1
|
Li W, Zhen Y, Yang Y, Wang D, He H. Environmental Adaptability and Roles in Ammonia Oxidation of Aerobic Ammonia-Oxidizing Microorganisms in the Surface Sediments of East China Sea. J Microbiol 2024; 62:845-858. [PMID: 39212864 DOI: 10.1007/s12275-024-00166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
This study investigated the community characteristics and environmental influencing factors of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the surface sediments of the East China Sea. The research found no consistent pattern in the richness and diversity of AOA and AOB with respect to the distance from the shore, indicating a complex interplay of factors. The expression levels of AOA amoA gene and AOB amoA gene in the surface sediments of the East China Sea ranged from 4.49 × 102 to 2.17 × 106 copies per gram of sediment and from 6.6 × 101 to 7.65 × 104 copies per gram of sediment, respectively. Salinity (31.77 to 34.53 PSU) and nitrate concentration (1.51 to 10.12 μmol/L) were identified as key environmental factors significantly affecting the AOA community, while salinity and temperature (13.71 to 19.50 °C) were crucial for the AOB community. The study also found that AOA, dominated by the Nitrosopumilaceae family, exhibited higher gene expression levels than AOB, suggesting a more significant role in ammonia oxidation. The expression of AOB was sensitive to multiple environmental factors, indicating a responsive role in nitrogen cycles and ecosystem health. The findings contribute to a better understanding of the biogeochemical processes and ecological roles of ammonia-oxidizing microorganisms in marine sediments.
Collapse
Affiliation(s)
- Wenhui Li
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Yu Zhen
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, People's Republic of China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, People's Republic of China.
| | - Yuhong Yang
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Daling Wang
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Hui He
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| |
Collapse
|
2
|
Peng L, Jia M, Li S, Wang X, Liang C, Xu Y. Developing antibiotics-based strategies to efficiently enrich ammonia-oxidizing archaea from wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171479. [PMID: 38458444 DOI: 10.1016/j.scitotenv.2024.171479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
The effects of five antibiotics (i.e., ampicillin, streptomycin, carbenicillin, kanamycin and tetracycline) on ammonia-oxidizing archaea (AOA) enrichment from anoxic activated sludge were investigated. The combined use of five antibiotics during 90-day cultivation could selectively inhibit nitrite-oxidizing bacteria (NOB) and ammonia-oxidizing bacteria (AOB) with AOA unaffected, as evidenced by the nitrite accumulation ratio of 100 % and the proportion of AOA in ammonia-oxidizing microbes over 91 %. The alternative use of five antibiotics was the optimal approach to screening for AOA during 348-day cultivation, which inhibited AOB growth at a level equivalent to the combined use of five antibiotics (the AOB-amoA gene decreased by over 99.90 %), further promoted AOA abundance (the much higher AOA-amoA to AOB-amoA gene copy number ratio (1453.30) than that in the groups with the combined use of five antibiotics (192.94)), eliminated bacterial adaptation to antibiotics and reduced antibiotic-resistant bacteria to form Nitrocosmicus-dominant community (42.35 % in abundance).
Collapse
Affiliation(s)
- Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Mengwen Jia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Shengjun Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.
| | - Xi Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| |
Collapse
|
3
|
Wang J, Wen X, Fang Z, Gao P, Wu P, Li X, Zeng G. Impact of salinity and organic matter on the ammonia-oxidizing archaea and bacteria in treating hypersaline industrial wastewater: amoA gene abundance and ammonia removal contributions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24099-24112. [PMID: 38436843 DOI: 10.1007/s11356-024-32707-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Studies published recently proposed that ammonia-oxidizing archaea (AOA) may be beneficial for hypersaline (salinity > 50 g NaCl L-1) industrial wastewater treatment. However, knowledge of AOA activity in hypersaline bioreactors is limited. This study investigated the effects of salinity, organic matter, and practical pickled mustard tuber wastewater (PMTW) on AOA and ammonia-oxidizing bacteria (AOB) in two sequencing batch biofilm reactors (SBBRs). Results showed that despite observed salinity inhibition (p < 0.05), both AOA and AOB contributed to high ammonia removal efficiency at a salinity of 70 g NaCl L-1 in the two SBBRs. The ammonia removal efficiency of SBBR2 did not significantly differ from that of SBBR1 in the absence of organic matter (p > 0.05). Batch tests and quantitative real-time PCR (qPCR) reveal that salinity and organic matter inhibition resulted in a sharp decline in specific ammonia oxidation rates and amoA gene copy numbers of AOA and AOB (p < 0.05). AOA demonstrated higher abundance and more active ammonia oxidation activity in hypersaline and high organic matter environments. Salinity was positively correlated with the potential ammonia oxidation contribution of AOA (p < 0.05), resulting in a potential transition from AOB dominance to AOA dominance in SBBR1 as salinity levels rose. Moreover, autochthonous AOA in PMTW promoted the abundance and ammonia oxidation activities of AOA in SBBR2, further elevating the nitrification removal efficiency after feeding the practical PMTW. AOA demonstrates greater tolerance to the challenging hypersaline environment, making it a valuable candidate for the treatment of practical industrial wastewater with high salinity and organic content.
Collapse
Affiliation(s)
- Jiale Wang
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China.
| | - Xin Wen
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Zhuoan Fang
- Chongqing International Investment Consultation Group Co., Ltd., Chongqing, 400000, People's Republic of China
| | - Pei Gao
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Pei Wu
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Xiang Li
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Guoming Zeng
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| |
Collapse
|
4
|
Zhao J, Fang S, Qi W, Liu H, Qu J. Do NH 4+-N and AOB affect atenolol removal during simulated riverbank filtration? CHEMOSPHERE 2022; 301:134653. [PMID: 35447203 DOI: 10.1016/j.chemosphere.2022.134653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Biodegradation is regarding as the most important organic micro-pollutants (OMPs) removal mechanism during riverbank filtration (RBF), but the OMPs co-metabolism mechanism and the role of NH4+-N during this process are not well understood. Here, we selected atenolol as a typical OMP to explore the effect of NH4+-N concentration on atenolol removal and the role of ammonia oxidizing bacteria (AOB) in atenolol biodegradation. The results showed that RBF is an effective barrier for atenolol mainly by biodegradation and adsorption. The ratio of biodegradation and adsorption to atenolol removal was dependent on atenolol concentration. Specifically, atenolol with low concentration (500 ng/L) is almost completely removed by adsorption, while atenolol with higher concentration (100 μg/L) is removed by biodegradation (51.7%) and adsorption (30.8%). Long-term difference in influent NH4+-N concentrations did not show significant impact on atenolol (500 ng/L) removal, which was mainly dominated by adsorption. Besides, AOB enhanced the removal of atenolol (100 μg/L) as biodegradation played a more crucial role in removing atenolol under this concentration. Both AOB and heterotrophic bacteria can degrade atenolol during RBF, but the degree of AOB's contribution may be related to the concentration of atenolol exposure. The main reactions occurred during atenolol biodegradation possibly includes primary amide hydrolysis, hydroxylation and secondary amine depropylation. About 90% of the bio-transformed atenolol was produced as atenolol acid. AOB could transform atenolol to atenolol acid by inducing primary amide hydrolysis but failed to degrade atenolol acid further under the conditions of this paper. This study provides novel insights regarding the roles played by AOB in OMPs biotransformation during RBF.
Collapse
Affiliation(s)
- Jian Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shangbiao Fang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Lin Z, Huang W, Zhou J, He X, Wang J, Wang X, Zhou J. The variation on nitrogen removal mechanisms and the succession of ammonia oxidizing archaea and ammonia oxidizing bacteria with temperature in biofilm reactors treating saline wastewater. BIORESOURCE TECHNOLOGY 2020; 314:123760. [PMID: 32634643 DOI: 10.1016/j.biortech.2020.123760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
To reveal nitrogen removal mechanisms under environmental stresses, biofilm reactors were operated at different temperatures (10 °C-35 °C) treating saline wastewater (salinity 3%). The results showed nitrogen removal efficiency was 98.46% at 30 °C and 60.85% at 10 °C, respectively. Both ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) participated in nitrification. 94.9% of the overall ammonia oxidation was attributed to AOA at 10 °C, but only 48.2% of that was undertaken by AOA at 35 °C. AOA had a greater contribution at low temperature, which demonstrated that nitrogen removal pathway varied with temperature. Aerobic denitrification was more stable than anoxic denitrification. High-throughput sequencing showed Crenarchaeota was the dominant AOA (97.02-34.47%), cooperating with various heterotrophic AOB. Real-time PCR indicated that AOA was three orders of magnitude more abundant than AOB. AOA was more resistant to low temperature and high-saline stresses. Ammonia oxidizers had distinct responses to temperature change and showed diverse relationships at different temperatures.
Collapse
Affiliation(s)
- Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Wei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiong Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiale Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xiantao Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
6
|
He X, Ji G. Responses of AOA and AOB activity and DNA/cDNA community structure to allylthiourea exposure in the water level fluctuation zone soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15233-15244. [PMID: 32072408 DOI: 10.1007/s11356-020-07952-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Ammonia oxidation is mainly performed by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Allylthiourea (ATU) has been found to specifically inhibit ammonia oxidation. However, the effect of ATU on AOA and AOB transcription has been infrequently studied. In the present study, we examined the responses of AOA and AOB activity and DNA/cDNA community structure to ATU exposure. The ammonia oxidation activity in the 100-mg/L ATU group was 4.3% of that in the control group after 7 days. When exposed to ATU, the gene abundance of AOA was favored compared with that of AOB, and there were no statistically significant differences in the abundance of AOB amoA in DNA and cDNA between the two groups. Compared with the control group, the gene abundance of AOA significantly increased by 5.23 times, while the transcription of AOA significantly decreased by 0.70 times. Moreover, the transcriptional ratio of AOA in the ATU group was only 0.05 times as high as that in the control group. ATU selectively affected AOB and completely inhibited Nitrosomonas europaea and Bacterium amoA.22.HaldeII.kultur at the genetic level. Under ATU exposure, all AOA clusters were transcribed, but three AOB clusters were not transcribed. Our results indicated that the ammonia oxidation potential of the soil of water level fluctuation areas, based on ATU inhibition, was associated mainly with AOA amoA gene abundance and AOB community shifts in DNA and cDNA.
Collapse
Affiliation(s)
- Xiangjun He
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
He T, Xie D, Ni J, Li Z, Li Z. Nitrous oxide produced directly from ammonium, nitrate and nitrite during nitrification and denitrification. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122114. [PMID: 31962213 DOI: 10.1016/j.jhazmat.2020.122114] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/16/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
A hypothermia aerobic denitrifying bacterium, Pseudomonas taiwanensis strain J488, can effectively remove multiple nitrogen sources from wastewater at 15 °C. The ammonium, nitrate and nitrite removal efficiencies were 100 %, 92.61 % and 92.49 %, respectively. Strain J488 could survive with hydroxylamine as sole nitrogen source and its removal efficiency was 97.71 %. The removal efficiency of ammonium was 100 % even in the presence of the classical inhibitors of nitrification allylthiourea and diethyldithiocarbamate. These findings fundamentally changed the picture that the ammonia monooxygenase could be inhibited by the copper chelators of allylthiourea or diethyldithiocarbamate. Similarly, the nitrite removal capacity of strain J488 was not sensitive to inhibition by Pb2+, and its removal efficiency was also 100 %. Additionally, by identifying the intermediates accumulation of nitrification and denitrification, using nitrification and denitrification inhibitors, measuring enzyme activities and determining N2O concentrations, it was demonstrated that N2O could be produced directly from ammonium, nitrate and nitrite.
Collapse
Affiliation(s)
- Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Deti Xie
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, 400716, China
| | - Jiupai Ni
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, 400716, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Zhenlun Li
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, 400716, China.
| |
Collapse
|
8
|
Hamid H, Li LY, Grace JR. Formation of perfluorocarboxylic acids from 6:2 fluorotelomer sulfonate (6:2 FTS) in landfill leachate: Role of microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113835. [PMID: 31896477 DOI: 10.1016/j.envpol.2019.113835] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/08/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Fluorotelomer compounds in landfill leachate can undergo biotransformation under aerobic conditions and act as a secondary source of perfluorocarboxylic acids (PFCAs) to the environment. Very little is known about the role of various microbial communities towards fluorotelomer compounds biotransformation. Using an inoculum prepared from the sediment of a leachate collection ditch, 6:2 fluorotelomer sulfonate (6:2 FTS) biotransformation experiments were carried out. Specific substrates (i.e., glucose, ammonia) and ammonia-oxidizing inhibitor (allylthiourea) were used to produce two experimental runs with heterotrophic (HET) growth only and heterotrophic with ammonia-oxidizing and nitrite- oxidizing bacteria (HET + AOB + NOB). After 10 days, ∼20% of the spiked 6:2 FTS removal was observed in HET + AOB + NOB, compared to ∼7% under HET condition. Higher 6:2 FTS removal in HET + AOB + NOB likely resulted from ammonia monooxygenase enzyme that catalyzes the first step of ammonia oxidation. The HET + AOB + NOB condition also showed higher PFCA (C4-C6) formation (∼2% of initially spiked 6:2 FTS), possibly due to higher overall bioactivity. Microbial community analysis through 16s rRNA sequencing confirmed that Proteobacteria and Bacteroidetes were the most abundant phyla (>75% relative abundance) under all experimental conditions. High abundance of Actinobacteria (>17%) was observed under the HET + AOB + NOB condition on day 7. Since Actinobacteria can synthesize a wide range of enzymes including monooxygenases, they likely play an important role in 6:2 FTS biotransformation and PFCA production.
Collapse
Affiliation(s)
- Hanna Hamid
- Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Loretta Y Li
- Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.
| | - John R Grace
- Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
9
|
Ginawi A, Wang L, Wang H, Yu B, Yunjun Y. Effects of environmental variables on abundance of ammonia-oxidizing communities in sediments of Luotian River, China. PeerJ 2020; 8:e8256. [PMID: 31934502 PMCID: PMC6951284 DOI: 10.7717/peerj.8256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Ammonia-oxidizing communities play important functional roles in the nitrification. However, environmental stresses can significantly affect this process by controlling the abundant communities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities. In this study, we examined the abundance variations of ammonia-oxidizing communities using quantitative polymerase chain reaction (qPCR) and terminal-restriction fragment length polymorphism (T-RFLP) in a typical subtropical river, Luotian County, South Dabie Mountains, China. Clone libraries were conducted to evaluate the community structure and abundance of AOA and AOB in sediments. Results showed that Nitrososphaera sp and Nitrosopumilus sp were the most dominant AOA. The abundance of the AOA and AOB amoA gene ranged from 5.28 × 108 gene copies (g-soil−1) to 2.23 × 108 gene copies (g-soil−1) and 5.45 × 108 gene copies (g-soil−1) to 3.30 × 107 gene copies (g-soil−1), respectively. Five environmental variables, namely, ORP, DO, NO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{3}^{-}$\end{document}3−, Temp, and NH\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{4}^{+}$\end{document}4+ were played a major function in microbial communities of AOA and AOB in sediments. The T-RFLP profiles of AOA showed that 488 and 116 bp T-RFs were dominated. Overall, the results of this study showed that anthropogenic activities andenvironmental stress in rivers can alter the structure and function of microbes in their variable environment.
Collapse
Affiliation(s)
- Amjed Ginawi
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Faculty of Marine Science and Fisheries, Red Sea University, Port Sudan, Red Sea State, Sudan
| | - Lixiao Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huading Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingbing Yu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Yunjun
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Chen J, He Y, Wang J, Huang M, Guo C. Dynamics of nitrogen transformation and bacterial community with different aeration depths in malodorous river. World J Microbiol Biotechnol 2019; 35:196. [DOI: 10.1007/s11274-019-2773-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/21/2019] [Indexed: 11/28/2022]
|
11
|
Liu M, Ran Y, Peng X, Zhu Z, Liang J, Ai H, Li H, He Q. Sustainable modulation of anaerobic malodorous black water: The interactive effect of oxygen-loaded porous material and submerged macrophyte. WATER RESEARCH 2019; 160:70-80. [PMID: 31132564 DOI: 10.1016/j.watres.2019.05.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Depleted oxygen (O2) in the sediment and overlying water of malodorous black water poses a potential threat to aquatic ecosystems. This study presents a method for sustainable regulation of the dissolved oxygen (DO) levels towards the malodorous black water. Oxygen-loaded natural porous materials were prepared by vacuum degassing to remove air from the pores and fill them with pure O2. Capping anaerobic sediment with the prepared 6 oxygen-loaded porous materials was effective in prompting the DO concentration of the malodorous black water. Although granules activated carbon (GAC) displayed the highest oxygen-loading capability, oxygen-loaded volcanic stone additive was more efficient for long-lasting combating of the anaerobic condition because the DO level at sediment-water interface (SWI) and the DO penetration depth showed approximately 5.38- and 3.75-fold increase, respectively, compared with the untreated systems. The improvement in DO was substantially enhanced in the presence of submerged macrophyte (Vallisneria natans), during which the release of O2 from oxygen-loaded volcanic stone facilitated the plant growth. With the joint efforts of the O2 released from volcanic stone and photosynthesis by the macrophytes, the DO levels were maintained at approximately 6.80 mg/L after a 41-day incubation, which exceeded (P < 0.05) the value in only oxygen-loaded volcanic stone or macrophytes added treatments. In addition to the elevated DO level, the combined employment of oxygen-loaded volcanic stone and macrophytes triggered a negative ammonia (NH4+-N) flux across the SWI and an 85.82% reduction of methane (CH4) production compared with those without treatment, accompanied by a decrease in total inorganic carbon and a 2.55- fold increasing of submerged macrophyte biomass, which is presumably attributed to nitrification, remineralization, and assimilation. The results obtained here shed a degree of light on the sustainable modulation of the anaerobic condition in malodorous black water.
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Yan Ran
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xinxin Peng
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Zhiqiang Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jialiang Liang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hainan Ai
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
12
|
Use of multiple water surface flow constructed wetlands for non-point source water pollution control. Appl Microbiol Biotechnol 2018; 102:5355-5368. [DOI: 10.1007/s00253-018-9011-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
|
13
|
Chen X, Jiang X, Huang W. Evaluation and mechanism of ammonia nitrogen removal using sediments from a malodorous river. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172257. [PMID: 29657816 PMCID: PMC5882740 DOI: 10.1098/rsos.172257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/20/2018] [Indexed: 05/24/2023]
Abstract
Malodorous rivers are among the major environmental problems of cities in developing countries. In addition to the unpleasant smell, the sediments of such rivers can act as a sink for pollutants. The excessive amount of ammonia nitrogen (NH3-N) in rivers is the main factor that causes the malodour. Therefore, a suitable method is necessary for sediment disposition and NH3-N removal in malodorous rivers. The sediment in a malodorous river (PS) in Beijing, China was selected and modified via calcination (PS-D), Na+ doping (PS-Na) and calcination-Na+ doping (PS-DNa). The NH3-N removal efficiency using the four sediment materials was evaluated, and results indicated that the NH3-N removal efficiency using the modified sediment materials could reach over 60%. PS-DNa achieved the highest NH3-N removal efficiency (90.04%). The kinetics study showed that the pseudo-second-order model could effectively describe the sorption kinetics and that the exterior activated site had the main function of P sorption. The results of the sorption isotherms indicated that the maximum sorption capacities of PS-Na, PS-D and PS-DNa were 0.343, 0.831 and 1.113 mg g-1, respectively, and a high temperature was favourable to sorption. The calculated thermodynamic parameters suggested that sorption was a feasible or spontaneous (ΔG < 0), entropy-driven (ΔS > 0), and endothermic (ΔH > 0) reaction.
Collapse
Affiliation(s)
- Xing Chen
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Xia Jiang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Wei Huang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| |
Collapse
|