1
|
Li H, Chen J, Li X, Gan J, Liu H, Jian Z, Xu S, Zhang A, Li G, Chen K. Artificial neural network and genetic algorithm coupled fermentation kinetics to regulate L-lysine fermentation. BIORESOURCE TECHNOLOGY 2024; 393:130151. [PMID: 38049019 DOI: 10.1016/j.biortech.2023.130151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Fermentation plays a pivotal role in the industrialization of bioproducts, yet there is a substantial lag in the fermentation process regulation. Here, an artificial neural network (ANN) and genetic algorithm (GA) coupled with fermentation kinetics were employed to establish an innovative lysine fermentation control. Firstly, the strategy of coupling GA with ANN was established. Secondly, specific lysine formation rate (qp), specific substrate consumption rate (qs), and specific cell growth rate (μ) were predicted and optimized by ANN-GA. The optimal ANN model adopts a three-layer feed-forward back-propagation structure (4:10:1). The optimal fermentation control parameters are obtained through GA. Finally, when the carbon to nitrogen ratio, residual sugar concentration, ammonia nitrogen concentration, and dissolved oxygen were [2.5, 4.5], [6.5, 9.5] g·L-1, [1.0, 2.0] g·L-1 and [20, 30] %, respectively, the lysine concentration reaches its peak at 213.0 ± 5.10 g·L-1. The novel control strategy holds significant potential for optimizing the fermentation of other bioproducts.
Collapse
Affiliation(s)
- Hui Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiajun Chen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xingyan Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jian Gan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Huazong Liu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhou Jian
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Sheng Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Alei Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ganlu Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
2
|
Pentjuss A, Bolmanis E, Suleiko A, Didrihsone E, Suleiko A, Dubencovs K, Liepins J, Kazaks A, Vanags J. Pichia pastoris growth-coupled heme biosynthesis analysis using metabolic modelling. Sci Rep 2023; 13:15816. [PMID: 37739976 PMCID: PMC10516909 DOI: 10.1038/s41598-023-42865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023] Open
Abstract
Soy leghemoglobin is one of the most important and key ingredients in plant-based meat substitutes that can imitate the colour and flavour of the meat. To improve the high-yield production of leghemoglobin protein and its main component-heme in the yeast Pichia pastoris, glycerol and methanol cultivation conditions were studied. Additionally, in-silico metabolic modelling analysis of growth-coupled enzyme quantity, suggests metabolic gene up/down-regulation strategies for heme production. First, cultivations and metabolic modelling analysis of P. pastoris were performed on glycerol and methanol in different growth media. Glycerol cultivation uptake and production rates can be increased by 50% according to metabolic modelling results, but methanol cultivation-is near the theoretical maximum. Growth-coupled metabolic optimisation results revealed the best feasible upregulation (33 reactions) (1.47% of total reactions) and 66 downregulation/deletion (2.98% of total) reaction suggestions. Finally, we describe reaction regulation suggestions with the highest potential to increase heme production yields.
Collapse
Affiliation(s)
- Agris Pentjuss
- Microbiology and Biotechnology Institute, University of Latvia, Jelgavas Street 1, Riga, 1004, Latvia.
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia.
| | - Emils Bolmanis
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1 K-1, Riga, 1067, Latvia
| | - Anastasija Suleiko
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
- Bioreactors.Net AS, Dzerbenes Street 27, Riga, 1006, Latvia
| | - Elina Didrihsone
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
| | - Arturs Suleiko
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
- Bioreactors.Net AS, Dzerbenes Street 27, Riga, 1006, Latvia
| | - Konstantins Dubencovs
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
- Bioreactors.Net AS, Dzerbenes Street 27, Riga, 1006, Latvia
| | - Janis Liepins
- Microbiology and Biotechnology Institute, University of Latvia, Jelgavas Street 1, Riga, 1004, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1 K-1, Riga, 1067, Latvia
| | - Juris Vanags
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
- Bioreactors.Net AS, Dzerbenes Street 27, Riga, 1006, Latvia
| |
Collapse
|
3
|
Efficient expression of heterologous protein by engineered Komagataella phaffii by harnessing a bioelectrical CO2 reduction system. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Herrera-Estala AL, Fuentes-Garibay JA, Guerrero-Olazarán M, Viader-Salvadó JM. Low specific growth rate and temperature in fed-batch cultures of a beta-propeller phytase producing Pichia pastoris strain under GAP promoter trigger increased KAR2 and PSA1-1 gene expression yielding enhanced extracellular productivity. J Biotechnol 2022; 352:59-67. [PMID: 35618082 DOI: 10.1016/j.jbiotec.2022.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/30/2023]
Abstract
Previously, we showed that the methylotrophic yeast Pichia pastoris (syn. Komagataella phaffii) could produce and secrete the beta-propeller phytase FTEII in an active form under the control of the AOX1 promoter and methanol as the inductor. In this work, we engineered P. pastoris strains to construct a constitutive P. pastoris expression system (GAP promoter) and extracellularly produce the phytase FTEII. We optimized the culture conditions to increase the extracellular volumetric phytase productivity (Qp) and evaluated the impact of the optimization process on the physiological response of the host. Moreover, we analyzed the expression levels of the FTEII gene and endogenous genes for P. pastoris cells in cultures with the lowest and highest Qp to understand which processes (from heterologous gene expression to protein secretion) might be responsible for the increase in Qp. The results indicate that a low specific growth rate and temperature in the fed-batch phase increases the Qp, which was correlated with an upregulation of the KAR2 and PSA1-1/MPG1 genes rather than increased heterologous gene transcription.
Collapse
Affiliation(s)
- Ana Lucía Herrera-Estala
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Biológicas, Instituto de Biotecnología, 66455 San Nicolás de los Garza, N.L., Mexico
| | - José Antonio Fuentes-Garibay
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Biológicas, Instituto de Biotecnología, 66455 San Nicolás de los Garza, N.L., Mexico
| | - Martha Guerrero-Olazarán
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Biológicas, Instituto de Biotecnología, 66455 San Nicolás de los Garza, N.L., Mexico
| | - José María Viader-Salvadó
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Biológicas, Instituto de Biotecnología, 66455 San Nicolás de los Garza, N.L., Mexico.
| |
Collapse
|
5
|
Mainka T, Weirathmüller D, Herwig C, Pflügl S. Potential applications of halophilic microorganisms for biological treatment of industrial process brines contaminated with aromatics. J Ind Microbiol Biotechnol 2021; 48:kuab015. [PMID: 33928348 PMCID: PMC9113102 DOI: 10.1093/jimb/kuab015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022]
Abstract
Saline wastewater contaminated with aromatic compounds can be frequently found in various industrial sectors. Those compounds need to be degraded before reuse of wastewater in other process steps or release to the environment. Halophiles have been reported to efficiently degrade aromatics, but their application to treat industrial wastewater is rare. Halophilic processes for industrial wastewater treatment need to satisfy certain requirements: a continuous process mode, low operational expenditures, suitable reactor systems and a monitoring and control strategy. The aim of this review is to provide an overview of halophilic microorganisms, principles of aromatic biodegradation, and sources of saline wastewater containing aromatics and other contaminants. Finally, process examples for halophilic wastewater treatment and potential process monitoring strategies are discussed. To further illustrate the significant potential of halophiles for saline wastewater treatment and to facilitate development of ready-to-implement processes, future research should focus on scale-up and innovative process monitoring and control strategies.
Collapse
Affiliation(s)
- Thomas Mainka
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
- Competence Center CHASE GmbH,
Altenbergerstraße 69, 4040 Linz, Austria
| | - David Weirathmüller
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
| | - Christoph Herwig
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
- Competence Center CHASE GmbH,
Altenbergerstraße 69, 4040 Linz, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
| |
Collapse
|
6
|
Garrigós-Martínez J, Weninger A, Montesinos-Seguí JL, Schmid C, Valero F, Rinnofner C, Glieder A, Garcia-Ortega X. Scalable production and application of Pichia pastoris whole cell catalysts expressing human cytochrome P450 2C9. Microb Cell Fact 2021; 20:90. [PMID: 33902608 PMCID: PMC8074423 DOI: 10.1186/s12934-021-01577-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/07/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Currently, the numerous and versatile applications in pharmaceutical and chemical industry make the recombinant production of cytochrome P450 enzymes (CYPs) of great biotechnological interest. Accelerating the drug development process by simple, quick and scalable access of human drug metabolites is key for efficient and targeted drug development in response to new and sometimes unexpected medical challenges and needs. However, due its biochemical complexity, scalable human CYP (hCYP) production and their application in preparative biotransformations was still in its infancy. RESULTS A scalable bioprocess for fine-tuned co-expression of hCYP2C9 and its essential complementary human cytochrome P450 reductase (hCPR) in the yeast Pichia pastoris (Komagataella phaffii) is presented. High-throughput screening (HTS) of a transformant library employing a set of diverse bidirectional expression systems with different regulation patterns and a fluorimetric assay was used in order to fine-tune hCYP2C9 and hCPR co-expression, and to identify best expressing clonal variants. The bioprocess development for scalable and reliable whole cell biocatalyst production in bioreactors was carried out based on rational optimization criteria. Among the different alternatives studied, a glycerol carbon-limiting strategy at high µ showed highest production rates, while methanol co-addition together with a decrease of µ provided the best results in terms of product to biomass yield and whole cell activity. By implementing the mentioned strategies, up to threefold increases in terms of production rates and/or yield could be achieved in comparison with initial tests. Finally, the performance of the whole cell catalysts was demonstrated successfully in biotransformation using ibuprofen as substrate, demonstrating the expected high selectivity of the human enzyme catalyst for 3'hydroxyibuprofen. CONCLUSIONS For the first time a scalable bioprocess for the production of hCYP2C9 whole cell catalysts was successfully designed and implemented in bioreactor cultures, and as well, further tested in a preparative-scale biotransformation of interest. The catalyst engineering procedure demonstrated the efficiency of the employment of a set of differently regulated bidirectional promoters to identify transformants with most effective membrane-bound hCYP/hCPR co-expression ratios and implies to become a model case for the generation of other P. pastoris based catalysts relying on co-expressed enzymes such as other P450 catalysts or enzymes relying on co-expressed enzymes for co-factor regeneration.
Collapse
Affiliation(s)
- Javier Garrigós-Martínez
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Astrid Weninger
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - José Luis Montesinos-Seguí
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Christian Schmid
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Claudia Rinnofner
- Bisy GmbH, Wuenschendorf 292, 8200, Hofstaetten/Raab, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Petersgasse 14, 8010, Graz, Austria
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
- Bisy GmbH, Wuenschendorf 292, 8200, Hofstaetten/Raab, Austria.
| | - Xavier Garcia-Ortega
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
7
|
Low cost and sustainable hyaluronic acid production in a manufacturing platform based on Bacillus subtilis 3NA strain. Appl Microbiol Biotechnol 2021; 105:3075-3086. [PMID: 33818671 DOI: 10.1007/s00253-021-11246-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 01/15/2023]
Abstract
Hyaluronic acid (HA) is a high value glycosaminoglycan mostly used in health and cosmetic applications. Commercial HA is produced from animal tissues or in toxigenic bacteria of the genus Streptococcus grown in complex media, which are expensive and raise environmental concerns due to the disposal of large amounts of broth with high organic loads. Other microorganisms were proposed as hosts for the heterologous production of HA, but the methods are still costly. The extraordinary capacity of this biopolymer to bind and retain water attracts interest for large-scale applications where biodegradable materials are needed, but its high cost and safety concerns are barriers for its adoption. Bacillus subtilis 3NA strain is prototrophic, amenable for genetic manipulation, GRAS, and can rapidly reach high cell densities in salt-based media. These phenotypic traits were exploited to create a platform for biomolecule production using HA as a proof of concept. First, the 3NA strain was engineered to produce HA; second, a chemically defined medium was formulated using commodity-priced inorganic salts combined at the stoichiometric ratios needed to build the necessary quantities of biomass and HA; and third, a scalable fermentation process, where HA can be produced at the maximum volumetric productivity (VP), was designed. A comparative economic analysis against other methods indicates that the new process may increase the operating profit of a manufacturing plant by more than 100%. The host, the culture medium, and the rationale employed to develop the fermentation process described here, introduce an IP-free platform that could be adaptable for production of other biomolecules. KEY POINTS: • A biomolecule production platform based on B. subtilis 3NA strain and a synthetic medium was tested for hyaluronic acid biosynthesis • A fermentation process with the maximum volumetric productivity was designed • A techno-economic analysis forecasts a significant reduction in the manufacturing cost compared to the current methods.
Collapse
|
8
|
Borčinová M, Raschmanová H, Zamora I, Looser V, Marešová H, Hirsch S, Kyslík P, Kovar K. Production and secretion dynamics of prokaryotic Penicillin G acylase in Pichia pastoris. Appl Microbiol Biotechnol 2020; 104:5787-5800. [PMID: 32424437 PMCID: PMC7306039 DOI: 10.1007/s00253-020-10669-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
To take full advantage of recombinant Pichia pastoris (Komagataella phaffii) as a production system for heterologous proteins, the complex protein secretory process should be understood and optimised by circumventing bottlenecks. Typically, little or no attention has been paid to the fate of newly synthesised protein inside the cell, or its passage through the secretory pathway, and only the secreted product is measured. However, the system’s productivity (i.e. specific production rate qp), includes productivity of secreted (qp,extra) plus intracellularly accumulated (qp,intra) protein. In bioreactor cultivations with P. pastoris producing penicillin G acylase, we studied the dynamics of product formation, i.e. both the specific product secretion (qp,extra) and product retention (qp,intra) as functions of time, as well as the kinetics, i.e. productivity in relation to specific growth rate (μ). Within the time course, we distinguished (I) an initial phase with constant productivities, where the majority of product accumulated inside the cells, and qp,extra, which depended on μ in a bell-shaped manner; (II) a transition phase, in which intracellular product accumulation reached a maximum and productivities (intracellular, extracellular, overall) were changing; (III) a new phase with constant productivities, where secretion prevailed over intracellular accumulation, qp,extra was linearly related to μ and was up to three times higher than in initial phase (I), while qp,intra decreased 4–6-fold. We show that stress caused by heterologous protein production induces cellular imbalance leading to a secretory bottleneck that ultimately reaches equilibrium. This understanding may help to develop cultivation strategies for improving protein secretion from P. pastoris.Key Points • A novel concept for industrial bioprocess development. • A Relationship between biomass growth and product formation in P. pastoris. • A Three (3) phases of protein production/secretion controlled by the AOX1-promoter. • A Proof of concept in production of industrially relevant penicillin G acylase. |
Collapse
Affiliation(s)
- Martina Borčinová
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland. .,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 12840, Prague, Czech Republic.
| | - Hana Raschmanová
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland.,Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague, Czech Republic
| | - Iwo Zamora
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland.,Infors AG, Rittergasse 27, CH-4103, Bottmingen, Switzerland
| | - Verena Looser
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland.,Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague, Czech Republic
| | - Helena Marešová
- Institute of Microbiology, Czech Academy of Sciences, Videňská 1083, 14220, Prague, Czech Republic
| | - Sven Hirsch
- Institute of Applied Simulation, Zurich University of Applied Sciences, Schloss 1, CH-8820, Wädenswil, Switzerland
| | - Pavel Kyslík
- Institute of Microbiology, Czech Academy of Sciences, Videňská 1083, 14220, Prague, Czech Republic
| | - Karin Kovar
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland.,Daspool, Gerberacherweg 24, CH-8820, Wädenswil, Switzerland
| |
Collapse
|
9
|
García-Ortega X, Cámara E, Ferrer P, Albiol J, Montesinos-Seguí JL, Valero F. Rational development of bioprocess engineering strategies for recombinant protein production in Pichia pastoris (Komagataella phaffii) using the methanol-free GAP promoter. Where do we stand? N Biotechnol 2019; 53:24-34. [DOI: 10.1016/j.nbt.2019.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 12/25/2022]
|
10
|
Park YK, Vandermies M, Soudier P, Telek S, Thomas S, Nicaud JM, Fickers P. Efficient expression vectors and host strain for the production of recombinant proteins by Yarrowia lipolytica in process conditions. Microb Cell Fact 2019; 18:167. [PMID: 31601223 PMCID: PMC6785901 DOI: 10.1186/s12934-019-1218-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/25/2019] [Indexed: 11/10/2022] Open
Abstract
Background The oleaginous yeast Yarrowia lipolytica is increasingly used as an alternative cell factory for the production of recombinant proteins. Recently, regulated promoters from genes EYK1 and EYD1, encoding an erythrulose kinase and an erythritol dehydrogenase, respectively, have been identified and characterized in this yeast. Hybrid promoters up-regulated by polyols such as erythritol and erythrulose have been developed based on tandem copies of upstream activating sequences from EYK1 (UAS1EYK1) and XPR2 (encoding extracellular protease, UAS1XPR2) promoters. Results The strength of native (pEYD1) and engineered promoters (pEYK1-3AB and pHU8EYK) was compared using the extracellular lipase CalB from Candida antarctica as a model protein and a novel dedicated host strain. This latter is engineered in polyol metabolism and allows targeted chromosomal integration. In process conditions, engineered promoters pEYK1-3AB and pHU8EYK yielded 2.8 and 2.5-fold higher protein productivity, respectively, as compared to the reference pTEF promoter. We also demonstrated the possibility of multicopy integration in the newly developed host strain. In batch bioreactor, the CalB multi-copy strain RIY406 led to a 1.6 fold increased lipase productivity (45,125 U mL−1) within 24 h as compared to the mono-copy strain. Conclusions The expression system described herein appears promising for recombinant extracellular protein production in Y. lipolytica.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Marie Vandermies
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Paul Soudier
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Samuel Telek
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Stéphane Thomas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France. .,Micalis Institute, UMR1319, Team BIMLip: Integrative Metabolism of Microbial Lipids, INRA-AgroParisTech, Domaine de Vilvert, 78352, Jouy-en-Josas, France.
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| |
Collapse
|
11
|
de Macedo Robert J, Garcia-Ortega X, Montesinos-Seguí JL, Guimaraes Freire DM, Valero F. Continuous operation, a realistic alternative to fed-batch fermentation for the production of recombinant lipase B from Candida antarctica under the constitutive promoter PGK in Pichia pastoris. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Tavasoli T, Arjmand S, Ranaei Siadat SO, Shojaosadati SA, Sahebghadam Lotfi A. A robust feeding control strategy adjusted and optimized by a neural network for enhancing of alpha 1-antitrypsin production in Pichia pastoris. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Increase of Candida antarctica lipase B production under PGK promoter in Pichia pastoris: effect of multicopies. Braz J Microbiol 2019; 50:405-413. [PMID: 30827000 DOI: 10.1007/s42770-019-00056-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022] Open
Abstract
The effect of gene dosage on the production of Candida antarctica lipase B (CalB) in the methylotrophic yeast Komagataella phaffii, at high densities in a simple medium containing crude glycerin as the sole carbon source, is described. The use of crude glycerin, the main by-product of biodiesel production from vegetable oils, will reduce the production cost of the bioprocess. Two K. phaffii strains were constructed with one or three copies of LipB, an optimized version of the gene encoding CalB under the control of the constitutive PPGK1 promoter. These two constructs were tested and compared on batches using minimal-salts medium with crude glycerin. The strain with three copies achieved a higher enzyme yield (48,760 U/L, 2.3-fold higher than the one-copy strain), with 42 g/L biomass, with no effects on growth.
Collapse
|
14
|
Bando-Campos G, Juárez-López D, Román-González SA, Castillo-Rodal AI, Olvera C, López-Vidal Y, Arreguín-Espinosa R, Espitia C, Trujillo-Roldán MA, Valdez-Cruz NA. Recombinant O-mannosylated protein production (PstS-1) from Mycobacterium tuberculosis in Pichia pastoris (Komagataella phaffii) as a tool to study tuberculosis infection. Microb Cell Fact 2019; 18:11. [PMID: 30660186 PMCID: PMC6339365 DOI: 10.1186/s12934-019-1059-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Background Pichia pastoris (syn. Komagataella phaffii) is one of the most highly utilized eukaryotic expression systems for the production of heterologous glycoproteins, being able to perform both N- and O-mannosylation. In this study, we present the expression in P. pastoris of an O-mannosylated recombinant version of the 38 kDa glycolipoprotein PstS-1 from Mycobacterium tuberculosis (Mtb), that is similar in primary structure to the native secreted protein. Results The recombinant PstS-1 (rPstS-1) was produced without the native lipidation signal. Glycoprotein expression was under the control of the methanol-inducible promoter pAOX1, with secretion being directed by the α-mating factor secretion signal. Production of rPstS-1 was carried out in baffled shake flasks (BSFs) and controlled bioreactors. A production up to ~ 46 mg/L of the recombinant protein was achieved in both the BSFs and the bioreactors. The recombinant protein was recovered from the supernatant and purified in three steps, achieving a preparation with 98% electrophoretic purity. The primary and secondary structures of the recombinant protein were characterized, as well as its O-mannosylation pattern. Furthermore, a cross-reactivity analysis using serum antibodies from patients with active tuberculosis demonstrated recognition of the recombinant glycoprotein, indirectly indicating the similarity between the recombinant PstS-1 and the native protein from Mtb. Conclusions rPstS-1 (98.9% sequence identity, O-mannosylated, and without tags) was produced and secreted by P. pastoris, demonstrating that this yeast is a useful cell factory that could also be used to produce other glycosylated Mtb antigens. The rPstS-1 could be used as a tool for studying the role of this molecule during Mtb infection, and to develop and improve vaccines or kits based on the recombinant protein for serodiagnosis. Electronic supplementary material The online version of this article (10.1186/s12934-019-1059-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giroshi Bando-Campos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Daniel Juárez-López
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Sergio A Román-González
- Unidad de Proteómica, Instituto Nacional de Medicina Genómica (INMEGEN), Periférico Sur 4809, Col. Arenal Tepepan, Tlalpan, C.P. 14610, Ciudad de México, Mexico
| | - Antonia I Castillo-Rodal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Clarita Olvera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM, Av. Universidad 2001 Chamilpa, Cuernavaca, Morelos, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Apdo, Postal 70250, C.P. 04510, México City, Mexico
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico.
| |
Collapse
|
15
|
Liu WC, Inwood S, Gong T, Sharma A, Yu LY, Zhu P. Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production. Crit Rev Biotechnol 2019; 39:258-271. [DOI: 10.1080/07388551.2018.1554620] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wan-Cang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Biotechnology, Beijing, P. R. China
| | - Sarah Inwood
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ashish Sharma
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
| | - Li-Yan Yu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Biotechnology, Beijing, P. R. China
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
16
|
Valero F. Recent Advances in Pichia pastoris as Host for Heterologous Expression System for Lipases: A Review. Methods Mol Biol 2018; 1835:205-216. [PMID: 30109654 DOI: 10.1007/978-1-4939-8672-9_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The production of heterologous lipases is one of the most promising strategies to increase the productivity of the bioprocesses and to reduce costs, with the final objective that more industrial lipase applications could be implemented.In this chapter, an overview of the new success in synthetic biology, with traditional molecular genetic techniques and bioprocess engineering in the last 5 years in the cell factory Pichia pastoris, the most promising host system for heterologous lipase production, is presented.The goals get on heterologous Candida antarctica, Rhizopus oryzae, and Candida rugosa lipases, three of the most common lipases used in biocatalysis, are showed. Finally, new cell factories producing heterologous lipases are presented.
Collapse
Affiliation(s)
- Francisco Valero
- Departament d'Enginyeria Química, Biològica i Ambiental. EE, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
17
|
Theron CW, Berrios J, Delvigne F, Fickers P. Integrating metabolic modeling and population heterogeneity analysis into optimizing recombinant protein production by Komagataella (Pichia) pastoris. Appl Microbiol Biotechnol 2017; 102:63-80. [PMID: 29138907 DOI: 10.1007/s00253-017-8612-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022]
Abstract
The methylotrophic yeast Komagataella (Pichia) pastoris has become one of the most utilized cell factories for the production of recombinant proteins over the last three decades. This success story is linked to its specific physiological traits, i.e., the ability to grow at high cell density in inexpensive culture medium and to secrete proteins at high yield. Exploiting methanol metabolism is at the core of most P. pastoris-based processes but comes with its own challenges. Co-feeding cultures with glycerol/sorbitol and methanol is a promising approach, which can benefit from improved understanding and prediction of metabolic response. The development of profitable processes relies on the construction and selection of efficient producing strains from less efficient ones but also depends on the ability to master the bioreactor process itself. More specifically, how a bioreactor processes could be monitored and controlled to obtain high yield of production. In this review, new perspectives are detailed regarding a multi-faceted approach to recombinant protein production processes by P. pastoris; including gaining improved understanding of the metabolic pathways involved, accounting for variations in transcriptional and translational efficiency at the single cell level and efficient monitoring and control of methanol levels at the bioreactor level.
Collapse
Affiliation(s)
- Chrispian W Theron
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux AgroBio Tech, Avenue de la Faculté, 2B, B-5030, Gembloux, Belgium
| | - Julio Berrios
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
| | - Frank Delvigne
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux AgroBio Tech, Avenue de la Faculté, 2B, B-5030, Gembloux, Belgium
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux AgroBio Tech, Avenue de la Faculté, 2B, B-5030, Gembloux, Belgium.
| |
Collapse
|
18
|
Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K. Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv 2017; 35:681-710. [DOI: 10.1016/j.biotechadv.2017.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
|
19
|
Zahrl RJ, Peña DA, Mattanovich D, Gasser B. Systems biotechnology for protein production in Pichia pastoris. FEMS Yeast Res 2017; 17:4093073. [DOI: 10.1093/femsyr/fox068] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022] Open
|