1
|
Xue B, Li YY, Zheng BFC, Zhang C, Hadiatullah H, Dai WT, Wang YJ, Fan ZC. Expression and Characterization of Recombinant Triple Laterosporulin in Chlamydomonas reinhardtii. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10523-4. [PMID: 40131641 DOI: 10.1007/s12602-025-10523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Antimicrobial peptides with broad-spectrum antibacterial properties have emerged as promising candidates for combating bacterial infections. Laterosporulin (LS), a class II bacteriocin initially isolated from Brevibacillus sp. strain GI-9, has demonstrated broad-spectrum antibacterial activity and notable biochemical characteristics. However, the limited expression levels of LS in Brevibacillus sp. GI-9 restrict its potential for large-scale production and therapeutic and food preservation applications. In this study, a triple peptide comprising three tandem repeats of LS (3 × LS), tagged with C-terminal hemagglutinin (HA) and 6 × His, was successfully expressed heterologously in Chlamydomonas reinhardtii. The purified 3 × LS-HA-6 × His effectively inhibited the growth of both Gram-positive and Gram-negative bacteria. Additionally, 3 × LS-HA-6 × His demonstrated stable antibacterial activity over a wide range of temperatures and pH values and showed significant resistance to multiple proteolytic enzymes. Furthermore, 3 × LS-HA-6 × His disrupted bacterial cell membrane integrity while exhibiting nonhemolytic activity toward rabbit erythrocytes and noncytotoxicity toward HEK293T cells. These findings underscore the potential of C. reinhardtii as a promising host for the production of bioactive and biosafe LS, providing valuable insights for the development of alternative antimicrobial strategies.
Collapse
Affiliation(s)
- Bin Xue
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
- Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Deqing, 313200, Zhejiang, China
| | - Yang-Yang Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Bei-Feng-Chu Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Chan Zhang
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hadiatullah Hadiatullah
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wen-Ting Dai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
- Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Deqing, 313200, Zhejiang, China
| | - Ya-Jun Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
- Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Deqing, 313200, Zhejiang, China
| | - Zhen-Chuan Fan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
2
|
Bolaños-Martínez OC, Malla A, Rosales-Mendoza S, Vimolmangkang S. Harnessing the advances of genetic engineering in microalgae for the production of cannabinoids. Crit Rev Biotechnol 2023; 43:823-834. [PMID: 35762029 DOI: 10.1080/07388551.2022.2071672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/24/2022] [Accepted: 04/16/2022] [Indexed: 11/03/2022]
Abstract
Cannabis is widely recognized as a medicinal plant owing to bioactive cannabinoids. However, it is still considered a narcotic plant, making it hard to be accessed. Since the biosynthetic pathway of cannabinoids is disclosed, biotechnological methods can be employed to produce cannabinoids in heterologous systems. This would pave the way toward biosynthesizing any cannabinoid compound of interest, especially minor substances that are less produced by a plant but have a high medicinal value. In this context, microalgae have attracted increasing scientific interest given their unique potential for biopharmaceutical production. In the present review, the current knowledge on cannabinoid production in different hosts is summarized and the biotechnological potential of microalgae as an emerging platform for synthetic production is put in perspective. A critical survey of genetic requirements and various transformation approaches are also discussed.
Collapse
Affiliation(s)
- Omayra C Bolaños-Martínez
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Ashwini Malla
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Niemeyer J, Fischer L, Aylward FO, Schroda M. Analysis of Viral Promoters for Transgene Expression and of the Effect of 5'-UTRs on Alternative Translational Start Sites in Chlamydomonas. Genes (Basel) 2023; 14:genes14040948. [PMID: 37107706 PMCID: PMC10138193 DOI: 10.3390/genes14040948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Microalgae biotechnology has the potential to produce high quality bioproducts in a sustainable manner. Here, Chlamydomonas reinhardtii has shown great potential as a host for biotechnological exploitation. However, low expression of nuclear transgenes is still a problem and needs to be optimized. In many model organisms, viral promoters are used to drive transgene expression at high levels. However, no viruses are known to infect Chlamydomonas, and known viral promoters are not functional. Recently, two different lineages of giant viruses were identified in the genomes of Chlamydomonas reinhardtii field isolates. In this work, we tested six potentially strong promoters from these viral genomes for their ability to drive transgene expression in Chlamydomonas. We used ble, NanoLUC, and mCherry as reporter genes, and three native benchmark promoters as controls. None of the viral promoters drove expression of any reporter gene beyond background. During our study, we found that mCherry variants are produced by alternative in-frame translational start sites in Chlamydomonas. We show that this problem can be overcome by mutating the responsible methionine codons to codons for leucine and by using the 5'-UTR of βTUB2 instead of the 5'-UTRs of PSAD or RBCS2. Apparently, the βTUB2 5'-UTR promotes the use of the first start codon. This could be mediated by the formation of a stem-loop between sequences of the βTUB2 5'-UTR and sequences downstream of the first AUG in the mCherry reporter, potentially increasing the dwell time of the scanning 40S subunit on the first AUG and thus decreasing the probability of leaky scanning.
Collapse
Affiliation(s)
- Justus Niemeyer
- Molecular Biotechnology & Systems Biology, RPTU Kaiserslautern-Landau, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Laura Fischer
- Molecular Biotechnology & Systems Biology, RPTU Kaiserslautern-Landau, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | | | - Michael Schroda
- Molecular Biotechnology & Systems Biology, RPTU Kaiserslautern-Landau, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| |
Collapse
|
4
|
Jeong BR, Jang J, Jin E. Genome engineering via gene editing technologies in microalgae. BIORESOURCE TECHNOLOGY 2023; 373:128701. [PMID: 36746216 DOI: 10.1016/j.biortech.2023.128701] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
CRISPR-Cas has revolutionized genetic modification with its comparative simplicity and accuracy, and it can be used even at the genomic level. Microalgae are excellent feedstocks for biofuels and nutraceuticals because they contain high levels of fatty acids, carotenoids, and other metabolites; however, genome engineering for microalgae is not yet as developed as for other model organisms. Microalgal engineering at the genetic and metabolic levels is relatively well established, and a few genomic resources are available. Their genomic information was used for a "safe harbor" site for stable transgene expression in microalgae. This review proposes further genome engineering schemes including the construction of sgRNA libraries, pan-genomic and epigenomic resources, and mini-genomes, which can together be developed into synthetic biology for carbon-based engineering in microalgae. Acetyl-CoA is at the center of carbon metabolic pathways and is further reviewed for the production of molecules including terpenoids in microalgae.
Collapse
Affiliation(s)
- Byeong-Ryool Jeong
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Junhwan Jang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
5
|
Liu YX, Zhang RK, Fan ZC. RABL4/IFT27 in a nucleotide-independent manner promotes phospholipase D ciliary retrieval via facilitating BBSome reassembly at the ciliary tip. J Cell Physiol 2023; 238:549-565. [PMID: 36852649 DOI: 10.1002/jcp.30945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 03/01/2023]
Abstract
Certain ciliary transmembrane and membrane-associated signaling proteins export from cilia as intraflagellar transport (IFT) cargoes in a BBSome-dependent manner. Upon reaching the ciliary tip via anterograde IFT, the BBSome disassembles before being reassembled to form an intact entity for cargo phospholipase D (PLD) coupling. During this BBSome remodeling process, Chlamydomonas Rab-like 4 GTPase IFT27, by binding its partner IFT25 to form the heterodimeric IFT25/27, is indispensable for BBSome reassembly. Here, we show that IFT27 binds IFT25 in an IFT27 nucleotide-independent manner. IFT25/27 and the IFT subcomplexes IFT-A and -B are irrelevant for maintaining the stability of one another. GTP-loading onto IFT27 enhances the IFT25/27 affinity for binding to the IFT-B subcomplex core IFT-B1 entity in cytoplasm, while GDP-bound IFT27 does not prevent IFT25/27 from entering and cycling through cilia by integrating into IFT-B1. Upon at the ciliary tip, IFT25/27 cycles on and off IFT-B1 and this process is irrelevant with the nucleotide state of IFT27. During BBSome remodeling at the ciliary tip, IFT25/27 promotes BBSome reassembly independent of IFT27 nucleotide state, making postremodeled BBSomes available for PLD to interact with. Thus, IFT25/27 facilitates BBSome-dependent PLD export from cilia via controlling availability of intact BBSomes at the ciliary tip, while IFT27 nucleotide state does not participate in this regulatory event.
Collapse
Affiliation(s)
- Yan-Xia Liu
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Rui-Kai Zhang
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
6
|
Liu YX, Sun WY, Xue B, Zhang RK, Li WJ, Xie X, Fan ZC. ARL3 mediates BBSome ciliary turnover by promoting its outward movement across the transition zone. J Cell Biol 2022; 221:213491. [PMID: 36129685 PMCID: PMC9499826 DOI: 10.1083/jcb.202111076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/13/2022] [Accepted: 07/11/2022] [Indexed: 01/16/2023] Open
Abstract
Ciliary receptors and their certain downstream signaling components undergo intraflagellar transport (IFT) as BBSome cargoes to maintain their ciliary dynamics for sensing and transducing extracellular stimuli inside the cell. Cargo-laden BBSomes pass the transition zone (TZ) for ciliary retrieval, but how this passage is controlled remains elusive. Here, we show that phospholipase D (PLD)-laden BBSomes shed from retrograde IFT trains at the proximal ciliary region right above the TZ to act as Arf-like 3 (ARL3) GTPase-specific effectors in Chlamydomonas cilia. Under physiological condition, ARL3GDP binds to the membrane for diffusing into cilia. Following nucleotide exchange, ARL3GTP detaches from the ciliary membrane, binds to retrograde IFT train-shed and PLD-laden BBSomes at the proximal ciliary region right above the TZ, and recruits them to pass the TZ for ciliary retrieval likely via diffusion. ARL3 mediates the ciliary dynamics of certain signaling molecules through facilitating BBSome ciliary retrieval, providing a mechanistic understanding behind why ARL3-related Joubert syndrome shares overlapping phenotypes with Bardet-Biedl syndrome.
Collapse
Affiliation(s)
- Yan-Xia Liu
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Wei-Yue Sun
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Bin Xue
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Rui-Kai Zhang
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Wen-Juan Li
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xixian Xie
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Correspondence to Zhen-Chuan Fan:
| |
Collapse
|
7
|
Liang W, Qiu J, Zhang M, Wang C. Heterologous expression of human C-reactive protein in the green alga Chlamydomonas reinhardtii. J Food Biochem 2022; 46:e14067. [PMID: 34981544 DOI: 10.1111/jfbc.14067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/04/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
C-reactive protein (CRP) participates in human inflammatory responses and is an important indicator in clinical diagnoses. At present, the use of monoclonal antibodies to detect CRP in the human body is high, but they are unstable and expensive. Understanding the CRP expression pathway is of great significance for developing CRP tests and reagents. Chlamydomonas reinhardtii is a model organism that has great potential as a foreign protein expression system. This study is the first attempt to express human CRP in C. reinhardtii. We selected the endogenous constitutive Rbcs2 promoter and terminator and used ble as a selective gene to construct a C. reinhardtii nuclear expression vector containing CRP. After transformation using the glass bead method, six positive transformants were obtained. At the molecular level, full-length CRP was transformed into the genome of C. reinhardtii CC400 cells, and human CRP was expressed. This study provides new insights into obtaining active CRP. PRACTICAL APPLICATIONS: Based on the nuclear transformation system of C. reinhardtii, it can construct an exogenous protein expression system that produces a variety of high value-added products and can be used to produce a variety of high value-added proteins, functional drugs, and industrial raw materials. It has broad market prospects and huge application prospects.
Collapse
Affiliation(s)
- Wei Liang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, China
| | - Junjie Qiu
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, China
| | - Mengping Zhang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, China
| | - Chuan Wang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, China
| |
Collapse
|
8
|
Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021; 58:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Microalgae are a diverse group of photosynthetic organisms that can be exploited for the production of different compounds, ranging from crude biomass and biofuels to high value-added biochemicals and synthetic proteins. Traditionally, algal biotechnology relies on bioprospecting to identify new highly productive strains and more recently, on forward genetics to further enhance productivity. However, it has become clear that further improvements in algal productivity for biotechnology is impossible without combining traditional tools with the arising molecular genetics toolkit. We review recent advantages in developing high throughput screening methods, preparing genome-wide mutant libraries, and establishing genome editing techniques. We discuss how algae can be improved in terms of photosynthetic efficiency, biofuel and high value-added compound production. Finally, we critically evaluate developments over recent years and explore future potential in the field.
Collapse
Affiliation(s)
- Veronika Kselíková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Anjali Singh
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Vitali Bialevich
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Kateřina Bišová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
9
|
Ryu AJ, Jeong BR, Kang NK, Jeon S, Sohn MG, Yun HJ, Lim JM, Jeong SW, Park YI, Jeong WJ, Park S, Chang YK, Jeong KJ. Safe-Harboring based novel genetic toolkit for Nannochloropsis salina CCMP1776: Efficient overexpression of transgene via CRISPR/Cas9-Mediated Knock-in at the transcriptional hotspot. BIORESOURCE TECHNOLOGY 2021; 340:125676. [PMID: 34365302 DOI: 10.1016/j.biortech.2021.125676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Transgene expression in microalgae can be hampered by transgene silencing and unstable expression due to position effects. To overcome this, "safe harboring" transgene expression system was established for Nannochloropsis. Initially, transformants were obtained expressing a sfGFP reporter, followed by screening for high expression of sfGFP with fluorescence-activated cell sorter (FACS). 'T1' transcriptional hotspot was identified from a mutant showing best expression of sfGFP, but did not affect growth or lipid contents. By using a Cas9 editor strain, FAD12 gene, encoding Δ12-fatty acid desaturase (FAD12), was successfully knocked-in at the T1 locus, resulting in significantly higher expression of FAD12 than those of random integration. Importantly, the "safe harbored" FAD12 transformants showed four-fold higher production of linoleic acid (LA), the product of FAD12, leading to 1.5-fold increase in eicosapentaenoic acid (EPA). This safe harboring principle provide excellent proof of the concept for successful genetic/metabolic engineering of microalgae and other organisms.
Collapse
Affiliation(s)
- Ae Jin Ryu
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Advanced Biomass R&D Center (ABC), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Byeong-Ryool Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Single-Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Qingdao, Shandong 266101, China
| | - Nam Kyu Kang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Advanced Biomass R&D Center (ABC), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Carl. R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Seungjib Jeon
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Advanced Biomass R&D Center (ABC), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Min Gi Sohn
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyo Jin Yun
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong Min Lim
- Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seok Won Jeong
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Won Joong Jeong
- Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Advanced Biomass R&D Center (ABC), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
10
|
Chlamydomonas LZTFL1 mediates phototaxis via controlling BBSome recruitment to the basal body and its reassembly at the ciliary tip. Proc Natl Acad Sci U S A 2021; 118:2101590118. [PMID: 34446551 DOI: 10.1073/pnas.2101590118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Many G protein-coupled receptors and other signaling proteins localize to the ciliary membrane for regulating diverse cellular processes. The BBSome composed of multiple Bardet-Biedl syndrome (BBS) proteins is an intraflagellar transport (IFT) cargo adaptor essential for sorting signaling proteins in and/or out of cilia via IFT. Leucine zipper transcription factor-like 1 (LZTFL1) protein mediates ciliary signaling by controlling BBSome ciliary content, reflecting how LZTFL1 mutations could cause BBS. However, the mechanistic mechanism underlying this process remains elusive thus far. Here, we show that LZTFL1 maintains BBSome ciliary dynamics by finely controlling BBSome recruitment to the basal body and its reassembly at the ciliary tip simultaneously in Chlamydomonas reinhardtii LZTFL1 directs BBSome recruitment to the basal body via promoting basal body targeting of Arf-like 6 GTPase BBS3, thus deciding the BBSome amount available for loading onto anterograde IFT trains for entering cilia. Meanwhile, LZTFL1 stabilizes the IFT25/27 component of the IFT-B1 subcomplex in the cell body so as to control its presence and amount at the basal body for entering cilia. Since IFT25/27 promotes BBSome reassembly at the ciliary tip for loading onto retrograde IFT trains, LZTFL1 thus also directs BBSome removal out of cilia. Therefore, LZTFL1 dysfunction deprives the BBSome of ciliary presence and generates Chlamydomonas cells defective in phototaxis. In summary, our data propose that LZTFL1 maintains BBSome dynamics in cilia by such a dual-mode system, providing insights into how LZTFL1 mediates ciliary signaling through maintaining BBSome ciliary dynamics and the pathogenetic mechanism of the BBS disorder as well.
Collapse
|
11
|
Expression of Anti-Lipopolysaccharide Factor Isoform 3 in Chlamydomonas reinhardtii Showing High Antimicrobial Activity. Mar Drugs 2021; 19:md19050239. [PMID: 33922554 PMCID: PMC8146899 DOI: 10.3390/md19050239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial peptides are a class of proteins with antibacterial functions. In this study, the anti-lipopolysaccharide factor isoform 3 gene (ALFPm3), encoding an antimicrobial peptide from Penaeus monodon with a super activity was expressed in Chlamydomonas reinhardtii, which would develop a microalga strain that can be used for the antimicrobial peptide production. To construct the expression cluster, namely pH2A-Pm3, the codon optimized ALFPm3 gene was fused with the ble reporter by 2A peptide and inserted into pH124 vector. The glass-bead method was performed to transform pH2A-Pm3 into C. reinhardtii CC-849. In addition to 8 μg/mL zeocin resistance selection, the C. reinhardtii transformants were further confirmed by genomic PCR and RT-PCR. Western blot analysis showed that the C. reinhardtii-derived ALFPm3 (cALFPm3) was successfully expressed in C. reinhardtii transformants and accounted for 0.35% of the total soluble protein (TSP). Furthermore, the results of antibacterial assay revealed that the cALFPm3 could significantly inhibit the growth of a variety of bacteria, including both Gram-negative bacteria and Gram-positive bacteria at a concentration of 0.77 μM. Especially, the inhibition could last longer than 24 h, which performed better than ampicillin. Hence, this study successfully developed a transgenic C. reinhardtii strain, which can produce the active ALFPm3 driven from P. monodon, providing a potential strategy to use C. reinhardtii as the cell factory to produce antimicrobial peptides.
Collapse
|
12
|
Liu YX, Xue B, Sun WY, Wingfield JL, Sun J, Wu M, Lechtreck KF, Wu Z, Fan ZC. Bardet-Biedl syndrome 3 protein promotes ciliary exit of the signaling protein phospholipase D via the BBSome. eLife 2021; 10:59119. [PMID: 33587040 PMCID: PMC7963478 DOI: 10.7554/elife.59119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/13/2021] [Indexed: 12/13/2022] Open
Abstract
Certain ciliary signaling proteins couple with the BBSome, a conserved complex of Bardet–Biedl syndrome (BBS) proteins, to load onto retrograde intraflagellar transport (IFT) trains for their removal out of cilia in Chlamydomonas reinhardtii. Here, we show that loss of the Arf-like 6 (ARL6) GTPase BBS3 causes the signaling protein phospholipase D (PLD) to accumulate in cilia. Upon targeting to the basal body, BBSomes enter and cycle through cilia via IFT, while BBS3 in a GTP-bound state separates from BBSomes, associates with the membrane, and translocates from the basal body to cilia by diffusion. Upon arriving at the ciliary tip, GTP-bound BBS3 binds and recruits BBSomes to the ciliary membrane for interacting with PLD, thus making the PLD-laden BBSomes available to load onto retrograde IFT trains for ciliary exit. Therefore, BBS3 promotes PLD exit from cilia via the BBSome, providing a regulatory mechanism for ciliary signaling protein removal out of cilia.
Collapse
Affiliation(s)
- Yan-Xia Liu
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Bin Xue
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Wei-Yue Sun
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jenna L Wingfield
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Jun Sun
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Mingfu Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, United States
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
13
|
Zhang MP, Wang M, Wang C. Nuclear transformation of Chlamydomonas reinhardtii: A review. Biochimie 2020; 181:1-11. [PMID: 33227342 DOI: 10.1016/j.biochi.2020.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/14/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Chlamydomonas reinhardtii is a model organism with three sequenced genomes capable of genetic transformation. C. reinhardtii has the advantages of being low cost, non-toxic, and having a post-translational modification system that ensures the recombinant proteins have the same activity as natural proteins, thus making it a great platform for application in molecular biology and other fields. In this review, we summarize the existing methods for nuclear transformation of C. reinhardtii, genes for selection, examples of foreign protein expression, and factors affecting transformation efficiency, to provide insights into effective strategies for the nuclear transformation of C. reinhardtii.
Collapse
Affiliation(s)
- Meng-Ping Zhang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan province, China
| | - Mou Wang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan province, China
| | - Chuan Wang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan province, China.
| |
Collapse
|
14
|
Efimova VS, Isaeva LV, Orekhov PS, Bozdaganyan ME, Rubtsov MA, Novikova LA. Using a viral 2A peptide-based strategy to reconstruct the bovine P450scc steroidogenic system in S. cerevisiae: Bovine P450scc system expression using 2A peptides. J Biotechnol 2020; 325:186-195. [PMID: 33157198 DOI: 10.1016/j.jbiotec.2020.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Abstract
Cytochrome P450scc system performs the first rate-limiting stage of steroidogenesis in mammals. The bovine P450scc system was reconstructed in Saccharomyces cerevisiae, using a foot-and-mouth disease virus 2A peptide (F2A)-based construct, to co-express cytochrome P450scc, adrenodoxin (Adx), and adrenodoxin reductase (AdR). During the translation of the self-processing fusion protein P450scc-F2A-Adx-F2A-AdR, the first and the second linkers are cleaved with different efficiencies (96 % and 11 %, respectively), resulting in the unbalanced expression of individual proteins. The low cleavage efficiency and the relative Adx and AdR protein levels were increased through replacing the second F2A peptide with different sequences and changing the order of Adx and AdR. The P450scc, AdR, and Adx sequences located upstream of the F2A affected F2A processing, to various degrees. Moreover, using molecular dynamics (MD) simulations, we showed that the 2A peptide fused to the C-terminus of Adx formed the steric hindrance during enzymatic complex formation, resulting in the reduction of catalytic activity. Thus, the functional activity of the reconstructed P450scc system was determined not only by the efficiency of 2A peptides but also by the overall sequence of the expressed 2A-polyprotein. Our results can be applied to the development of 2A-based co-translation strategies, to produce other multicomponent protein systems.
Collapse
Affiliation(s)
- Vera S Efimova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119991, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia
| | - Ludmila V Isaeva
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119991, Russia
| | - Philipp S Orekhov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia; Department of Biochemistry, Institute for Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya st. 2, Moscow, 119991 Russia; Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow, 141701, Russia
| | - Marine E Bozdaganyan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia; Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow, 141701, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow, 119991, Russia
| | - Mikhail A Rubtsov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia; Department of Biochemistry, Institute for Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya st. 2, Moscow, 119991 Russia
| | - Ludmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119991, Russia.
| |
Collapse
|
15
|
Hadiatullah H, Wang H, Liu YX, Fan ZC. Chlamydomonas reinhardtii-derived multimer Mytichitin-CB possesses potent antibacterial properties. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Liu YX, Li ZF, Lv YJ, Dong B, Fan ZC. Chlamydomonas reinhardtii-expressed multimer of Bacteriocin LS2 potently inhibits the growth of bacteria. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Baier T, Jacobebbinghaus N, Einhaus A, Lauersen KJ, Kruse O. Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii. PLoS Genet 2020; 16:e1008944. [PMID: 32730252 PMCID: PMC7419008 DOI: 10.1371/journal.pgen.1008944] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/11/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Efficient nuclear transgene expression in the green microalga Chlamydomonas reinhardtii is generally hindered by low transcription rates. Introns can increase transcript abundance by a process called Intron-Mediated Enhancement (IME) in this alga and has been broadly observed in other eukaryotes. However, the mechanisms of IME in microalgae are poorly understood. Here, we identified 33 native introns from highly expressed genes in C. reinhardtii selected from transcriptome studies as well as 13 non-native introns. We investigated their IME capacities and probed the mechanism of action by modification of splice sites, internal sequence motifs, and position within transgenes. Several introns were found to elicit strong IME and found to be broadly applicable in different expression constructs. We determined that IME in C. reinhardtii exclusively occurs from introns within transcribed ORFs regardless of the promoter and is not induced by traditional enhancers of transcription. Our results elucidate some mechanistic details of IME in C. reinhardtii, which are similar to those observed in higher plants yet underly distinctly different induction processes. Our findings narrow the focus of targets responsible for algal IME and provides evidence that introns are underestimated regulators of C. reinhardtii nuclear gene expression. Although many genetic tools and basic transformation strategies exist for the model microalga Chlamydomonas reinhardtii, high-level genetic engineering with this organism is hindered by its inherent recalcitrance to foreign gene expression and limited knowledge of responsible expression regulators. In this work, we characterized the dynamics of 33 endogenous and 13 non-native introns and their effect on gene expression as artificial insertions into codon optimized transgenes. We found that introns from different origins have the capacity to increase gene expression rates. Intron-mediated enhancement was observed exclusively when these elements were placed in transcripts but not outside of transcribed mRNA regions. Insertion of different endogenous introns into coding sequences was found to positively affect expression rates through a synergy of additive transcription enhancement and exon length reduction, similar to those natively found in the C. reinhardtii genome. Our results indicate that intensive mRNA processing plays an underestimated role in the regulation of native gene expression in C. reinhardtii. In addition to internal sequence motifs, the location of artificially introduced introns greatly affected transgene expression levels. This work is highly valuable to the greater microalgal and synthetic biology research communities and contributes to broadening our understanding of eukaryotic intron-mediated enhancement.
Collapse
Affiliation(s)
- Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Nick Jacobebbinghaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Alexander Einhaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Kyle J. Lauersen
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
18
|
Chlamydomonas reinhardtii-expressed multimer of ToAMP4 inhibits the growth of bacteria of both Gram-positive and Gram-negative. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Rosales-Mendoza S, Solís-Andrade KI, Márquez-Escobar VA, González-Ortega O, Bañuelos-Hernandez B. Current advances in the algae-made biopharmaceuticals field. Expert Opin Biol Ther 2020; 20:751-766. [DOI: 10.1080/14712598.2020.1739643] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Karla I. Solís-Andrade
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Verónica A. Márquez-Escobar
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Omar González-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | |
Collapse
|
20
|
Good News for Nuclear Transgene Expression in Chlamydomonas. Cells 2019; 8:cells8121534. [PMID: 31795196 PMCID: PMC6952782 DOI: 10.3390/cells8121534] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Chlamydomonas reinhardtii is a well-established model system for basic research questions ranging from photosynthesis and organelle biogenesis, to the biology of cilia and basal bodies, to channelrhodopsins and photoreceptors. More recently, Chlamydomonas has also been recognized as a suitable host for the production of high-value chemicals and high-value recombinant proteins. However, basic and applied research have suffered from the inefficient expression of nuclear transgenes. The combined efforts of the Chlamydomonas community over the past decades have provided insights into the mechanisms underlying this phenomenon and have resulted in mutant strains defective in some silencing mechanisms. Moreover, many insights have been gained into the parameters that affect nuclear transgene expression, like promoters, introns, codon usage, or terminators. Here I critically review these insights and try to integrate them into design suggestions for the construction of nuclear transgenes that are to be expressed at high levels.
Collapse
|
21
|
Kong F, Yamaoka Y, Ohama T, Lee Y, Li-Beisson Y. Molecular Genetic Tools and Emerging Synthetic Biology Strategies to Increase Cellular Oil Content in Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2019; 60:1184-1196. [PMID: 30715500 DOI: 10.1093/pcp/pcz022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/18/2019] [Indexed: 05/26/2023]
Abstract
Microalgae constitute a highly diverse group of eukaryotic and photosynthetic microorganisms that have developed extremely efficient systems for harvesting and transforming solar energy into energy-rich molecules such as lipids. Although microalgae are considered to be one of the most promising platforms for the sustainable production of liquid oil, the oil content of these organisms is naturally low, and algal oil production is currently not economically viable. Chlamydomonas reinhardtii (Chlamydomonas) is an established algal model due to its fast growth, high transformation efficiency, and well-understood physiology and to the availability of detailed genome information and versatile molecular tools for this organism. In this review, we summarize recent advances in the development of genetic manipulation tools for Chlamydomonas, from gene delivery methods to state-of-the-art genome-editing technologies and fluorescent dye-based high-throughput mutant screening approaches. Furthermore, we discuss practical strategies and toolkits that enhance transgene expression, such as choice of expression vector and background strain. We then provide examples of how advanced genetic tools have been used to increase oil content in Chlamydomonas. Collectively, the current literature indicates that microalgal oil content can be increased by overexpressing key enzymes that catalyze lipid biosynthesis, blocking lipid degradation, silencing metabolic pathways that compete with lipid biosynthesis and modulating redox state. The tools and knowledge generated through metabolic engineering studies should pave the way for developing a synthetic biological approach to enhance lipid productivity in microalgae.
Collapse
Affiliation(s)
- Fantao Kong
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, Korea
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yasuyo Yamaoka
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Takeshi Ohama
- School of Environmental Science and Engineering, Kochi University of Technology (KUT), Tosayamada, Kochi, Japan
| | - Youngsook Lee
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, Korea
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Yonghua Li-Beisson
- Aix-Marseille Univ., CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance F, France
| |
Collapse
|
22
|
Lauersen KJ. Eukaryotic microalgae as hosts for light-driven heterologous isoprenoid production. PLANTA 2019; 249:155-180. [PMID: 30467629 DOI: 10.1007/s00425-018-3048-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/14/2018] [Indexed: 05/21/2023]
Abstract
Eukaryotic microalgae hold incredible metabolic potential for the sustainable production of heterologous isoprenoid products. Recent advances in algal engineering have enabled the demonstration of prominent examples of heterologous isoprenoid production. Isoprenoids, also known as terpenes or terpenoids, are the largest class of natural chemicals, with a vast diversity of structures and biological roles. Some have high-value in human-use applications, although may be found in their native contexts in low abundance or be difficult to extract and purify. Heterologous production of isoprenoid compounds in heterotrophic microbial hosts such as bacteria or yeasts has been an active area of research for some time and is now a mature technology. Eukaryotic microalgae represent sustainable alternatives to these hosts for biotechnological production processes as their cultivation can be driven by light and freely available CO2 as a carbon source. Their photosynthetic lifestyles require metabolic architectures structured towards the generation of associated isoprenoids (carotenoids, phytol) which participate in photon capture, energy dissipation, and electron transfer. Eukaryotic microalgae should, therefore, contain inherently high capacities for the generation of heterologous isoprenoid products. Although engineering strategies in eukaryotic microalgae have lagged behind the more genetically tractable bacteria and yeasts, recent advances in algal engineering concepts have demonstrated prominent examples of light-driven heterologous isoprenoid production from these photosynthetic hosts. This work seeks to provide practical insights into the choice of eukaryotic microalgae as biotechnological chassis. Recent reports of advances in algal engineering for heterologous isoprenoid production are highlighted as encouraging examples that promote their expanded use as sustainable green-cell factories. Current state of the art, limitations, and future challenges are also discussed.
Collapse
Affiliation(s)
- Kyle J Lauersen
- Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615, Bielefeld, Germany.
| |
Collapse
|
23
|
Ramos-Vega A, Rosales-Mendoza S, Bañuelos-Hernández B, Angulo C. Prospects on the Use of Schizochytrium sp. to Develop Oral Vaccines. Front Microbiol 2018; 9:2506. [PMID: 30410471 PMCID: PMC6209683 DOI: 10.3389/fmicb.2018.02506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Although oral subunit vaccines are highly relevant in the fight against widespread diseases, their high cost, safety and proper immunogenicity are attributes that have yet to be addressed in many cases and thus these limitations should be considered in the development of new oral vaccines. Prominent examples of new platforms proposed to address these limitations are plant cells and microalgae. Schizochytrium sp. constitutes an attractive expression host for vaccine production because of its high biosynthetic capacity, fast growth in low cost culture media, and the availability of processes for industrial scale production. In addition, whole Schizochytrium sp. cells may serve as delivery vectors; especially for oral vaccines since Schizochytrium sp. is safe for oral consumption, produces immunomodulatory compounds, and may provide bioencapsulation to the antigen, thus increasing its bioavailability. Remarkably, Schizochytrium sp. was recently used for the production of a highly immunoprotective influenza vaccine. Moreover, an efficient method for transient expression of antigens based on viral vectors and Schizochytrium sp. as host has been recently developed. In this review, the potential of Schizochytrium sp. in vaccinology is placed in perspective, with emphasis on its use as an attractive oral vaccination vehicle.
Collapse
Affiliation(s)
- Abel Ramos-Vega
- Grupo de Inmunología and Vacunología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.,Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Carlos Angulo
- Grupo de Inmunología and Vacunología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| |
Collapse
|
24
|
Esland L, Larrea-Alvarez M, Purton S. Selectable Markers and Reporter Genes for Engineering the Chloroplast of Chlamydomonas reinhardtii. BIOLOGY 2018; 7:E46. [PMID: 30309004 PMCID: PMC6315944 DOI: 10.3390/biology7040046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023]
Abstract
Chlamydomonas reinhardtii is a model alga of increasing interest as a cell factory for the production of valuable compounds, including therapeutic proteins and bioactive metabolites. Expression of foreign genes in the chloroplast is particularly advantageous as: (i) accumulation of product in this sub-cellular compartment minimises potential toxicity to the rest of the cell; (ii) genes can integrate at specific loci of the chloroplast genome (plastome) by homologous recombination; (iii) the high ploidy of the plastome and the high-level expression of chloroplast genes can be exploited to achieve levels of recombinant protein as high as 5% total cell protein; (iv) the lack of any gene silencing mechanisms in the chloroplast ensures stable expression of transgenes. However, the generation of C. reinhardtii chloroplast transformants requires efficient methods of selection, and ideally methods for subsequent marker removal. Additionally, the use of reporter genes is critical to achieving a comprehensive understanding of gene expression, thereby informing experimental design for recombinant applications. This review discusses currently available selection and reporter systems for chloroplast engineering in C. reinhardtii, as well as those used for chloroplast engineering in higher plants and other microalgae, and looks to the future in terms of possible new markers and reporters that will further advance the C. reinhardtii chloroplast as an expression platform.
Collapse
Affiliation(s)
- Lola Esland
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Marco Larrea-Alvarez
- School of Biological Sciences and Engineering, Yachay-Tech University, Hacienda San José, Urcuquí-Imbabura 100650, Ecuador.
| | - Saul Purton
- Institute of Structural & Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
25
|
Baier T, Wichmann J, Kruse O, Lauersen KJ. Intron-containing algal transgenes mediate efficient recombinant gene expression in the green microalga Chlamydomonas reinhardtii. Nucleic Acids Res 2018; 46:6909-6919. [PMID: 30053227 PMCID: PMC6061784 DOI: 10.1093/nar/gky532] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/16/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022] Open
Abstract
Among green freshwater microalgae, Chlamydomonas reinhardtii has the most comprehensive and developed molecular toolkit, however, advanced genetic and metabolic engineering driven from the nuclear genome is generally hindered by inherently low transgene expression levels. Progressive strain development and synthetic promoters have improved the capacity of transgene expression; however, the responsible regulatory mechanisms are still not fully understood. Here, we elucidate the sequence specific dynamics of native regulatory element insertion into nuclear transgenes. Systematic insertions of the first intron of the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit 2 (rbcS2i1) throughout codon-optimized coding sequences (CDS) generates optimized algal transgenes which express reliably in C. reinhardtii. The optimal rbcS2i1 insertion site for efficient splicing was systematically determined and improved gene expression rates were shown using a codon-optimized sesquiterpene synthase CDS. Sequential insertions of rbcS2i1 were found to have a step-wise additive effect on all levels of transgene expression, which is likely correlated to a synergy of transcriptional machinery recruitment and mimicking the short average exon lengths natively found in the C. reinhardtii genome. We further demonstrate the value of this optimization with five representative transgene examples and provide guidelines for the design of any desired sequence with this strategy.
Collapse
MESH Headings
- Abies/enzymology
- Abies/genetics
- Chlamydomonas reinhardtii/genetics
- Codon/genetics
- DNA, Plant/genetics
- DNA, Recombinant/genetics
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Synthetic
- Introns
- Isomerases/biosynthesis
- Isomerases/genetics
- Mutagenesis, Insertional
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- Pogostemon/enzymology
- Pogostemon/genetics
- Protein Engineering
- RNA Splicing
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Proteins/biosynthesis
- Ribulose-Bisphosphate Carboxylase/genetics
- Transgenes
Collapse
Affiliation(s)
- Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Julian Wichmann
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Kyle J Lauersen
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|
26
|
Dong B, Cheng RQ, Liu QY, Wang J, Fan ZC. Multimer of the antimicrobial peptide Mytichitin-A expressed in Chlamydomonas reinhardtii exerts a broader antibacterial spectrum and increased potency. J Biosci Bioeng 2018; 125:175-179. [DOI: 10.1016/j.jbiosc.2017.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/11/2017] [Accepted: 08/24/2017] [Indexed: 01/21/2023]
|