1
|
Liu J, Guan W, Sun Z, Ni Y, He L, Tian F, Cai L. Application of Cyclocarya paliurus-Kiwifruit Composite Fermented to Enhance Antioxidant Capacity, Flavor, and Sensory Characteristics of Kiwi Wine. Molecules 2023; 29:32. [PMID: 38202614 PMCID: PMC10780096 DOI: 10.3390/molecules29010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
A new fermentation method for kiwi wine was explored by developing the well-known medicinal and edible plant Cyclocarya paliurus (C. paliurus) to create more value with undersized kiwifruits. In this study, the changes in bioactive substances during the C. paliurus-kiwi winemaking process were analyzed on the basis of response surface optimization results, and the antioxidant capacity, aromatic compounds, and sensory quality of the C. paliurus-kiwi composite wine with kiwi wine and two commercial kiwi wines were compared. The results showed that DPPH radical, OH- radical, and ABTS+ scavenging rates remained at over 60.0%, 90.0%, and 70.0% in C. paliurus-kiwi wine, respectively. The total flavonoid content (TFC) and total polyphenol content (TPC) of C. paliurus-kiwi wine were significantly higher than those of the other three kiwi wines. C. paliurus-kiwi wine received the highest score and detected 43 volatile compounds. Ethyl hexanoate, which showed stronger fruity and sweet aromas, was one of the main aroma components of C. paliurus-kiwi wine and different from commercial wines. This wine has a good flavor with a natural and quality feeling of C. paliurus-kiwifruit extract, low-cost processing, and great market potential.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316000, China; (J.L.); (Y.N.); (L.H.)
| | - Weiliang Guan
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315000, China; (W.G.); (Z.S.)
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China
| | - Zhidong Sun
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315000, China; (W.G.); (Z.S.)
| | - Yunfan Ni
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316000, China; (J.L.); (Y.N.); (L.H.)
| | - Long He
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316000, China; (J.L.); (Y.N.); (L.H.)
| | - Fang Tian
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316000, China; (J.L.); (Y.N.); (L.H.)
| | - Luyun Cai
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315000, China; (W.G.); (Z.S.)
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
2
|
Abarca-Rivas C, Martín-Garcia A, Riu-Aumatell M, Bidon-Chanal A, López-Tamames E. Effect of fermentation temperature on oenological parameters and volatile compounds in wine. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235602034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The increase in temperature caused by climate change is one of the greatest challenges the wine industry has to face. Temperature increase affects sugar and alcohol content, which directly impact the chemical and organoleptic characteristics of wine. This has a serious impact on the competitiveness and profits of companies in the sector. Among the most studied strategies focused on guaranteeing wine quality is the use of yeast strains that are better adapted to the conditions generated by climate change. Therefore, this study seeks to evaluate whether the Saccharomyces cerevisiae strains LALVIN CY3079 and UVAFERM WAM maintain their organoleptic characteristics at different temperatures. For this purpose, 3 experimental fermentations were carried out at 16, 20, and 27ºC, respectively. Alcoholic fermentation was monitored (pH, sugars, and microbial population) and general oenological parameters (acetic, citric, malic, succinic, lactic, amine nitrogen, ammonium, and glycerol) were evaluated at the beginning and end of fermentation. In addition, the ethanol content and volatile compounds formed at the end of fermentation were analysed. As a result of these experimental fermentations, it was observed that most of the basic oenological parameters and volatile compounds are modified as a function of fermentation temperature.
Collapse
|
3
|
Sew SW, Lu Y, Taniasuri F, Liu SQ. Chemical analysis and flavour compound changes of vegetable blend slurry fermented with selected probiotic bacteria. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Yang X, Zhao F, Yang L, Li J, Zhu X. Enhancement of the aroma in low-alcohol apple-blended pear wine mixed fermented with Saccharomyces cerevisiae and non-Saccharomyces yeasts. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Lu Y, Zhang M, Huang D. Dietary Organosulfur-Containing Compounds and Their Health-Promotion Mechanisms. Annu Rev Food Sci Technol 2022; 13:287-313. [DOI: 10.1146/annurev-food-052720-010127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary organosulfur-containing compounds (DOSCs) in fruits, vegetables, and edible mushrooms may hold the key to the health-promotion benefits of these foods. Yet their action mechanisms are not clear, partially due to their high reactivity, which leads to the formation of complex compounds during postharvest processing. Among postharvest processing methods, thermal treatment is the most common way to process these edible plants rich in DOSCs, which undergo complex degradation pathways with the generation of numerous derivatives over a short time. At low temperatures, DOSCs are biotransformed slowly during fermentation to different metabolites (e.g., thiols, sulfides, peptides), whose distinctive biological activity remains largely unexplored. In this review, we discuss the bioavailability of DOSCs in human digestion before illustrating their potential mechanisms for health promotion related to cardiovascular health, cancer chemoprevention, and anti-inflammatory and antimicrobial activities. In particular, it is interesting that different DOSCs react with glutathione or cysteine, leading to the slow release of hydrogen sulfide (H2S), which has broad bioactivity in chronic disease prevention. In addition, DOSCs may interact with protein thiol groups of different protein targets of importance related to inflammation and phase II enzyme upregulation, among other action pathways critical for health promotion. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Molan Zhang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Dejian Huang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Jiangsu, China
| |
Collapse
|
6
|
Ding W, Ye X, Zhao X, Liu Y, Zhang M, Luo Y, Xiong Y, Liu Y, Che Z, Lin H, Huang J, Tang X. Fermentation characteristics of Pixian broad bean paste in closed system of gradient steady-state temperature field. Food Chem 2021; 374:131560. [PMID: 34848085 DOI: 10.1016/j.foodchem.2021.131560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/04/2022]
Abstract
A closed system of gradient steady-state temperature field (GSTF) was constructed to ferment Pixian broad bean paste (PBP). The contents of physicochemical factors and organic acids in the fermentation under GSTF (FG) were closer to those in the traditional fermentation (TF). The taste intensities of 8 free amino acids in the FG were higher than those in the constant temperature fermentation (CTF), but 14 in the TF showed the highest among the processes of FG, CTF and TF. The FG product had the most volatiles with 87, and its flavor properties were more stable. The FG produced great effects on the microbe evolutions especially improved the fungal diversity. Bacillus were identified as the core microbes in the FG while the roles of Staphylococcus, Lactobacillus and Pantoea were strengthened. The results indicated that the fermentation characteristics in the FG had been further improved compared with the CTF.
Collapse
Affiliation(s)
- Wenwu Ding
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Xiaoqing Ye
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xiaoyan Zhao
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Sichuan Pixian Douban Company Limited, Chengdu 611730, China
| | - Yan Liu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Manna Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yifei Luo
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yuanru Xiong
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yi Liu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhenming Che
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Hongbin Lin
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jiaquan Huang
- Sichuan Pixian Douban Company Limited, Chengdu 611730, China
| | - Xiaoyu Tang
- Institute of Modern Agricultural Equipment, Xihua University, Chengdu 610039, China.
| |
Collapse
|
7
|
Liu G, Serikawa J, Okutsu K, Yoshizaki Y, Futagami T, Tamaki H, Takamine K. Impact of fermentation temperature on the quality and sensory characteristics of imo‐shochu. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Genqiao Liu
- The United Graduate School of Agricultural Sciences Kagoshima University Korimoto 1‐21‐24 Kagoshima 890‐0065 Japan
| | - Juna Serikawa
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture Kagoshima University Korimoto 1‐21‐24 Kagoshima 890‐0065 Japan
| | - Kayu Okutsu
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture Kagoshima University Korimoto 1‐21‐24 Kagoshima 890‐0065 Japan
| | - Yumiko Yoshizaki
- The United Graduate School of Agricultural Sciences Kagoshima University Korimoto 1‐21‐24 Kagoshima 890‐0065 Japan
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture Kagoshima University Korimoto 1‐21‐24 Kagoshima 890‐0065 Japan
| | - Taiki Futagami
- The United Graduate School of Agricultural Sciences Kagoshima University Korimoto 1‐21‐24 Kagoshima 890‐0065 Japan
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture Kagoshima University Korimoto 1‐21‐24 Kagoshima 890‐0065 Japan
| | - Hisanori Tamaki
- The United Graduate School of Agricultural Sciences Kagoshima University Korimoto 1‐21‐24 Kagoshima 890‐0065 Japan
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture Kagoshima University Korimoto 1‐21‐24 Kagoshima 890‐0065 Japan
| | - Kazunori Takamine
- The United Graduate School of Agricultural Sciences Kagoshima University Korimoto 1‐21‐24 Kagoshima 890‐0065 Japan
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture Kagoshima University Korimoto 1‐21‐24 Kagoshima 890‐0065 Japan
| |
Collapse
|
8
|
Optimization of Fermentation Conditions for Production of Hungarian Sour Cherry Spirit Using Response Surface Methodology. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pálinka is a traditional fruit spirit and a kind of gastronomic heritage in Hungary. In Pálinka production, fermentation is one of the most important processes affecting the quality and yield of spirits. Based on single-factor and three-factor influence level tests by following the Plackett–Burman design, the fermentation process from sour cherry juice concentrate and Saccharomyces cerevisiae by using Response Surface Methodology (RSM) coupled with the central composite rotatable design was investigated to optimize fermentation conditions through three variables in a defined range of temperature (15–25 °C), pH (2.75–3.75), and total soluble solid (18–30 °Brix). After eight fermentation days, production yields of alcohol and volatile compounds were a maximum of 9.02% v/v and 337.37 mg/L at an optimized temperature of 24.71 °C, pH of 3.25, and total soluble solid of 22.49 °Brix. The GC-FID analysis results showed 1-propanol, 2-methyl-1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol, and ethyl acetate were considered the major aroma compound in the cherry spirits. These results provided important information in serving the basic to develop standard fruit spirits production from sour cherry.
Collapse
|
9
|
Bioethanol Production from Sugarcane Press-Mud: Assessment of the Fermentation Conditions to Reduce Fusel Alcohol. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Within a biorefinery context, bioethanol is a promising platform molecule since it can be used as raw material to produce a wide spectrum of valuable industrial products such as H2 and light olefins. However, the presence of impurities limits the conversion of bioethanol in these products. Herein, we aimed to determine the proper pretreatment and fermentation conditions to yield bioethanol with a low content of impurities, such as 3-methyl-1-butanol, by using sugarcane press-mud as feedstock. To do so, a Box-Behnken methodology was employed to select proper pretreatment and fermentation conditions. Factors assessed were temperature, stirring, and pH during fermentation of hydrolysates coming from two different pretreatment methods named as hydrothermal and acid hydrolysis. Results showed that the fermentation temperature should be kept between 26–30 °C to assure at least 91 g/L ethanol. The fusel alcohol content would be reduced by 22% at 30 °C, pH = 4.5, and 200 rpm if sugarcane press-mud is pretreated under acid hydrolysis conditions (T = 130 °C, t = 1 h, 16 g HNO3/kg solid). Further studies should aim to integrate these conditions within a biorefinery concept to yield valuable products such as H2 and ethylene.
Collapse
|
10
|
Liu Y, Lu Y, Liu SQ. The potential of spent coffee grounds hydrolysates fermented with Torulaspora delbrueckii and Pichia kluyveri for developing an alcoholic beverage: The yeasts growth and chemical compounds modulation by yeast extracts. Curr Res Food Sci 2021; 4:489-498. [PMID: 34382007 PMCID: PMC8332367 DOI: 10.1016/j.crfs.2021.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 10/26/2022] Open
Abstract
This study evaluated the effects of yeast extracts (YE) addition (0 % and 0.25 %, w/v) on the no-volatile and volatile compounds of spent coffee grounds (SCG) hydrolysates fermented with single-cultures of two non-Saccharomyces wine yeasts, Torulaspora delbrueckii and Pichia kluyveri. The added YE improved the growth of both T. delbrueckii and P. kluyveri, especially P. kluyveri, resulting in higher ethanol production (1.98 % vs 1.47 %, v/v) by the latter yeast. In addition, the added YE did not impact on most of the alkaloids production regardless of yeast type, while significantly decreasing the contents of chlorogenic, and caffeic acids in SCG hydrolysates fermented with P. kluyveri. Furthermore, more odor-active compounds such as acetate esters and 2-phenylethyl alcohol were produced when YE was added, and P. kluyveri generated significantly higher amounts of esters compared to that of T. delbrueckii. Moreover, YE addition showed a more noticeable effect on the fermentation performance of P. kluyveri relative to that of T. delbrueckii. These findings indicated the potential of SCG hydrolysates fermented with evaluated non-Saccharomyces yeasts and may expand the applications on utilizing SCG to develop new value-added alcoholic products.
Collapse
Affiliation(s)
- Yunjiao Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542, Singapore
| | - Yuyun Lu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542, Singapore.,National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu, 215123, China
| |
Collapse
|
11
|
Aroma characteristics of traditional Huangjiu produced around Winter Solstice revealed by sensory evaluation, gas chromatography-mass spectrometry and gas chromatography-ion mobility spectrometry. Food Res Int 2021; 145:110421. [PMID: 34112423 DOI: 10.1016/j.foodres.2021.110421] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 11/20/2022]
Abstract
Traditional Huangjiu (a kind of traditional Chinese rice wine) produced around Winter Solstice has higher quality and a more harmonious aroma than those produced during other periods. To determine the specific differences in aroma characteristics, sensory evaluation, gas chromatography-mass spectrometry (GC-MS) and gas chromatography-ion mobility spectrometry (GC-IMS) were used to analyze the volatile profiles of the traditional Huangjiu samples produced under different ambient temperature conditions. The sensory evaluation results showed that the aroma attributes of wheat, sweet, ester, alcoholic and sauce were stronger for the samples fermented near Winter Solstice than those for the other samples. GC-MS combined with heatmap analysis showed that with the decrease in average ambient temperature, the contents of esters such as diethyl succinate and ethyl butanoate gradually increased, and the contents of alcohols such as phenylethyl alcohol, 2-methylpropanol and 3-methylbutanol gradually decreased. Some key aroma compounds, such as ethyl butyrate (OAV: 97-151), nonanal (OAV: 189-200), ethyl octanoate (OAV: 859-1134) and ethyl phenylacetate (OAV: 307-353), were more abundant in the samples fermented near Winter Solstice than the other samples. The visualization of GC-IMS suggested that isoamyl acetate, 2-methylpropyl acetate, ethyl 3-methylbutyrate, and ethyl 2-methylbutanoate were enriched near Winter Solstice. Together, the results suggested that the traditional Huangjiu produced around Winter Solstice contained more flavor volatiles and had better aroma quality than those produced during other periods.
Collapse
|
12
|
Yi S, Zhang X, Li HX, Du XX, Liang SW, Zhao XH. Screening and Mutation of Saccharomyces cerevisiae UV-20 with a High Yield of Second Generation Bioethanol and High Tolerance of Temperature, Glucose and Ethanol. Indian J Microbiol 2018; 58:440-447. [PMID: 30262954 DOI: 10.1007/s12088-018-0741-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/10/2018] [Indexed: 11/27/2022] Open
Abstract
A wild-type strain was isolated from slightly rotted pears after three rounds of enrichment culture, identified as Saccharomyces cerevisiae 3308, and evaluated for its fermentation capability of second generation bioethanol and tolerance of temperature, glucose and ethanol. S. cerevisiae 3308 was mutated by using the physical and chemical mutagenesis methods, ultraviolet (UV) and diethyl sulfate (DES), respectively. Positive mutated strains were mainly generated by the treatment of UV, but numerous negative mutations emerged under the treatment of DES. A positive mutated strain, UV-20, produced ethanol from 62.33 ± 1.34 to 122.22 ± 2.80 g/L at 30-45 °C, and had a maximum yield of ethanol at 37 °C. Furthermore, UV-20 produced 121.18 ± 2.51 g/L of second generation bioethanol at 37 °C. Simultaneously, UV-20 exhibited superior tolerance to 50% of glucose and 21% of ethanol. In a conclusion, all of these results indicated that UV-20 has a potential industrial application value.
Collapse
Affiliation(s)
- Shi Yi
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| | - Xiao Zhang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| | - Han-Xin Li
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| | - Xiao-Xia Du
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| | - Shao-Wei Liang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| | - Xi-Hua Zhao
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| |
Collapse
|
13
|
Growth kinetics and modelling of S. Cerevisiae (NCYC 431) during de-lignified waste banana fermentation and chemical characterization. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
The Possible Reduction Mechanism of Volatile Sulfur Compounds during Durian Wine Fermentation Verified in Modified Buffers. Molecules 2018; 23:molecules23061456. [PMID: 29914098 PMCID: PMC6100591 DOI: 10.3390/molecules23061456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 11/26/2022] Open
Abstract
Durian fruit is rich in volatile sulfur compounds (VSCs), especially thiols and disulfides, which contribute to its onion-like odor. After fermentation, these VSCs were reduced to trace or undetectable levels in durian wine. The possible reduction mechanism of these VSCs (especially diethyl disulfide and ethanethiol) was investigated in a modified buffer in the presence of sulfite at different pH. An interconversion between diethyl disulfide and ethanethiol was found to be dependent on the pH: the higher the pH, the higher production of ethanethiol. It is suggested that, during durian wine fermentation, disulfides endogenous to durian pulp might be firstly converted into their corresponding thiols in the presence of reductant sulfite formed by yeast. The produced thiols as well as the thiols endogenous to the durian pulp were then removed by the mannoproteins of yeast lees.
Collapse
|
15
|
A novel non-dairy beverage from durian pulp fermented with selected probiotics and yeast. Int J Food Microbiol 2018; 265:1-8. [DOI: 10.1016/j.ijfoodmicro.2017.10.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/27/2017] [Accepted: 10/28/2017] [Indexed: 01/13/2023]
|
16
|
Lu Y, Chan L, Li X, Liu S. Effects of sugar concentration on mango wine composition fermented by
Saccharomyces cerevisiae
MERIT
.ferm. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuyun Lu
- Department of Chemistry Food Science and Technology Program National University of Singapore Science Drive 3 Singapore 117543 Singapore
| | - Li‐Jie Chan
- Department of Chemistry Food Science and Technology Program National University of Singapore Science Drive 3 Singapore 117543 Singapore
| | - Xiao Li
- Department of Chemistry Food Science and Technology Program National University of Singapore Science Drive 3 Singapore 117543 Singapore
| | - Shao‐Quan Liu
- Department of Chemistry Food Science and Technology Program National University of Singapore Science Drive 3 Singapore 117543 Singapore
- National University of Singapore (Suzhou) Research Institute 377 Lin Quan Street Suzhou Industrial Park Jiangsu 215123 China
| |
Collapse
|