utilized as a model for the selection of the appropriate conditions to perform the biotransformation reactions. The best results were obtained using mycelia and filtered culture broth, and this condition was chosen for the biotransformation reaction of 2'-hydroxychalcones substituted with methoxy and halogen groups. Experiments performed with 2'-hydroxychalcones dissolved in 600 μL-DMSO were more effective than those performed using 300 μL-DMSO, once solubility of the compounds influenced conversion rate in the liquid medium. The halogenated 2'-hydroxy-dihydrochalcones were obtained in good conversions (78-99%) and moderate isolated yields (31-65%). All biotransformation reactions using the marine-derived fungus P. raistrickii CBMAI 931 showed regioselective and chemoselective control for the formation of 2'-hydroxy-dihydrochalcones.
Collapse
Affiliation(s)
- Iara Lisboa de Matos
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, Jd. Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil
| | - Marcia Nitschke
- Laboratório de Biotecnologia Microbiana, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, Jd. Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil
| | - André Luiz Meleiro Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, Jd. Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil.
| |
Collapse
|
16
|
Kozłowska J, Potaniec B, Żarowska B, Anioł M. Microbial transformations of 4'-methylchalcones as an efficient method of obtaining novel alcohol and dihydrochalcone derivatives with antimicrobial activity. RSC Adv 2018; 8:30379-30386. [PMID: 35546852 PMCID: PMC9085419 DOI: 10.1039/c8ra04669g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/22/2018] [Indexed: 11/25/2022] Open
Abstract
Biotransformations are an alternative method of receiving dihydrochalcones as a result of the reduction of α,β-unsaturated ketones - chalcones. In presented research, two strains of bacteria - Gordonia sp. DSM44456 and Rhodococcus sp. DSM364 - were selected as effective biocatalysts that are able to transform chalcones in a short period of time. As a result of our investigation 3 new dihydrochalcones and one novel alcohol were obtained with high isolated yields. All 4'-methylchalcone derivatives and biotransformations products were tested for antimicrobial activity against Escherichia coli ATCC10536, Staphylococcus aureus DSM799, Candida albicans DSM1386, Alternaria alternata CBS1526, Fusarium linii KB-F1, and Aspergillus niger DSM1957. The best inhibitory effect was observed for all chalcones against E. coli ATCC10536 - compounds 1-6 and 8 prevented thorough growth of this strain (ΔOD = 0). Moreover, dihydrochalcones showed about 2-3 times stronger inhibitory effect against S. aureus DSM799 in comparison to their chalcones. Excluding the E. coli ATCC10536 strain, 3-(4-carboxyphenyl)-1-(4-methylphenyl)propan-1-ol (8b) had weaker biological activity than 4-carboxy-4'-methyl-α,β-dihydrochalcone (8a).
Collapse
Affiliation(s)
- Joanna Kozłowska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences Norwida 25 50-375 Wrocław Poland
| | - Bartłomiej Potaniec
- Department of Chemistry, Wrocław University of Environmental and Life Sciences Norwida 25 50-375 Wrocław Poland
| | - Barbara Żarowska
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences Chełmońskiego 37 51-630 Wrocław Poland
| | - Mirosław Anioł
- Department of Chemistry, Wrocław University of Environmental and Life Sciences Norwida 25 50-375 Wrocław Poland
| |
Collapse
|
17
|
Patel M, Sushmita, Verma AK. Copper-catalyzed stereo- and chemoselective synthesis of enaminones via Michael type addition. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1465-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Kostrzewa-Susłow E, Dymarska M, Guzik U, Wojcieszyńska D, Janeczko T. Stenotrophomonas maltophilia: A Gram-Negative Bacterium Useful for Transformations of Flavanone and Chalcone. Molecules 2017; 22:molecules22111830. [PMID: 29077064 PMCID: PMC6150369 DOI: 10.3390/molecules22111830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/22/2017] [Indexed: 11/16/2022] Open
Abstract
A group of flavones, isoflavones, flavanones, and chalcones was subjected to small-scale biotransformation studies with the Gram-negative Stenotrophomonas maltophilia KB2 strain in order to evaluate the capability of this strain to transform flavonoid compounds and to investigate the relationship between compound structure and transformation type. The tested strain transformed flavanones and chalcones. The main type of transformation of compounds with a flavanone moiety was central heterocyclic C ring cleavage, leading to chalcone and dihydrochalcone structures, whereas chalcones underwent reduction to dihydrochalcones and cyclisation to a benzo-γ-pyrone moiety. Substrates with a C-2–C-3 double bond (flavones and isoflavones) were not transformed by Stenotrophomonas maltophilia KB2.
Collapse
Affiliation(s)
- Edyta Kostrzewa-Susłow
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Monika Dymarska
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Tomasz Janeczko
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
19
|
Żyszka B, Anioł M, Lipok J. Highly effective, regiospecific reduction of chalcone by cyanobacteria leads to the formation of dihydrochalcone: two steps towards natural sweetness. Microb Cell Fact 2017; 16:136. [PMID: 28778165 PMCID: PMC5545019 DOI: 10.1186/s12934-017-0752-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chalcones are the biogenetic precursors of all known flavonoids, which play an essential role in various metabolic processes in photosynthesizing organisms. The use of whole cyanobacteria cells in a two-step, light-catalysed regioselective bio-reduction of chalcone, leading to the formation of the corresponding dihydrochalcone, is reported. The prokaryotic microalgae cyanobacteria are known to produce phenolic compounds, including flavonoids, as natural components of cells. It seems logical that organisms producing such compounds possess a suitable "enzymatic apparatus" to carry out their biotransformation. Therefore, determination of the ability of whole cells of selected cyanobacteria to carry out biocatalytic transformations of chalcone, the biogenetic precursor of all known flavonoids, was the aim of our study. RESULTS Chalcone was found to be converted to dihydrochalcone by all examined cyanobacterial strains; however, the effectiveness of this process depends on the strain with biotransformation yields ranging from 3% to >99%. The most effective biocatalysts are Anabaena laxa, Aphanizomenon klebahnii, Nodularia moravica, Synechocystis aquatilis (>99% yield) and Merismopedia glauca (92% yield). The strains Anabaena sp. and Chroococcus minutus transformed chalcone in more than one way, forming a few products; however, dihydrochalcone was the dominant product. The course of biotransformation shed light on the pathway of chalcone conversion, indicating that the process proceeds through the intermediate cis-chalcone. The scaled-up process, conducted on a preparative scale and by using a mini-pilot photobioreactor, fully confirmed the high effectiveness of this bioconversion. Moreover, in the case of the mini-pilot photobioreactor batch cultures, the optimization of culturing conditions allowed the shortening of the process conducted by A. klebahnii by 50% (from 8 to 4 days), maintaining its >99% yield. CONCLUSIONS This is the first report related to the use of whole cells of halophilic and freshwater cyanobacteria strains in a two-step, light-catalysed regioselective bio-reduction of chalcone, leading to the formation of the corresponding dihydrochalcone. The total bioconversion of chalcone in analytical, preparative, and mini-pilot scales of this process creates the possibility of its use in the food industry for the production of natural sweeteners.
Collapse
Affiliation(s)
- Beata Żyszka
- Department of Analytical and Ecological Chemistry, Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Mirosław Anioł
- Department of Chemistry, Faculty of Food Science, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wroclaw, Poland
| | - Jacek Lipok
- Department of Analytical and Ecological Chemistry, Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland.
| |
Collapse
|
20
|
Stompor M. 6-Acetamidoflavone obtained by microbiological and chemical methods and its antioxidant activity. J Biotechnol 2016; 237:25-34. [DOI: 10.1016/j.jbiotec.2016.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023]
|