1
|
Liu Y, Zhao X, Wang X, Ding A, Zhang D. Application of whole-cell bioreporters for ecological risk assessment and bioremediation potential evaluation after a benzene exceedance accident in groundwater in Lanzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167846. [PMID: 37844638 DOI: 10.1016/j.scitotenv.2023.167846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Oil spill events challenge human health and ecosystem safety, which are priority concerned issues for sustainable development. There is then an increasing demand of tools for ecological risks assessment at contaminated sites. In this study, we introduced two whole-cell bioreporters, ADPWH_alk and ADPWH_recA, to measure the available n-alkanes and the genotoxicities of total petroleum hydrocarbons in soils and groundwater which were contaminated by the Benzene Exceedance Accident in Lanzhou, China. Comparing to traditional chemical analysis methods, the whole-cell bioreporter method could provide risk assessment on cell level within a shorter time and a less cost, which is economical and environment friendly. The highest contents of available alkanes in soil and groundwater were 18,737 mg/kg and 308.4 mg/L, respectively. In addition, the available n-alkanes significantly (p < 0.01) correlated to chemical analysis of total n-alkanes. The highest genotoxicity level was found in soil and groundwater samples with lower TPHs concentration (4338.0 mg/kg and 1.4 mg/L Mitomycin C equivalent), suggesting the significant impacts of geochemical variables and alkane availability on the ecological risks of petroleum contamination. Combining chemical analysis and whole-cell bioreporter results, bioremediation strategies were suggested for groundwater and soils with higher n-alkane availability and lower ecological risks, whereas chemical oxidation were suggested for other contaminated sites. For the first time, we mapped the distribution of available n-alkanes and petroleum toxicities in a large scale soil-groundwater system using whole-cell bioreporters, showing their huge potential for rapid contaminant detection and fast risk assessment.
Collapse
Affiliation(s)
- Yueqiao Liu
- Experiment and Practice Innovation Education Center, Beijing Normal University at Zhuhai, Zhuhai 519087, PR China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University, Beijing 100875, PR China
| | - Xiaohui Zhao
- China Institute of Water Resources and Hydropower Research, Beijing 100038, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
2
|
Zhu Y, Elcin E, Jiang M, Li B, Wang H, Zhang X, Wang Z. Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems. Front Chem 2022; 10:1018124. [PMID: 36247665 PMCID: PMC9561917 DOI: 10.3389/fchem.2022.1018124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Water contamination has become increasingly a critical global environmental issue that threatens human and ecosystems’ health. Monitoring and risk assessment of toxic pollutants in water bodies is essential to identifying water pollution treatment needs. Compared with the traditional monitoring approaches, environmental biosensing via whole-cell bioreporters (WCBs) has exhibited excellent capabilities for detecting bioavailability of multiple pollutants by providing a fast, simple, versatile and economical way for environmental risk assessment. The performance of WCBs is determined by its elements of construction, such as host strain, regulatory and reporter genes, as well as experimental conditions. Previously, numerous studies have focused on the design and construction of WCB rather than improving the detection process and commercialization of this technology. For investigators working in the environmental field, WCB can be used to detect pollutants is more important than how they are constructed. This work provides a review of the development of WCBs and a brief introduction to genetic construction strategies and aims to summarize key studies on the application of WCB technology in detection of water contaminants, including organic pollutants and heavy metals. In addition, the current status of commercialization of WCBs is highlighted.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Evrim Elcin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mengyuan Jiang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Xiaokai Zhang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
- *Correspondence: Xiaokai Zhang,
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Kong IC, Ko KS, Lee S, Koh DC, Burlage R. Exposure of Metal Oxide Nanoparticles on the Bioluminescence Process of Pu- and Pm-lux Recombinant P. putida mt-2 Strains. NANOMATERIALS 2021; 11:nano11112822. [PMID: 34835588 PMCID: PMC8625787 DOI: 10.3390/nano11112822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
Comparison of the effects of metal oxide nanoparticles (NPs; CuO, NiO, ZnO, TiO2, and Al2O3) on different bioluminescence processes was evaluated using two recombinant (Pm-lux and Pu-lux) strains of Pseudomonas putida mt-2 with same inducer exposure. Different sensitivities and responses were observed according to the type of NPs and recombinant strains. EC50 values were determined. The negative effects on the bioluminescence activity of the Pm-lux strain was greater than for the Pu-lux strains for all NPs tested. EC50 values for the Pm-lux strain were 1.7- to 6.2-fold lower (corresponding to high inhibition) than for Pu-lux. ZnO NP caused the greatest inhibition among the tested NPs in both strains, showing approximately 11 times less EC50s of CuO, which appeared as the least inhibited. Although NPs showed different sensitivities depending on the bioluminescence process, similar orders of EC50s for both strains were observed as follows: ZnO > NiO, Al2O3 > TiO2 > CuO. More detailed in-depth systematic approaches, including in the field of molecular mechanisms, is needed to evaluate the accurate effect mechanisms involved in both bioluminescence metabolic processes.
Collapse
Affiliation(s)
- In Chul Kong
- Department of Environmental Engineering, Yeungnam University, Gyungsan 38541, Korea; (I.C.K.); (S.L.)
| | - Kyung-Seok Ko
- Groundwater Department, Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Korea;
- Correspondence: ; Tel.: +82-42-868-3162
| | - Sohyeon Lee
- Department of Environmental Engineering, Yeungnam University, Gyungsan 38541, Korea; (I.C.K.); (S.L.)
| | - Dong-Chan Koh
- Groundwater Department, Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Korea;
| | - Robert Burlage
- Department of Pharmaceutical and Administrative Sciences, Concordia University, Mequon, WI 53097, USA;
| |
Collapse
|
4
|
Zecchin S, Crognale S, Zaccheo P, Fazi S, Amalfitano S, Casentini B, Callegari M, Zanchi R, Sacchi GA, Rossetti S, Cavalca L. Adaptation of Microbial Communities to Environmental Arsenic and Selection of Arsenite-Oxidizing Bacteria From Contaminated Groundwaters. Front Microbiol 2021; 12:634025. [PMID: 33815317 PMCID: PMC8017173 DOI: 10.3389/fmicb.2021.634025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Arsenic mobilization in groundwater systems is driven by a variety of functionally diverse microorganisms and complex interconnections between different physicochemical factors. In order to unravel this great ecosystem complexity, groundwaters with varying background concentrations and speciation of arsenic were considered in the Po Plain (Northern Italy), one of the most populated areas in Europe affected by metalloid contamination. High-throughput Illumina 16S rRNA gene sequencing, CARD-FISH and enrichment of arsenic-transforming consortia showed that among the analyzed groundwaters, diverse microbial communities were present, both in terms of diversity and functionality. Oxidized inorganic arsenic [arsenite, As(III)] was the main driver that shaped each community. Several uncharacterized members of the genus Pseudomonas, putatively involved in metalloid transformation, were revealed in situ in the most contaminated samples. With a cultivation approach, arsenic metabolisms potentially active at the site were evidenced. In chemolithoautotrophic conditions, As(III) oxidation rate linearly correlated to As(III) concentration measured at the parental sites, suggesting that local As(III) concentration was a relevant factor that selected for As(III)-oxidizing bacterial populations. In view of the exploitation of these As(III)-oxidizing consortia in biotechnology-based arsenic bioremediation actions, these results suggest that contaminated aquifers in Northern Italy host unexplored microbial populations that provide essential ecosystem services.
Collapse
Affiliation(s)
- Sarah Zecchin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Simona Crognale
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Rome, Italy
| | - Patrizia Zaccheo
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Milano, Italy
| | - Stefano Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Rome, Italy
| | - Stefano Amalfitano
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Rome, Italy
| | - Barbara Casentini
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Rome, Italy
| | - Matteo Callegari
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Raffaella Zanchi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Gian Attilio Sacchi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Milano, Italy
| | - Simona Rossetti
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Rome, Italy
| | - Lucia Cavalca
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
5
|
Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing. Appl Microbiol Biotechnol 2019; 103:2783-2795. [DOI: 10.1007/s00253-019-09654-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/11/2018] [Accepted: 01/17/2019] [Indexed: 12/17/2022]
|
6
|
Martín-Betancor K, Durand MJ, Thouand G, Leganés F, Fernández-Piñas F, Rodea-Palomares I. Microplate freeze-dried cyanobacterial bioassay for fresh-waters environmental monitoring. CHEMOSPHERE 2017; 189:373-381. [PMID: 28946071 DOI: 10.1016/j.chemosphere.2017.09.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Microorganisms have been very useful in environmental monitoring due to their constant sensing of the surrounding environment, their easy maintenance and low cost. Some freeze-dried toxicity kits based on naturally bioluminescent bacteria are commercially available and commonly used to assess the toxicity of environmental samples such as Microtox (Aliivibrio fischeri) or ToxScreen (Photobacterium leiognathi), however, due to the marine origin of these bacteria, they could not be the most appropriate for fresh-waters monitoring. Cyanobacteria are one of the most representative microorganisms of aquatic environments, and are well suited for detecting contaminants in aqueous samples. This study presents the development and application of the first freeze-dried cyanobacterial bioassay for fresh-water contaminants detection. The effects of different cell growth phases, cryoprotectant solutions, freezing protocols, rehydration solutions and incubation conditions methods were evaluated and the best combination of these parameters for freeze-drying was selected. The study includes detailed characterization of sensitivity towards reference pollutants, as well as, comparison with the standard assays. Moreover, long-term viability and sensitivity were evaluated after 3 years of storage. Freeze-dried cyanobacteria showed, in general, higher sensitivity than the standard assays and viability of the cells remained after 3 years of storage. Finally, the validation of the bioassay using a wastewater sample was also evaluated. Freeze-drying of cyanobacteria in 96-well plates presents a simple, fast and multi-assay method for environmental monitoring.
Collapse
Affiliation(s)
- Keila Martín-Betancor
- Department of Biology, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | | | | | - Francisco Leganés
- Department of Biology, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | - Ismael Rodea-Palomares
- Department of Biology, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|