1
|
Bučko M, Kaniaková K, Hronská H, Gemeiner P, Rosenberg M. Epoxide Hydrolases: Multipotential Biocatalysts. Int J Mol Sci 2023; 24:7334. [PMID: 37108499 PMCID: PMC10138715 DOI: 10.3390/ijms24087334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Epoxide hydrolases are attractive and industrially important biocatalysts. They can catalyze the enantioselective hydrolysis of epoxides to the corresponding diols as chiral building blocks for bioactive compounds and drugs. In this review article, we discuss the state of the art and development potential of epoxide hydrolases as biocatalysts based on the most recent approaches and techniques. The review covers new approaches to discover epoxide hydrolases using genome mining and enzyme metagenomics, as well as improving enzyme activity, enantioselectivity, enantioconvergence, and thermostability by directed evolution and a rational design. Further improvements in operational and storage stabilization, reusability, pH stabilization, and thermal stabilization by immobilization techniques are discussed in this study. New possibilities for expanding the synthetic capabilities of epoxide hydrolases by their involvement in non-natural enzyme cascade reactions are described.
Collapse
Affiliation(s)
- Marek Bučko
- Department of Glycobiotechnology, Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia;
| | - Katarína Kaniaková
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (K.K.); (H.H.); (M.R.)
| | - Helena Hronská
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (K.K.); (H.H.); (M.R.)
| | - Peter Gemeiner
- Department of Glycobiotechnology, Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia;
| | - Michal Rosenberg
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (K.K.); (H.H.); (M.R.)
| |
Collapse
|
2
|
Akkoyunlu B, Daly S, Casey E. Membrane bioreactors for the production of value-added products: Recent developments, challenges and perspectives. BIORESOURCE TECHNOLOGY 2021; 341:125793. [PMID: 34450442 DOI: 10.1016/j.biortech.2021.125793] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The potential of membrane bioreactors to produce value-added products such as biofuels, biopolymers, proteins, organic acids and lipids at high productivities is emerging. Despite the promising results at laboratory scale, industrial deployment of this technology is hindered due to challenges associated with scale-up. This review aims to address these challenges and create a framework to encourage further research directed towards industrial application of membrane bioreactors to produce value-added products. This review describes the current state-of-the art in such bioreactor systems by exploiting membranes to increase the mass transfer rate of the limiting substrates, reach high cell concentrations and separate the inhibitory substances that may inhibit the bioconversion reaction. It also covers the current trends in commercialization, challenges linked with membrane usage, such as high costs and membrane fouling, and proposes possible future directions for the wider application of membrane bioreactors.
Collapse
Affiliation(s)
- Burcu Akkoyunlu
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Sorcha Daly
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Eoin Casey
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Wang Z, Sundara Sekar B, Li Z. Recent advances in artificial enzyme cascades for the production of value-added chemicals. BIORESOURCE TECHNOLOGY 2021; 323:124551. [PMID: 33360113 DOI: 10.1016/j.biortech.2020.124551] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Enzyme cascades are efficient tools to perform multi-step synthesis in one-pot in a green and sustainable manner, enabling non-natural synthesis of valuable chemicals from easily available substrates by artificially combining two or more enzymes. Bioproduction of many high-value chemicals such as chiral and highly functionalised molecules have been achieved by developing new enzyme cascades. This review summarizes recent advances on engineering and application of enzyme cascades to produce high-value chemicals (alcohols, aldehydes, ketones, amines, carboxylic acids, etc) from simple starting materials. While 2-step enzyme cascades are developed for versatile enantioselective synthesis, multi-step enzyme cascades are engineered to functionalise basic chemicals, such as styrenes, cyclic alkanes, and aromatic compounds. New cascade reactions have also been developed for producing valuable chemicals from bio-based substrates, such as ʟ-phenylalanine, and renewable feedstocks such as glucose and glycerol. The challenges in current process and future outlooks in the development of enzyme cascades are also addressed.
Collapse
Affiliation(s)
- Zilong Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Balaji Sundara Sekar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
4
|
Bu CY, Yan YX, Zou LH, Zheng ZJ, Ouyang J. One-pot biosynthesis of furfuryl alcohol and lactic acid via a glucose coupled biphasic system using single Bacillus coagulans NL01. BIORESOURCE TECHNOLOGY 2020; 313:123705. [PMID: 32593878 DOI: 10.1016/j.biortech.2020.123705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 05/12/2023]
Abstract
Furfuryl alcohol is an important reduction product from biomass derived furfural. This study developed one-pot biosynthesis of furfuryl alcohol and lactic acid by a glucose coupled biphasic system using single Bacillus coagulans NL01. Water/dioctyl phthalate is chosen as biphasic system to alleviate the toxicity of furfural and furfuryl alcohol. Under the optimal conditions, the high-concentration conversion (208 mM) of furfural was successfully converted in 6 h reaction with 98% furfural conversion and 88% furfuryl alcohol selectivity. Notably, glucose as co-substrate could be effectively converted to lactic acid in this biphasic system. About 264 mM furfuryl alcohol and 64.2 g/L lactic acid were simultaneously produced from 310 mM furfural and 71.3 g/L glucose within 8.5 h by a fed-batch strategy. The developed approach can not only increase the produced furfuryl alcohol concentration but also reduce the cost of overall approach by lactic acid co-production, indicating its potential for industrial applications.
Collapse
Affiliation(s)
- Chong-Yang Bu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yu-Xiu Yan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Li-Hua Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhao-Juan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
5
|
Liu W, Wu C, Jewett MC, Li J. Cell‐free protein synthesis enables one‐pot cascade biotransformation in an aqueous‐organic biphasic system. Biotechnol Bioeng 2020; 117:4001-4008. [DOI: 10.1002/bit.27541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Wan‐Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University Shanghai China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, Danish Institute for Advanced Study (DIAS) University of Southern Denmark Odense Denmark
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Center for Synthetic Biology Northwestern University Evanston Illinois
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University Shanghai China
| |
Collapse
|
6
|
Li C, Hu BC, Wen Z, Hu D, Liu YY, Chu Q, Wu MC. Greatly enhancing the enantioselectivity of PvEH2, a Phaseolus vulgaris epoxide hydrolase, towards racemic 1,2-epoxyhexane via replacing its partial cap-loop. Int J Biol Macromol 2020; 156:225-232. [PMID: 32294502 DOI: 10.1016/j.ijbiomac.2020.04.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/30/2022]
Abstract
To achieve the kinetic resolution and enantioconvergent hydrolysis of rac-1,2-epoxyhexane, the E value of PvEH2 was enhanced by substituting its partial cap-loop. Based on the experimental results reported previously and computer-aided analysis, the flexible and variable cap-loop, especially its middle segment, was speculated to be related to the catalytic properties of PvEH2. In view of this, four PvEH2's hybrids, Pv2St, Pv2Pv1, Pv2Vr1 and Pv2Vr2, were designed by substituting the middle segment (190EGMGSNLNTSMP201) of a cap-loop in PvEH2 with the corresponding ones in StEH, PvEH1, VrEH1 and VrEH2, respectively. Then, the hybrid-encoding genes, pv2st, pv2pv1, pv2vr1 and pv2vr2, were constructed by fusion PCR, and expressed in E. coli Rosetta(DE3). The expressed hybrid, Pv2St, displayed the highest specific activity of 35.3 U/mg protein towards rac-1,2-epoxyhexane. The corresponding transformant, E. coli/pv2st, exhibited the largest E value of 24.2, which was 11.5-fold that of E. coli/pveh2 expressing PvEH2. The scale-up kinetic resolution of 280 mM rac-1,2-epoxyhexane was carried out using 40 mg dry cells/mL of E. coli/pv2st at 25 °C for 4.5 h, retaining (S)-1,2-epoxyhexane with >99.5% ees and 36.9% yield. Additionally, the chemo-enzymatic enantioconvergent hydrolysis of rac-1,2-epoxyhexane using E. coli/pv2st followed by sulfuric acid produced (R)-hexane-1,2-diol with 73.0% eep and 86.5% yield.
Collapse
Affiliation(s)
- Chuang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Bo-Chun Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zheng Wen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Die Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - You-Yi Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Qing Chu
- Joint Management Office, Shanghai Medical Association, Shanghai 200040, PR China.
| | - Min-Chen Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
7
|
Xu XF, Hu D, Hu BC, Li C, Liu YY, Wu MC. Near-perfect kinetic resolution of o-methylphenyl glycidyl ether by RpEH, a novel epoxide hydrolase from Rhodotorula paludigena JNU001 with high stereoselectivity. Appl Microbiol Biotechnol 2020; 104:6199-6210. [PMID: 32462245 DOI: 10.1007/s00253-020-10694-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/09/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
In order to provide more alternative epoxide hydrolases for industrial production, a novel cDNA gene Rpeh-encoding epoxide hydrolase (RpEH) of Rhodotorula paludigena JNU001 identified by 26S rDNA sequence analysis was amplified by RT-PCR. The open-reading frame (ORF) of Rpeh was 1236 bp encoding RpEH of 411 amino acids and was heterologously expressed in Escherichia coli BL21(DE3). The substrate spectrum of expressed RpEH showed that the transformant E. coli/Rpeh had excellent enantioselectivity to 2a, 3a, and 5a-10a, among which E. coli/Rpeh had the highest activity (2473 U/g wet cells) and wonderful enantioselectivity (E = 101) for 8a, and its regioselectivity coefficients, αR and βS, toward (R)- and (S)-8a were 99.7 and 83.2%, respectively. Using only 10 mg wet cells/mL of E. coli/Rpeh, the near-perfect kinetic resolution of rac-8a at a high concentration (1000 mM) was achieved within 2.5 h, giving (R)-8a with more than 99% enantiomeric excess (ees) and 46.7% yield and producing (S)-8b with 93.2% eep and 51.4% yield with high space-time yield (STY) for (R)-8a and (S)-8b were 30.6 and 37.3 g/L/h.
Collapse
Affiliation(s)
- Xiong-Feng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Die Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Bo-Chun Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Chuang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - You-Yi Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Min-Chen Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
8
|
Enantioselective Epoxidation by Flavoprotein Monooxygenases Supported by Organic Solvents. Catalysts 2020. [DOI: 10.3390/catal10050568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Styrene and indole monooxygenases (SMO and IMO) are two-component flavoprotein monooxygenases composed of a nicotinamide adenine dinucleotide (NADH)-dependent flavin adenine dinucleotide (FAD)-reductase (StyB or IndB) and a monooxygenase (StyA or IndA). The latter uses reduced FAD to activate oxygen and to oxygenate the substrate while releasing water. We circumvented the need for the reductase by direct FAD reduction in solution using the NAD(P)H-mimic 1-benzyl-1,4-dihydronicotinamide (BNAH) to fuel monooxygenases without NADH requirement. Herein, we report on the hitherto unknown solvent tolerance for the indole monooxygenase from Gemmobacter nectariphilus DSM15620 (GnIndA) and the styrene monooxygenase from Gordonia rubripertincta CWB2 (GrStyA). These enzymes were shown to convert bulky and rather hydrophobic styrene derivatives in the presence of organic cosolvents. Subsequently, BNAH-driven biotransformation was furthermore optimized with regard to the applied cosolvent and its concentration as well as FAD and BNAH concentration. We herein demonstrate that GnIndA and GrStyA enable selective epoxidations of allylic double bonds (up to 217 mU mg−1) in the presence of organic solvents such as tetrahydrofuran, acetonitrile, or several alcohols. Notably, GnIndA was found to resist methanol concentrations up to 25 vol.%. Furthermore, a diverse substrate preference was determined for both enzymes, making their distinct use very interesting. In general, our results seem representative for many IMOs as was corroborated by in silico mutagenetic studies.
Collapse
|
9
|
Oda S. Microbial transformation of water-insoluble substrates by two types of novel interface bioprocesses, tacky liquid-liquid interface bioreactor and non-aqueous sporular bioconversion system. World J Microbiol Biotechnol 2020; 36:57. [PMID: 32219579 DOI: 10.1007/s11274-020-02834-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/19/2020] [Indexed: 11/30/2022]
Abstract
Although microbial transformation has been expected as a substitution technology for organic synthesis, microbial toxicity and water-insolubility of synthetic substrates prevent the practical application of the technology. For these problems, the authors have developed two types of interfacial bioprocesses, solid-liquid and liquid-liquid interface bioreactors and applied the systems to many microbial transformations. In the bioreactors, addition of substrates and accumulation of products were remarkably enhanced based on the toxicity alleviation effect on the interfaces and solubilization of substrates and/or products in an organic phase of the bioreactors. Recently, a novel tacky liquid-liquid interface bioreactor has been developed and applied to actinomycetes and yeasts. Furthermore, a novel bioconversion system with fungal spores in an organic phase has been constructed based on the combination of two facts as follows: (i) the fungal spores are never resting cells and are active ones like the vegetable cells, (ii) the fungal spores have the excellent solvent-tolerance. In this review, the tacky liquid-liquid interface bioreactor (L-L IBRtac) and the non-aqueous sporular bioconversion system with immobilized fungal spores (NASB) are mainly given outlines.
Collapse
Affiliation(s)
- Shinobu Oda
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa, 924-0838, Japan. .,Research Laboratory for Integrated Technological Systems, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa, 924-0838, Japan.
| |
Collapse
|
10
|
Wen Z, Zhao J, Liu YY, Zhou JJ, Liu C, Li C, Wu MC. Enantioconvergent hydrolysis of m-nitrostyrene oxide at an elevated concentration by Phaseolus vulgaris epoxide hydrolase in the organic/aqueous two-phase system. Lett Appl Microbiol 2019; 70:181-188. [PMID: 31784998 DOI: 10.1111/lam.13258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 11/30/2022]
Abstract
(R)-m-Nitrophenyl-1,2-ethanediol (m-NPED) is a versatile and highly value-added chiral building block for the synthesis of some bioactive compounds, such as (R)-Nifenalol. To efficiently produce (R)-m-NPED through the enantioconvergent hydrolysis of racemic (rac-) m-nitrostyrene oxide (m-NSO) using the whole resting cells of Escherichia coli/pCold-pveh2 intracellularly expressing PvEH2, an epoxide hydrolase from Phaseolus vulgaris, two reaction systems were investigated. In the Na2 HPO4 -NaH2 PO4 buffer (50 mmol l-1 , pH 7·0) system, merely 15 mmol l-1 rac-m-NSO was successfully subjected to enantioconvergent hydrolysis, producing (R)-m-NPED with 86·0% enantiomeric excess (eep ) and 177·6 mg l-1 h-1 space-time yield (STY). The experimental result indicated that there is inhibitory effect of rac-m-NSO at high concentration on PvEH2. To efficiently increase the concentration of rac-m-NSO and the STY of (R)-m-NPED, petroleum ether was first selected to construct an organic/aqueous two-phase system. Then, both the volume ratio (vo /vb ) of petroleum ether to phosphate buffer and the weight ratio (wc /ws ) of E. coli/pCold-pveh2 dry cells to rac-m-NSO were optimized as 2 : 8 and 5 : 1, respectively. In the optimized petroleum ether/phosphate buffer two-phase system, the enantioconvergent hydrolysis of rac-m-NSO at 40 mmol l-1 (6·6 mg ml-1 ) was carried out at 25°C for 12 h using 33·0 mg ml-1 vacuum freeze-dried cells of E. coli/pCold-pveh2, producing (R)-m-NPED with 87·4% eep , 82·3% yield and 502·4 mg l-1 h-1 STY. SIGNIFICANCE AND IMPACT OF THE STUDY: Epoxide hydrolases play a crucial role in producing enantiopure epoxides and/or vicinal diols. However, numerous biocatalytic reactions of organic compounds, such as epoxides, in aqueous phase suffered various restrictions. Herein, the enantioconvergent hydrolysis of rac-m-NSO in two reaction systems was investigated using the whole cells of Escherichia coli/pCold-pveh2. As a result, the concentration of rac-m-NSO and the space-time yield of (R)-m-NPED in organic/aqueous two-phase system were significantly increased, when compared with those in aqueous phase. To our knowledge, this is the first report about the production of (R)-m-NPED from rac-m-NSO at an elevated concentration by PvEH2 in the two-phase system.
Collapse
Affiliation(s)
- Z Wen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - J Zhao
- The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Y-Y Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - J-J Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - C Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - C Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - M-C Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Houwman JA, Knaus T, Costa M, Mutti FG. Efficient synthesis of enantiopure amines from alcohols using resting E. coli cells and ammonia. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2019; 21:3846-3857. [PMID: 33628111 PMCID: PMC7116806 DOI: 10.1039/c9gc01059a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
α-Chiral amines are pivotal building blocks for chemical manufacturing. Stereoselective amination of alcohols is receiving increased interest due to its higher atom-efficiency and overall improved environmental footprint compared with other chemocatalytic and biocatalytic methods. We previously developed a hydrogen-borrowing amination by combining an alcohol dehydrogenase (ADH) with an amine dehydrogenase (AmDH) in vitro. Herein, we implemented the ADH-AmDH bioamination in resting Escherichia coli cells for the first time. Different genetic constructs were created and tested in order to obtain balanced expression levels of the dehydrogenase enzymes in E. coli. Using the optimized constructs, the influence of several parameters towards the productivity of the system were investigated such as the intracellular NAD+/NADH redox balance, the cell loading, the survival rate of recombinant E. coli cells, the possible toxicity of the components of the reaction at different concentrations and the influence of different substrates and cosolvents. In particular, the cofactor redox-balance for the bioamination was maintained by the addition of moderate and precise amounts of glucose. Higher concentrations of certain amine products resulted in toxicity and cell death, which could be alleviated by the addition of a co-solvent. Notably, amine formation was consistent using several independently grown E. coli batches. The optimized E. coli/ADH-AmDH strains produced enantiopure amines from the alcohols with up to 80% conversion and a molar productivity up to 15 mM. Practical applicability was demonstrated in a gram-scale biotransformation. In summary, the present E. coli-ADH-AmDH system represents an important advancement towards the development of 'green', efficient and selective biocatalytic processes for the amination of alcohols.
Collapse
Affiliation(s)
| | - Tanja Knaus
- Van ’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | - Magda Costa
- Van ’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | - Francesco G. Mutti
- Van ’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| |
Collapse
|
12
|
Whole Cell‐Based Cascade Biotransformation for the Production of (
S
)‐Mandelic Acid from Styrene,
L
‐Phenylalanine, Glucose, or Glycerol. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Enhancing the atypical esterase promiscuity of the γ-lactamase Sspg from
Sulfolobus solfataricus
by substrate screening. Appl Microbiol Biotechnol 2019; 103:4077-4087. [DOI: 10.1007/s00253-019-09758-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/06/2019] [Indexed: 11/26/2022]
|
14
|
Li C, Hu BC, Hu D, Xu XF, Zong XC, Li JP, Wu MC. Stereoselective ring-opening of styrene oxide at elevated concentration by Phaseolus vulgaris epoxide hydrolase, PvEH2, in the organic/aqueous biphasic system. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Wu S, Zhou Y, Li Z. Biocatalytic selective functionalisation of alkenes via single-step and one-pot multi-step reactions. Chem Commun (Camb) 2019; 55:883-896. [PMID: 30566124 DOI: 10.1039/c8cc07828a] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alkenes are excellent starting materials for organic synthesis due to the versatile reactivity of C[double bond, length as m-dash]C bonds and the easy availability of many unfunctionalised alkenes. Direct regio- and/or enantioselective conversion of alkenes into functionalised (chiral) compounds has enormous potential for industrial applications, and thus has attracted the attention of researchers for extensive development using chemo-catalysis over the past few years. On the other hand, many enzymes have also been employed for conversion of alkenes in a highly selective and much greener manner to offer valuable products. Herein, we review recent advances in seven well-known types of biocatalytic conversion of alkenes. Remarkably, recent mechanism-guided directed evolution and enzyme cascades have enabled the development of seven novel types of single-step and one-pot multi-step functionalisation of alkenes, some of which are even unattainable via chemo-catalysis. These new reactions are particularly highlighted in this feature article. Overall, we present an ever-expanding enzyme toolbox for various alkene functionalisations inspiring further research in this fast-developing theme.
Collapse
Affiliation(s)
- Shuke Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585.
| | | | | |
Collapse
|
16
|
Gandomkar S, Żądło‐Dobrowolska A, Kroutil W. Extending Designed Linear Biocatalytic Cascades for Organic Synthesis. ChemCatChem 2019; 11:225-243. [PMID: 33520008 PMCID: PMC7814890 DOI: 10.1002/cctc.201801063] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 02/05/2023]
Abstract
Artificial cascade reactions involving biocatalysts have demonstrated a tremendous potential during the recent years. This review just focuses on selected examples of the last year and putting them into context to a previously published suggestion for classification. Subdividing the cascades according to the number of catalysts in the linear sequence, and classifying whether the steps are performed simultaneous or in a sequential fashion as well as whether the reaction sequence is performed in vitro or in vivo allows to organise the concepts. The last year showed, that combinations of in vivo as well as in vitro are possible. Incompatible reaction steps may be run in a sequential fashion or by compartmentalisation of the incompatible steps either by using special reactors (membrane), polymersomes or flow techniques.
Collapse
Affiliation(s)
- Somayyeh Gandomkar
- Institute of ChemistryUniversity of GrazHeinrichstrasse 28Graz8010Austria
| | | | - Wolfgang Kroutil
- Institute of ChemistryUniversity of GrazHeinrichstrasse 28Graz8010Austria
| |
Collapse
|
17
|
Heine T, van Berkel WJH, Gassner G, van Pée KH, Tischler D. Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities. BIOLOGY 2018; 7:biology7030042. [PMID: 30072664 PMCID: PMC6165268 DOI: 10.3390/biology7030042] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
Flavoprotein monooxygenases create valuable compounds that are of high interest for the chemical, pharmaceutical, and agrochemical industries, among others. Monooxygenases that use flavin as cofactor are either single- or two-component systems. Here we summarize the current knowledge about two-component flavin adenine dinucleotide (FAD)-dependent monooxygenases and describe their biotechnological relevance. Two-component FAD-dependent monooxygenases catalyze hydroxylation, epoxidation, and halogenation reactions and are physiologically involved in amino acid metabolism, mineralization of aromatic compounds, and biosynthesis of secondary metabolites. The monooxygenase component of these enzymes is strictly dependent on reduced FAD, which is supplied by the reductase component. More and more representatives of two-component FAD-dependent monooxygenases have been discovered and characterized in recent years, which has resulted in the identification of novel physiological roles, functional properties, and a variety of biocatalytic opportunities.
Collapse
Affiliation(s)
- Thomas Heine
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - George Gassner
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Karl-Heinz van Pée
- Allgemeine Biochemie, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Dirk Tischler
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| |
Collapse
|
18
|
Affiliation(s)
- Shuke Wu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
19
|
Schrittwieser JH, Velikogne S, Hall M, Kroutil W. Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules. Chem Rev 2017; 118:270-348. [DOI: 10.1021/acs.chemrev.7b00033] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Joerg H. Schrittwieser
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Stefan Velikogne
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Mélanie Hall
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| |
Collapse
|