1
|
Alejandra WP, Miriam Irene JP, Fabio Antonio GS, Patricia RGR, Elizabeth TA, Juan Pablo AA, Rebeca GV. Production of monoclonal antibodies for therapeutic purposes: A review. Int Immunopharmacol 2023; 120:110376. [PMID: 37244118 DOI: 10.1016/j.intimp.2023.110376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Monoclonal antibodies (mAbs) have been used in the development of immunotherapies that target a variety of diseases, such as cancer, autoimmune diseases, and even viral infections; they play a key role in immunization and are expected after vaccination. However, some conditions do not promote the development of neutralizing antibodies. Production and use of mAbs, generated in biofactories, represent vast potential as aids in immunological responses when the organism cannot produce them on their own, these convey unique specificity by recognizing and targeting specific antigen. Antibodies can be defined as heterotetrametric glycoproteins of symmetric nature, and they participate as effector proteins in humoral responses. Additionally, there are different types of mAbs (murine, chimeric, humanized, human, mAbs as Antibody-drug conjugates and bispecific mAbs) discussed in the present work. When these molecules are produced in vitro as mAbs, several common techniques, such as hybridomas or phage display are used. There are several preferred cell lines that function as biofactories, for the production of mAbs, the selection of which rely on the variation of adaptability, productivity and both phenotypic and genotypic shifts. After the cell expression systems and culture techniques are used, there are diverse specialized downstream processes to achieve desired yield and isolation as well as product quality and characterization. Novel perspectives regarding these protocols represent a potential improvement for mAbs high-scale production.
Collapse
Affiliation(s)
- Waller-Pulido Alejandra
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Jiménez-Pérez Miriam Irene
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Gonzalez-Sanchez Fabio Antonio
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | | | | | - Aleman-Aguilar Juan Pablo
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| | - Garcia-Varela Rebeca
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
2
|
Joubert S, Dodelet V, Béliard R, Durocher Y. [Biomanufacturing of monoclonal antibodies]. Med Sci (Paris) 2020; 35:1153-1159. [PMID: 31903930 DOI: 10.1051/medsci/2019219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Antibody-based drugs are an increasingly important part of the therapeutic arsenal against a wide variety of medical conditions. As the number of commercial products and pipeline candidates grows, a crucial issue facing the industry is the current and future state of biomanufacturing. The productivity of the protein expression platforms, along with the performance of the technologies impacting upstream and downstream bioprocessing, are critical factors affecting the cost and time of therapeutic antibody development and commercialization. Cell engineering strategies are being used to improve the production of antibodies and to better control their quality in terms of posttranslational modifications, in particular with regards to their glycosylation state, as this can influence their therapeutic activity. Additionally, the advance of "omics" technologies have recently given rise to new possibilities in improving these expression platforms. We review here the various advances in biomanufacturing essential to the continued growth of the therapeutic antibody market.
Collapse
Affiliation(s)
- Simon Joubert
- Centre de recherche sur les thérapeutiques en santé humaine, Conseil national de recherche du Canada, Montréal, Québec H4P 2R2, Canada
| | - Vincent Dodelet
- Centre de recherche sur les thérapeutiques en santé humaine, Conseil national de recherche du Canada, Montréal, Québec H4P 2R2, Canada
| | - Roland Béliard
- Laboratoires français du fractionnement et des biotechnologies, Les Ulis, Courtaboeuf Cedex, France
| | - Yves Durocher
- Centre de recherche sur les thérapeutiques en santé humaine, Conseil national de recherche du Canada, Montréal, Québec H4P 2R2, Canada - Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
3
|
Santos MLD, Quintilio W, Manieri TM, Tsuruta LR, Moro AM. Advances and challenges in therapeutic monoclonal antibodies drug development. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000001007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | - Ana Maria Moro
- Butantan Institute, Brazil; National Institute for Science and Technology, Brazil
| |
Collapse
|
4
|
Mauro VP. Codon Optimization in the Production of Recombinant Biotherapeutics: Potential Risks and Considerations. BioDrugs 2018; 32:69-81. [PMID: 29392566 DOI: 10.1007/s40259-018-0261-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biotherapeutics are increasingly becoming the mainstay in the treatment of a variety of human conditions, particularly in oncology and hematology. The production of therapeutic antibodies, cytokines, and fusion proteins have markedly accelerated these fields over the past decade and are probably the major contributor to improved patient outcomes. Today, most protein therapeutics are expressed as recombinant proteins in mammalian cell lines. An expression technology commonly used to increase protein levels involves codon optimization. This approach is possible because degeneracy of the genetic code enables most amino acids to be encoded by more than one synonymous codon and because codon usage can have a pronounced influence on levels of protein expression. Indeed, codon optimization has been reported to increase protein expression by > 1000-fold. The primary tactic of codon optimization is to increase the rate of translation elongation by overcoming limitations associated with species-specific differences in codon usage and transfer RNA (tRNA) abundance. However, in mammalian cells, assumptions underlying codon optimization appear to be poorly supported or unfounded. Moreover, because not all synonymous codon mutations are neutral, codon optimization can lead to alterations in protein conformation and function. This review discusses codon optimization for therapeutic protein production in mammalian cells.
Collapse
|
5
|
Reinhart D, Damjanovic L, Kaisermayer C, Sommeregger W, Gili A, Gasselhuber B, Castan A, Mayrhofer P, Grünwald-Gruber C, Kunert R. Bioprocessing of Recombinant CHO-K1, CHO-DG44, and CHO-S: CHO Expression Hosts Favor Either mAb Production or Biomass Synthesis. Biotechnol J 2018; 14:e1700686. [PMID: 29701329 DOI: 10.1002/biot.201700686] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/26/2018] [Indexed: 01/02/2023]
Abstract
Chinese hamster ovary (CHO) cells comprise a variety of lineages including CHO-DXB11, CHO-K1, CHO-DG44, and CHO-S. Despite all CHO cell lines sharing a common ancestor, extensive mutagenesis, and clonal selection has resulted in substantial genetic heterogeneity among them. Data from sequencing show that different genes are missing in individual CHO cell lines and each cell line harbors a unique set of mutations with relevance to the bioprocess. However, not much literature is available about the influence of genetic differences of CHO on the performance of bioprocess operations. In this study, the host cell-specific differences among three widely used CHO cell lines (CHO-K1, CHO-S, and CHO-DG44) and recombinantly expressed the same monoclonal antibody (mAb) in an isogenic format by using bacterial artificial chromosomes (BACs) as transfer vector in all cell lines is examined. Cell-specific growth and product formation are studied in batch, fed-batch, and semi-continuous perfusion cultures. Further, two different cell culture media are used to investigate their effects. The authors find CHO cell line-specific preferences for mAb production or biomass synthesis that are determined by the host cell line. Additionally, quality attributes of the expressed mAb are influenced by the host cell line and media.
Collapse
Affiliation(s)
- David Reinhart
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Lukas Damjanovic
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | | | - Wolfgang Sommeregger
- Bilfinger Industrietechnik Salzburg GmbH, Urstein Nord 31, 5412 Puch bei Hallein, Austria
| | - Andreas Gili
- Polymun Scientific Immunbiologische Forschung GmbH, Donaustraße 99, 3400 Klosterneuburg, Austria
| | - Bernhard Gasselhuber
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Andreas Castan
- GE Healthcare Life Sciences AB, Björkgatan 30, 75184 Uppsala, Sweden
| | - Patrick Mayrhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Renate Kunert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
6
|
A new CHO (Chinese hamster ovary)-derived cell line expressing anti-TNFα monoclonal antibody with biosimilar potential. Immunol Res 2018; 66:392-405. [DOI: 10.1007/s12026-018-8997-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|