1
|
Wang Y, Perepelov AV, Senchenkova SN, Lu G, Wang X, Ma G, Yang Q, Yuan J, Wang Y, Xie L, Jiang X, Qin J, Liu D, Liu M, Huang D, Liu B. Glycoengineering directs de novo biomanufacturing of UPEC O21 O-antigen polysaccharide based glycoprotein. Int J Biol Macromol 2023; 253:126993. [PMID: 37739281 DOI: 10.1016/j.ijbiomac.2023.126993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Glycoproteins, in which polysaccharides are usually attached to proteins, are an important class of biomolecules that are widely used as therapeutic agents in clinical treatments for decades. Uropathogenic Escherichia coli (UPEC) O21 has been identified as a serogroup that induces urinary tract infections, with a global increasing number among women and young children. Therefore, there is an urgent need to establish protective vaccines against UPEC infection. Herein, we engineered non-pathogenic E. coli MG1655 to achieve robust, cost-effective de novo biosynthesis of O21 O-antigen polysaccharide-based glycoprotein against UPEC O21. Specifically, this glycoengineered E. coli MG1655 was manipulated for high-efficient glucose-glycerol co-utilization and for the gene cluster installation and O-glycosylation machinery assembly. The key pathways of UDP-sugar precursors were also strengthened to enforce more carbon flux towards the glycosyl donors, which enhanced the glycoprotein titer by 5.6-fold. Further optimization of culture conditions yielded glycoproteins of up to 35.34 mg/L. Glycopeptide MS confirmed the preciset biosynthesis of glycoprotein. This glycoprotein elicited antigen-specific IgG immune responses and significantly reduced kidney and bladder colonization. This bacterial cell-based glyco-platform and optimized strategies can provide a guideline for the biosynthesis of other value-added glycoproteins.
Collapse
Affiliation(s)
- Yuhui Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China; National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Andrei V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Gege Lu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Xiaohan Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Guozhen Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Qian Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Jian Yuan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Yanling Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Lijie Xie
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Xiaolong Jiang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Jingliang Qin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Dan Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Miaomiao Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China.
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China.
| |
Collapse
|
2
|
A method for increasing electroporation competence of Gram-negative clinical isolates by polymyxin B nonapeptide. Sci Rep 2022; 12:11629. [PMID: 35804085 PMCID: PMC9270391 DOI: 10.1038/s41598-022-15997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022] Open
Abstract
The study of clinically relevant bacterial pathogens relies on molecular and genetic approaches. However, the generally low transformation frequency among natural isolates poses technical hurdles to widely applying common methods in molecular biology, including transformation of large constructs, chromosomal genetic manipulation, and dense mutant library construction. Here we demonstrate that culturing clinical isolates in the presence of polymyxin B nonapeptide (PMBN) improves their transformation frequency via electroporation by up to 100-fold in a dose-dependent and reversible manner. The effect was observed for PMBN-binding uropathogenic Escherichia coli (UPEC) and Salmonella enterica strains but not naturally polymyxin resistant Proteus mirabilis. Using our PMBN electroporation method we show efficient delivery of large plasmid constructs into UPEC, which otherwise failed using a conventional electroporation protocol. Moreover, we show a fivefold increase in the yield of engineered mutant colonies obtained in S. enterica with the widely used lambda-Red recombineering method, when cells are cultured in the presence of PMBN. Lastly, we demonstrate that PMBN treatment can enhance the delivery of DNA-transposase complexes into UPEC and increase transposon mutant yield by eightfold when constructing Transposon Insertion Sequencing (TIS) libraries. Therefore, PMBN can be used as a powerful electropermeabilisation adjuvant to aid the delivery of DNA and DNA-protein complexes into clinically important bacteria.
Collapse
|
3
|
Jiang X, Bai J, Zhang H, Yuan J, Lu G, Wang Y, Jiang L, Liu B, Huang D, Feng L. Development of an O-polysaccharide based recombinant glycoconjugate vaccine in engineered E. coli against ExPEC O1. Carbohydr Polym 2022; 277:118796. [PMID: 34893224 DOI: 10.1016/j.carbpol.2021.118796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022]
Abstract
Extraintestinal pathogenic Escherichia coli O1 is a frequently identified serotype that causes serious infections and is often refractory to antimicrobial therapy. Glycoconjugate vaccine represents a promising measure to reduce ExPEC infections. Herein, we designed an O1-specific glyco-optimized chassis strain for manufacture of O-polysaccharide (OPS) antigen and OPS-based bioconjugate. Specifically, OPS and OPS-based glycoprotein were synthesized in glyco-optimized chassis strain, when compared to the unmeasurable level of the parent strain. The optimal expression of oligosaccharyltransferase and carrier protein further improved the titer. MS analysis elucidated the correct structure of resulting bioconjugate at routine and unreported glycosylation sequons of carrier protein, with a higher glycosylation efficiency. Finally, purified bioconjugate stimulated mouse to generate specific IgG antibodies and protected them against virulent ExPEC O1 challenge. The plug-and-play glyco-optimized platform is suitable for bioconjugate synthesis, thus providing a potential platform for future medical applications.
Collapse
Affiliation(s)
- Xiaolong Jiang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Jing Bai
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Huijing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Jian Yuan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Gege Lu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Yuhui Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Lingyan Jiang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China.
| | - Lu Feng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China.
| |
Collapse
|
4
|
Jiang X, Bai J, Yuan J, Zhang H, Lu G, Wang Y, Jiang L, Liu B, Wang L, Huang D, Feng L. High efficiency biosynthesis of O-polysaccharide-based vaccines against extraintestinal pathogenic Escherichia coli. Carbohydr Polym 2021; 255:117475. [PMID: 33436239 DOI: 10.1016/j.carbpol.2020.117475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/17/2020] [Accepted: 11/27/2020] [Indexed: 12/01/2022]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) has presented a major clinical infection emerged in the past decades. O-polysaccharide (OPS)-based glycoconjugate vaccines produced using the bacterial glycosylation machinery can be utilized to confer protection against such infection. However, constructing a low-cost microbial cell factory for high-efficient production of OPS-based glycoconjugate vaccines remains challenging. Here, we engineered a glyco-optimized chassis strain by reprogramming metabolic network. The yield was enhanced to 38.6 mg L-1, the highest level reported so far. MS analysis showed that designed glycosylation sequon was modified by target polysaccharide with high glycosylation efficiency of 90.7 % and 76.7 % for CTB-O5 and CTB-O7, respectively. The glycoconjugate vaccines purified from this biosystem elicited a marked increase in protection against ExPEC infection in mouse model, compared to a non-optimized system. The glyco-optimized platform established here is broadly suitable for polysaccharide-based conjugate production against ExPEC and other surface-polysaccharide-producing pathogens.
Collapse
Affiliation(s)
- Xiaolong Jiang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Jing Bai
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Jian Yuan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Huijing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Gege Lu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Yuhui Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Lingyan Jiang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Lei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China.
| | - Lu Feng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China.
| |
Collapse
|
5
|
Liu MA, Reeves PR. Customizable Cloning of Whole Polysaccharide Gene Clusters by Yeast Homologous Recombination. Methods Mol Biol 2019; 1954:1-14. [PMID: 30864119 DOI: 10.1007/978-1-4939-9154-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cloning of whole polysaccharide biosynthesis gene clusters for expression in a common Escherichia coli tester strain has the major advantage of enabling direct functional comparisons between gene clusters that are normally found in different strains, where their expression is potentially under differential regulatory control. However, due to the large size of many of these gene clusters, classical cloning methods are highly inefficient, time-consuming, and/or labor-intensive. Here we describe a recently developed system, called the operon assembly protocol (OAP), in which yeast homologous recombination pathways are used to assemble overlapping PCR fragments onto a specially engineered yeast E. coli shuttle vector, resulting in full-length customizable gene cluster clones on single-copy plasmids. Multiple versions of the same gene cluster can also be assembled in parallel with genes deleted, replaced, or rearranged, allowing the function and/or specificity of individual genes to be examined. Since the vector can be easily modified to include other bacterial replicons, it can also be broadly applied to the functional analysis of a wide range of bacterial gene clusters and operons.
Collapse
Affiliation(s)
- Michael A Liu
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Peter R Reeves
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Liu MA, Morris P, Reeves PR. Wzx flippases exhibiting complex O-unit preferences require a new model for Wzx-substrate interactions. Microbiologyopen 2018; 8:e00655. [PMID: 29888516 PMCID: PMC6436433 DOI: 10.1002/mbo3.655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/26/2018] [Indexed: 11/08/2022] Open
Abstract
The Wzx flippase is a critical component of the O‐antigen biosynthesis pathway, being responsible for the translocation of oligosaccharide O units across the inner membrane in Gram‐negative bacteria. Recent studies have shown that Wzx has a strong preference for its cognate O unit, but the types of O‐unit structural variance that a given Wzx can accommodate are poorly understood. In this study, we identified two Yersinia pseudotuberculosis Wzx that can distinguish between different terminal dideoxyhexose sugars on a common O‐unit main‐chain, despite both being able to translocate several other structurally‐divergent O units. We also identified other Y. pseudotuberculosis Wzx that can translocate a structurally divergent foreign O unit with high efficiency, and thus exhibit an apparently relaxed substrate preference. It now appears that Wzx substrate preference is more complex than previously suggested, and that not all O‐unit residues are equally important determinants of translocation efficiency. We propose a new “Structure‐Specific Triggering” model in which Wzx translocation proceeds at a low level for a wide variety of substrates, with high‐frequency translocation only being triggered by Wzx interacting with one or more preferred O‐unit structural elements found on its cognate O unit(s).
Collapse
Affiliation(s)
- Michael A Liu
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Paraskevi Morris
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter R Reeves
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|