1
|
Zhang Y, Zhao J, Guo H, Lu X, Tan D. Production and Bioseparation Applications of Polyhydroxyalkanoate Nano-Granules Functionalized with Streptavidin. Microorganisms 2025; 13:312. [PMID: 40005680 PMCID: PMC11858450 DOI: 10.3390/microorganisms13020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Rapidly growing industrial biotechnology and bio-manufacturing require simple and cost-effective bioseparation tools. A novel strategy of bioseparation based on the streptavidin-decorated polyhydroxyalkanoate (PHA) nano-granules was developed in this study. By fusing to the N-terminus of PHA-associated phasin protein, the streptavidin was one-step immobilized on the surface of PHA nano-granules simultaneously with the accumulation of PHA in recombinant Escherichia coli. About 1.95 g/L of PHA nano-granules (54.51 wt% of cell dry weight) were produced after 48 h bacterial cultivation. The following qualitative and quantitative characterizations demonstrated that the streptavidin accounted for approximately 6.78% of the total weight of the purified PHA nano-granules and confirmed a considerable biotin affinity of 0.1 ng biotin/μg surface protein. As a proof of concept, the nano-granules were further functionalized with biotinylated oligo(dT) for mRNA isolation and about 1.26 μg of mRNA (occupied 2.59%) was purified from 48.45 μg of total RNA, achieving good integrity and high purity with few DNA and rRNA contaminations. Moreover, the nano-granules retained more than 80% of their initial mRNA recovery efficiency after ten cycles of repeated use. The PHA-SAP nano-granules were also functionalized with biotinylated magnetic beads, allowing magnetic recovery of the PHA nano-granules from cell lysates that still needs optimization. Our study provides a novel and expandable platform of PHA nano-granules that can be further functionalized with various biological groups for bioseparation applications. The functional PHA nano-granules have a great potential to serve as bioseparation resin for large-scale purification processes after suitable optimizations for "bench-to-factory" translation, contributing to scalable and sustainable bioprocessing.
Collapse
Affiliation(s)
- Yuyan Zhang
- School of Life Science & Technology, Xinjiang University, Urumchi 830049, China;
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| | - Jiping Zhao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| | - Hui Guo
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| | - Dan Tan
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| |
Collapse
|
2
|
Duan M, Wang Y, Tan D, Yang G, Deng Y, Ran G, Li J. Economical synthesis of γ-cyclodextrin catalyzed by oriented cyclodextrin glycosyltransferase displayed on bacterial polyhydroxyalkanoate nanogranules. Microb Cell Fact 2023; 22:181. [PMID: 37704986 PMCID: PMC10500893 DOI: 10.1186/s12934-023-02191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND The advantages of γ-cyclodextrin (γ-CD) include its high solubility, ability to form inclusion complexes with various poorly water-soluble molecules, and favorable toxicological profile; thus, γ-CD is an attractive functional excipient widely used in many industrial settings. Unfortunately, the high cost of γ-CD caused by the low activity and stability of γ-cyclodextrin glycosyltransferase (γ-CGTase) has hampered large-scale production and application. RESULTS This study reports the in vivo one-step production of immobilized γ-CGTase decorated on the surface of polyhydroxyalkanoate (PHA) nanogranules by the N-terminal fusion of γ-CGTase to PHA synthase via a designed linker. The immobilized γ-CGTase-PHA nanogranules showed outstanding cyclization activity of 61.25 ± 3.94 U/mg (γ-CGTase protein) and hydrolysis activity of 36,273.99 ± 1892.49 U/mg, 44.74% and 18.83% higher than that of free γ-CGTase, respectively. The nanogranules also exhibited wider optimal pH (cyclization activity 7.0-9.0, hydrolysis activity 10.0-11.0) and temperature (55-60 °C) ranges and remarkable thermo- and pH-stability, expanding its utility to adapt to wider and more severe reaction conditions than the free enzyme. A high yield of CDs (22.73%) converted from starch and a high ratio (90.86%) of γ-CD in the catalysate were achieved at pH 9.0 and 50 °C for 10 h with 1 mmol/L K+, Ca2+, and Mg2+ added to the reaction system. Moreover, γ-CGTase-PHA beads can be used at least eight times, retaining 82.04% of its initial hydrolysis activity and 75.73% of its initial cyclization activity. CONCLUSIONS This study provides a promising nanobiocatalyst for the cost-efficient production of γ-CD, which could greatly facilitate process control and economize the production cost.
Collapse
Affiliation(s)
- Menglu Duan
- Shaanxi Institute of Microbiology, No. 76 Xi Ying Road, Xi'an, 710043, Shaanxi Province, China
| | - Yan Wang
- Shaanxi Institute of Microbiology, No. 76 Xi Ying Road, Xi'an, 710043, Shaanxi Province, China
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Microbiology, Xi'an, 710043, China
| | - Dan Tan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guowu Yang
- Shaanxi Institute of Microbiology, No. 76 Xi Ying Road, Xi'an, 710043, Shaanxi Province, China
| | - Yuan Deng
- Shaanxi Institute of Microbiology, No. 76 Xi Ying Road, Xi'an, 710043, Shaanxi Province, China
| | - Ganqiao Ran
- Bio-Agriculture Institute of Shaanxi, Xi'an, 710069, China.
| | - Jiao Li
- Shaanxi Institute of Microbiology, No. 76 Xi Ying Road, Xi'an, 710043, Shaanxi Province, China.
| |
Collapse
|
3
|
Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238351. [PMID: 36500442 PMCID: PMC9740486 DOI: 10.3390/molecules27238351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Polyhydroxyalkanoate (PHA), a biodegradable polymer obtained from microorganisms and plants, have been widely used in biomedical applications and devices, such as sutures, cardiac valves, bone scaffold, and drug delivery of compounds with pharmaceutical interests, as well as in food packaging. This review focuses on the use of polyhydroxyalkanoates beyond the most common uses, aiming to inform about the potential uses of the biopolymer as a biosensor, cosmetics, drug delivery, flame retardancy, and electrospinning, among other interesting uses. The novel applications are based on the production and composition of the polymer, which can be modified by genetic engineering, a semi-synthetic approach, by changing feeding carbon sources and/or supplement addition, among others. The future of PHA is promising, and despite its production costs being higher than petroleum-based plastics, tools given by synthetic biology, bioinformatics, and machine learning, among others, have allowed for great production yields, monomer and polymer functionalization, stability, and versatility, a key feature to increase the uses of this interesting family of polymers.
Collapse
|
4
|
Zhao J, Ran G, Xu M, Lu X, Tan D. Cost-Effective Production of L-DOPA by Tyrosinase-Immobilized Polyhydroxyalkanoate Nanogranules in Engineered Halomonas bluephagenesis TD01. Molecules 2021; 26:molecules26133778. [PMID: 34206459 PMCID: PMC8270294 DOI: 10.3390/molecules26133778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
3,4-dihydroxyphenyl-L-alanine (L-DOPA) is a preferred drug for Parkinson's disease, with an increasing demand worldwide that mainly relies on costly and environmentally problematic chemical synthesis. Yet, biological L-DOPA production is unfeasible at the industrial scale due to its low L-DOPA yield and high production cost. In this study, low-cost Halomonas bluephagenesis TD01 was engineered to produce tyrosinase TyrVs-immobilized polyhydroxyalkanoate (PHA) nanogranules in vivo, with the improved PHA content and increased immobilization efficiency of TyrVs accounting for 6.85% on the surface of PHA. A higher L-DOPA-forming monophenolase activity of 518.87 U/g PHA granules and an L-DOPA concentration of 974.36 mg/L in 3 h catalysis were achieved, compared to those of E. coli. Together with the result of L-DOPA production directly by cell lysates containing PHA-TyrVs nanogranules, our study demonstrated the robust and cost-effective production of L-DOPA by H. bluephagenesis, further contributing to its low-cost industrial production based on next-generation industrial biotechnology (NGIB).
Collapse
Affiliation(s)
- Jiping Zhao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (M.X.)
| | - Ganqiao Ran
- Institute of Bio-Agriculture of Shaanxi Province, Xi’an 710043, China;
| | - Mengmeng Xu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (M.X.)
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (M.X.)
- Correspondence: (X.L.); (D.T.)
| | - Dan Tan
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (M.X.)
- Correspondence: (X.L.); (D.T.)
| |
Collapse
|
5
|
Wu P, Yang S, Zhan Z, Zhang G. Origins and features of pectate lyases and their applications in industry. Appl Microbiol Biotechnol 2020; 104:7247-7260. [PMID: 32666183 DOI: 10.1007/s00253-020-10769-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/12/2020] [Accepted: 07/02/2020] [Indexed: 11/25/2022]
Abstract
Pectate lyase treatment can be an alternative strategy of the chemical processing, which causes severe environmental pollution, and has been broadly studied and applied for diverse industrial applications including textile industry, beverage industry, pulp processing, pectic wastewater pretreatment, and oil extraction. This review gave a brief description of the origins, enzymatic characterizations, structure, and applications of pectate lyases (Pels). Most of the reported pectate lyases are originated from microorganisms with a small number of them from plants and animals. Due to the diverse environments that these microorganisms exist, Pels present diversified features, especially for the range of optimal pH and temperature. The diversified biochemical properties of Pels define their applications in different industries, and the applications of alkaline Pels on cotton bioscouring and ramie degumming in textile industry were focused in this review. This review also discussed the perspectives of the development and applications of Pels. KEY POINTS: • The first review on pectate lyase focusing on biotechnological applications. • Origins, features, structures, applications of pectate lyases reviewed. • Applications of alkaline Pels in textile industry demonstrated. • Perspectives on future development and applications of Pels discussed.
Collapse
Affiliation(s)
- Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Wuhan Sunhy Biology Co., Ltd., Wuhan, 430206, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhichun Zhan
- Wuhan Sunhy Biology Co., Ltd., Wuhan, 430206, China
| | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
6
|
Wu P, Luo F, Lu Z, Zhan Z, Zhang G. Improving the Catalytic Performance of Pectate Lyase Through Pectate Lyase/Cu 3(PO 4) 2 Hybrid Nanoflowers as an Immobilized Enzyme. Front Bioeng Biotechnol 2020; 8:280. [PMID: 32309279 PMCID: PMC7145898 DOI: 10.3389/fbioe.2020.00280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
Pectate lyases (Pels) can be used in the textile industrial process for cotton scouring and ramie degumming, and its hydrolyzed products oligo galacturonic acid, are high-value added agricultural and health products. In our previous studies, an alkaline pectate lyase PEL168 mutant, PEL3, was obtained with improved specific activity and thermostability. Here, a facile and rapid method for preparing an immobilized PEL3-inorganic hybrid nanoflower was developed, as it could improve its biocatalytic performance. With 0.02 mg/mL (112.2 U/mL) PEL3 in PBS buffer, five different divalent ions, including Mn2+, Ca2+, Co2+, Zn2+, and Cu2+, were used as inorganic component. The results showed that PEL3/Cu3(PO4)2 hybrid nanoflowers presented the highest relative activity with 2.5-fold increase, compared to the free PEL3. X-ray diffraction analysis confirmed that the composition of PEL3/Cu3(PO4)2 hybrid nanoflowers were pectate lyase PEL3 and Cu3(PO4)2⋅5H2O. The optimum temperature and pH of PEL3/Cu3(PO4)2 hybrid nanoflowers were ascertained to be 55°C and pH 9.0, respectively, exhibiting subtle difference from the free PEL3. However, the PEL3/Cu3(PO4)2 hybrid nanoflowers maintained 33% residual activity after 24 h incubation at 55°C, while the free PEL3 completely lost its activity after 18 h incubation at 55°C. Furthermore, over 50% residual activity of the PEL3/Cu3(PO4)2 hybrid nanoflowers was remained, even after four times of repetitive utilization, demonstrating its promising stability for practical application.
Collapse
Affiliation(s)
- Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
- Wuhan Sunhy Biology Co., Ltd., Wuhan, China
| | - Feifan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhenghui Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
| | | | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
7
|
Boros BV, Ostafe V. Evaluation of Ecotoxicology Assessment Methods of Nanomaterials and Their Effects. NANOMATERIALS 2020; 10:nano10040610. [PMID: 32224954 PMCID: PMC7221575 DOI: 10.3390/nano10040610] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Abstract
This paper describes the ecotoxicological effects of nanomaterials (NMs) as well as their testing methods. Standard ecotoxicity testing methods are applicable to nanomaterials as well but require some adaptation. We have taken into account methods that meet several conditions. They must be properly researched by a minimum of ten scientific articles where adaptation of the method to the NMs is also presented; use organisms suitable for simple and rapid ecotoxicity testing (SSRET); have a test period shorter than 30 days; require no special equipment; have low costs and have the possibility of optimization for high-throughput screening. From the standard assays described in guidelines developed by organizations such as Organization for Economic Cooperation and Development and United States Environmental Protection Agency, which meet the required conditions, we selected as methods adaptable for NMs, some methods based on algae, duckweed, amphipods, daphnids, chironomids, terrestrial plants, nematodes and earthworms. By analyzing the effects of NMs on a wide range of organisms, it has been observed that these effects can be of several categories, such as behavioral, morphological, cellular, molecular or genetic effects. By comparing the EC50 values of some NMs it has been observed that such values are available mainly for aquatic ecotoxicity, with the most sensitive test being the algae assay. The most toxic NMs overall were the silver NMs.
Collapse
|
8
|
Wong JX, Ogura K, Chen S, Rehm BHA. Bioengineered Polyhydroxyalkanoates as Immobilized Enzyme Scaffolds for Industrial Applications. Front Bioeng Biotechnol 2020; 8:156. [PMID: 32195237 PMCID: PMC7064635 DOI: 10.3389/fbioe.2020.00156] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Enzymes function as biocatalysts and are extensively exploited in industrial applications. Immobilization of enzymes using support materials has been shown to improve enzyme properties, including stability and functionality in extreme conditions and recyclability in biocatalytic processing. This review focuses on the recent advances utilizing the design space of in vivo self-assembled polyhydroxyalkanoate (PHA) particles as biocatalyst immobilization scaffolds. Self-assembly of biologically active enzyme-coated PHA particles is a one-step in vivo production process, which avoids the costly and laborious in vitro chemical cross-linking of purified enzymes to separately produced support materials. The homogeneous orientation of enzymes densely coating PHA particles enhances the accessibility of catalytic sites, improving enzyme function. The PHA particle technology has been developed into a remarkable scaffolding platform for the design of cost-effective designer biocatalysts amenable toward robust industrial bioprocessing. In this review, the PHA particle technology will be compared to other biological supramolecular assembly-based technologies suitable for in vivo enzyme immobilization. Recent progress in the fabrication of biological particulate scaffolds using enzymes of industrial interest will be summarized. Additionally, we outline innovative approaches to overcome limitations of in vivo assembled PHA particles to enable fine-tuned immobilization of multiple enzymes to enhance performance in multi-step cascade reactions, such as those used in continuous flow bioprocessing.
Collapse
Affiliation(s)
- Jin Xiang Wong
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand
| | - Kampachiro Ogura
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast Campus, Southport, QLD, Australia
| |
Collapse
|
9
|
Wang J, Tan H, Li K, Yin H. Two‐stage fermentation optimization for poly‐3‐hydroxybutyrate production from methanol by a new Methylobacterium isolate from oil fields. J Appl Microbiol 2019; 128:171-181. [DOI: 10.1111/jam.14463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023]
Affiliation(s)
- J. Wang
- Liaoning Provincial Key Laboratory of Carbohydrates Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
- College of Fisheries and Life Science Dalian Ocean University Dalian China
| | - H. Tan
- Liaoning Provincial Key Laboratory of Carbohydrates Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| | - K. Li
- Liaoning Provincial Key Laboratory of Carbohydrates Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| | - H. Yin
- Liaoning Provincial Key Laboratory of Carbohydrates Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| |
Collapse
|
10
|
Li R, Yang J, Xiao Y, Long L. In vivo immobilization of an organophosphorus hydrolyzing enzyme on bacterial polyhydroxyalkanoate nano-granules. Microb Cell Fact 2019; 18:166. [PMID: 31601206 PMCID: PMC6785862 DOI: 10.1186/s12934-019-1201-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 08/27/2019] [Indexed: 11/14/2022] Open
Abstract
Background Polyhydroxyalkanoate (PHA) are nano-granules naturally produced by bacteria. Two types of proteins, PHA synthase (PhaC) and phasins (PhaPs), are attached to the PHA surface by covalent and hydrophobic interactions. Utilizing these anchored proteins, functionalized PHA nano-granules displaying proteins of interest can be easily prepared by fermentation. Results In this study, a one-step fabrication method was developed for stable and efficient immobilization of an organophosphorus degrading enzyme on PHA nano-granules. The nano-biocatalysts were produced in recombinant Escherichia coli cells into which the polyhydroxyalkanoate synthesis pathway from Cupriavidus necator had been introduced. Two different strategies, covalent attachment and hydrophobic binding, were investigated by fusing bacterial organophosphorus anhydride hydrolase (OPAA4301) with PhaC and PhaP, respectively. Using both methods, the tetrameric enzyme successfully self-assembled and was displayed on the PHA surface. The display density of the target fused enzyme was enhanced to 6.8% of total protein on decorated PHA by combination of covalent and non-covalent binding modes. Immobilization of the enzyme on PHA granules resulted in higher catalytic efficiency, increased stability and excellent reusability. The kcat values of the immobilized enzymes increased by threefold compared to that of the free enzyme. The pH stability under acidic conditions was significantly enhanced, and the immobilized enzyme was stable at pH 3.0–11.0. Furthermore, more than 80% of the initial enzyme activity retained after recycling ten times. Conclusions This study provides a promising approach for cost-efficient in vivo immobilization of a tetrameric organophosphorus degrading enzyme. The immobilization process expands the utility of the enzyme, and may inspire further commercial developments of PHA nano-biocatalysts. As revealed by our results, combination of covalent and non-covalent binding is recommended for display of enzymes on PHA granules.
Collapse
Affiliation(s)
- Ru Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jian Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Yunzhu Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China. .,University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
11
|
Ran G, Tan D, Zhao J, Fan F, Zhang Q, Wu X, Fan P, Fang X, Lu X. Functionalized polyhydroxyalkanoate nano-beads as a stable biocatalyst for cost-effective production of the rare sugar d-allulose. BIORESOURCE TECHNOLOGY 2019; 289:121673. [PMID: 31260936 DOI: 10.1016/j.biortech.2019.121673] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
d-Allulose is a promising low-calorie sweetener especially for diabetes and obesity patients. The functionalized polyhydroxyalkanoate (PHA) nano-beads decorated with d-tagatose 3-epimerase (DTE) was produced in recombinant endotoxin-free ClearColi, whereby the expression, purification, and immobilization of the active DTE were efficiently combined into one step. The immobilized DTE exhibited remarkable enzyme activity of 649.3 U/g beads and extremely high stability at a harsh working condition (pH 7.0-8.0, 65 °C). When DTE-PHA beads were subjected to enzymatic synthesis of d-allulose, a maximum conversion rate of 33% can be achieved at pH 7.0 and 65 °C for 3 h, and DTE-PHA beads retained about 80% of its initial activity after 8 continuous cycles. Moreover, the d-allulose/d-fructose binary mixture can be simply separated by a single cation exchange resin-equipped chromatography. Taken together, DTE-PHA beads are promising and robust nano-biocatalysts that will remarkably simplify the production procedures of d-allulose, contributing to its cost-effective production.
Collapse
Affiliation(s)
- Ganqiao Ran
- Institute of Bio-Agriculture of Shannxi Province, Xi'an 710043, Shaanxi, People's Republic of China; Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Dan Tan
- Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Jiping Zhao
- Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Fan Fan
- Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Qiang Zhang
- Institute of Bio-Agriculture of Shannxi Province, Xi'an 710043, Shaanxi, People's Republic of China
| | - Xingjuan Wu
- Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Peiyao Fan
- Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Xinlei Fang
- Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Xiaoyun Lu
- Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China.
| |
Collapse
|
12
|
Tan D, Zhao JP, Ran GQ, Zhu XL, Ding Y, Lu XY. Highly efficient biocatalytic synthesis of L-DOPA using in situ immobilized Verrucomicrobium spinosum tyrosinase on polyhydroxyalkanoate nano-granules. Appl Microbiol Biotechnol 2019; 103:5663-5678. [PMID: 31127354 DOI: 10.1007/s00253-019-09851-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 01/01/2023]
Abstract
L-DOPA (3,4-dihydroxyphenyl-L-alanine) is a preferred drug for Parkinson's disease, and is currently in great demand every year worldwide. Biocatalytic conversion of L-tyrosine by tyrosinases is the most promising method for the low-cost production of L-DOPA in both research and industry. Yet, it has been hampered by low productivity, low conversion rate, and low stability of the biocatalyst, tyrosinase. An alternative tyrosinase TyrVs from Verrucomicrobium spinosum with more efficient expression in heterologous host and better stability than the commercially available Agaricus bisporus tyrosinase was identified in this study. Additionally, it was prepared as a novel nano-biocatalyst based on the distinct one-step in situ immobilization on the surface of polyhydroxyalkanoate (PHA) nano-granules. The resulting PHA-TyrVs nano-granules demonstrated improved L-DOPA-forming monophenolase activity of 9155.88 U/g (Tyr protein), which was 3.19-fold higher than that of free TyrVs. The nano-granules also exhibited remarkable thermo-stability, with an optimal temperature of 50 °C, and maintained more than 70% of the initial activity after incubation at 55 °C for 24 h. And an enhanced affinity of copper ion was observed in the PHA-TyrVs nano-granules, making them even better biocatalysts for L-DOPA production. Therefore, a considerable productivity of L-DOPA, amounting to 148.70 mg/L h, with a conversion rate of L-tyrosine of 90.62% can be achieved by the PHA-TyrVs nano-granules after 3 h of biocatalysis under optimized conditions, without significant loss of enzyme activity or L-DOPA yield after 8 cycles of repeated use. Our study provides an excellent and robust nano-biocatalyst for the cost-effective production of L-DOPA.
Collapse
Affiliation(s)
- Dan Tan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049,, Shaanxi, People's Republic of China
| | - Ji-Ping Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049,, Shaanxi, People's Republic of China
| | - Gan-Qiao Ran
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049,, Shaanxi, People's Republic of China
| | - Xin-Liang Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049,, Shaanxi, People's Republic of China
| | - Yan Ding
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049,, Shaanxi, People's Republic of China
| | - Xiao-Yun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049,, Shaanxi, People's Republic of China.
| |
Collapse
|
13
|
Shi X, Zhao L, Pei J, Ge L, Wan P, Wang Z, Xiao W. Highly enhancing the characteristics of immobilized thermostable β-glucosidase by Zn2+. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Cho HJ, Jang WJ, Moon SY, Lee JM, Kim JH, Han HS, Kim KW, Lee BJ, Kong IS. Immobilization of β-1,3-1,4-glucanase from Bacillus sp. on porous silica for production of β-glucooligosaccharides. Enzyme Microb Technol 2018; 110:30-37. [DOI: 10.1016/j.enzmictec.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/26/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
|