1
|
Yamano-Adachi N, Hata H, Nakanishi Y, Omasa T. Effects of genome instability of parental CHO cell clones on chromosome number distribution and recombinant protein production in parent-derived subclones. J Biosci Bioeng 2024; 137:54-63. [PMID: 37981489 DOI: 10.1016/j.jbiosc.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023]
Abstract
Chinese hamster ovary (CHO) cells are the de facto standard host cells for biopharmaceuticals, and there is great interest in developing methods for constructing stable production cell lines. In this study, clones with a wide chromosome number distribution were selected from isolated antibody-producing strains, and subclones obtained from these clones were evaluated. The transgene copy number varied between the subclones. Even among subclones with similar copy numbers of antibody genes and maintained insertion sites, clones with different productivity were generated. Although the chromosome number distribution differed between these subclones, there was no correlation between the variability in chromosome number after cloning (genome instability) and productivity. Most of the subclones obtained from a parental strain with a wide chromosome number had the same wide chromosome number distribution as the parental strain. Less frequently, cells with less variation (remaining in one distribution) in chromosome number were isolated from cells with a wide chromosome number distribution, from which subclones with less variation in chromosome number were obtained when subcloning was performed again. These results imply that the characteristics of clones with chromosomal instability are inherited by subclones, and thus provide a better understanding of cell line stability/instability.
Collapse
Affiliation(s)
- Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hirofumi Hata
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuto Nakanishi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Belliveau J, Papoutsakis ET. The microRNomes of Chinese hamster ovary (CHO) cells and their extracellular vesicles, and how they respond to osmotic and ammonia stress. Biotechnol Bioeng 2023; 120:2700-2716. [PMID: 36788116 DOI: 10.1002/bit.28356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
A new area of focus in Chinese hamster ovary (CHO) biotechnology is the role of small (exosomes) and large (microvesicles or microparticles) extracellular vesicles (EVs). CHO cells in culture exchange large quantities of proteins and RNA through these EVs, yet the content and role of these EVs remain elusive. MicroRNAs (miRs or miRNA) are central to adaptive responses to stress and more broadly to changes in culture conditions. Given that EVs are highly enriched in miRs, and that EVs release large quantities of miRs both in vivo and in vitro, EVs and their miR content likely play an important role in adaptive responses. Here we report the miRNA landscape of CHO cells and their EVs under normal culture conditions and under ammonia and osmotic stress. We show that both cells and EVs are highly enriched in five miRs (among over 600 miRs) that make up about half of their total miR content, and that these highly enriched miRs differ significantly between normal and stress culture conditions. Notable is the high enrichment in miR-92a and miR-23a under normal culture conditions, in contrast to the high enrichment in let-7 family miRs (let-7c, let-7b, and let-7a) under both stress conditions. The latter suggests a preserved stress-responsive function of the let-7 miR family, one of the most highly preserved miR families across species, where among other functions, let-7 miRs regulate core oncogenes, which, depending on the biological context, may tip the balance between cell cycle arrest and apoptosis. While the expected-based on their profound enrichment-important role of these highly enriched miRs remains to be dissected, our data and analysis constitute an important resource for exploring the role of miRs in cell adaptation as well as for synthetic applications.
Collapse
Affiliation(s)
- Jessica Belliveau
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
3
|
Marx N, Eisenhut P, Weinguny M, Klanert G, Borth N. How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnol Adv 2022; 56:107924. [PMID: 35149147 DOI: 10.1016/j.biotechadv.2022.107924] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in omics technologies and the broad availability of big datasets have revolutionized our understanding of Chinese hamster ovary cells in their role as the most prevalent host for production of complex biopharmaceuticals. In consequence, our perception of this "workhorse of the biopharmaceutical industry" has successively shifted from that of a nicely working, but unknown recombinant protein producing black box to a biological system governed by multiple complex regulatory layers that might possibly be harnessed and manipulated at will. Despite the tremendous progress that has been made to characterize CHO cells on various omics levels, our understanding is still far from complete. The well-known inherent genetic plasticity of any immortalized and rapidly dividing cell line also characterizes CHO cells and can lead to problematic instability of recombinant protein production. While the high mutational frequency has been a focus of CHO cell research for decades, the impact of epigenetics and its role in differential gene expression has only recently been addressed. In this review we provide an overview about the current understanding of epigenetic regulation in CHO cells and discuss its significance for shaping the cell's phenotype. We also look into current state-of-the-art technology that can be applied to harness and manipulate the epigenetic network so as to nudge CHO cells towards a specific phenotype. Here, we revise current strategies on site-directed integration and random as well as targeted epigenome modifications. Finally, we address open questions that need to be investigated to exploit the full repertoire of fine-tuned control of multiplexed gene expression using epigenetic and systems biology tools.
Collapse
Affiliation(s)
- Nicolas Marx
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Eisenhut
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Marcus Weinguny
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Gerald Klanert
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Nicole Borth
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria.
| |
Collapse
|
4
|
Marx N, Dhiman H, Schmieder V, Freire CM, Nguyen LN, Klanert G, Borth N. Enhanced targeted DNA methylation of the CMV and endogenous promoters with dCas9-DNMT3A3L entails distinct subsequent histone modification changes in CHO cells. Metab Eng 2021; 66:268-282. [PMID: 33965614 DOI: 10.1016/j.ymben.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/02/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023]
Abstract
With the emergence of new CRISPR/dCas9 tools that enable site specific modulation of DNA methylation and histone modifications, more detailed investigations of the contribution of epigenetic regulation to the precise phenotype of cells in culture, including recombinant production subclones, is now possible. These also allow a wide range of applications in metabolic engineering once the impact of such epigenetic modifications on the chromatin state is available. In this study, enhanced DNA methylation tools were targeted to a recombinant viral promoter (CMV), an endogenous promoter that is silenced in its native state in CHO cells, but had been reactivated previously (β-galactoside α-2,6-sialyltransferase 1) and an active endogenous promoter (α-1,6-fucosyltransferase), respectively. Comparative ChIP-analysis of histone modifications revealed a general loss of active promoter histone marks and the acquisition of distinct repressive heterochromatin marks after targeted methylation. On the other hand, targeted demethylation resulted in autologous acquisition of active promoter histone marks and loss of repressive heterochromatin marks. These data suggest that DNA methylation directs the removal or deposition of specific histone marks associated with either active, poised or silenced chromatin. Moreover, we show that de novo methylation of the CMV promoter results in reduced transgene expression in CHO cells. Although targeted DNA methylation is not efficient, the transgene is repressed, thus offering an explanation for seemingly conflicting reports about the source of CMV promoter instability in CHO cells. Importantly, modulation of epigenetic marks enables to nudge the cell into a specific gene expression pattern or phenotype, which is stabilized in the cell by autologous addition of further epigenetic marks. Such engineering strategies have the added advantage of being reversible and potentially tunable to not only turn on or off a targeted gene, but also to achieve the setting of a desirable expression level.
Collapse
Affiliation(s)
- Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | - Heena Dhiman
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | - Valerie Schmieder
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | | | - Ly Ngoc Nguyen
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | - Gerald Klanert
- Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | - Nicole Borth
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria.
| |
Collapse
|
5
|
Orellana CA, Martínez VS, MacDonald MA, Henry MN, Gillard M, Gray PP, Nielsen LK, Mahler S, Marcellin E. 'Omics driven discoveries of gene targets for apoptosis attenuation in CHO cells. Biotechnol Bioeng 2020; 118:481-490. [PMID: 32865815 DOI: 10.1002/bit.27548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/22/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
Chinese hamster ovary (CHO) cells are widely used in biopharmaceutical production. Improvements to cell lines and bioprocesses are constantly being explored. One of the major limitations of CHO cell culture is that the cells undergo apoptosis, leading to rapid cell death, which impedes reaching high recombinant protein titres. While several genetic engineering strategies have been successfully employed to reduce apoptosis, there is still room to further enhance CHO cell lines performance. 'Omics analysis is a powerful tool to better understand different phenotypes and for the identification of gene targets for engineering. Here, we present a comprehensive review of previous CHO 'omics studies that revealed changes in the expression of apoptosis-related genes. We highlight targets for genetic engineering that have reduced, or have the potential to reduce, apoptosis or to increase cell proliferation in CHO cells, with the final aim of increasing productivity.
Collapse
Affiliation(s)
- Camila A Orellana
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia.,Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Verónica S Martínez
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Michael A MacDonald
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Matthew N Henry
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Marianne Gillard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Peter P Gray
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Lars K Nielsen
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia.,Metabolomics Australia, The University of Queensland, Brisbane, Australia.,The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia.,Metabolomics Australia, The University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Capella Roca B, Lao NT, Clynes M, Doolan P. Investigation and circumvention of transfection inhibition by ferric ammonium citrate in serum-free media for Chinese hamster ovary cells. Biotechnol Prog 2019; 36:e2954. [PMID: 31850663 DOI: 10.1002/btpr.2954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 11/08/2022]
Abstract
While reliable transfection methods are essential for Chinese hamster ovary (CHO) cell line engineering, reduced transfection efficiencies have been observed in several commercially prepared media. In this study, we aimed to assess common media additives that impede efficiency mediated by three chemical transfection agents: liposomal-based (Lipofectamine 2000), polymer-based (TransIT-X2), and lipopolyplex-based (TransIT-PRO). An in-house GFP-expressing vector and serum-free medium (BCR-F12: developed for the purposes of this study) were used to analyze transient transfection efficiencies of three CHO cell lines (CHO-K1, DG44, DP12). Compared to a selection of commercially available media, BCR-F12 displayed challenges associated with transfection in vendor-prepared formulations, with no detection when liposomal-based methods were used, reduced (<3%) efficiency observed when polymer-based methods were used and only limited efficiency (25%) with lipopolyplexes. Following a stepwise removal protocol, ferric ammonium citrate (FAC) was identified as the critical factor impeding transfection, with transfection enabled with the liposomal- and polymer-based methods and a 1.3- to 7-fold increased lipopolyplex efficiency observed in all cell lines in FAC-depleted media (-FAC), although lower viabilities were observed. Subsequent early addition of FAC (0.5-5 hr post-transfection) revealed 0.5 hr post-transfection as the optimal time to supplement in order to achieve transfection efficiencies similar to -FAC medium while retaining optimal cellular viabilities. In conclusion, FAC was observed to interfere with DNA transfection acting at early stages in all transfection agents and all cell lines studied, and a practical strategy to circumvent this problem is suggested.
Collapse
Affiliation(s)
- Berta Capella Roca
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.,SSPC-SFI Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
| | - Nga T Lao
- National Institute for Bioprocessing Research and Training, University College Dublin, Dublin, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.,SSPC-SFI Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
| | - Padraig Doolan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
7
|
Coronel J, Heinrich C, Klausing S, Noll T, Figueredo‐Cardero A, Castilho LR. Perfusion process combining low temperature and valeric acid for enhanced recombinant factor VIII production. Biotechnol Prog 2019; 36:e2915. [DOI: 10.1002/btpr.2915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/09/2019] [Accepted: 09/17/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Juliana Coronel
- Federal University of Rio de Janeiro (UFRJ), COPPECell Culture Engineering Laboratory Rio de Janeiro RJ Brazil
| | | | | | - Thomas Noll
- Bielefeld UniversityInstitute of Cell Culture Technology, Universitätsstraße 25 Bielefeld Germany
| | | | - Leda R. Castilho
- Federal University of Rio de Janeiro (UFRJ), COPPECell Culture Engineering Laboratory Rio de Janeiro RJ Brazil
| |
Collapse
|
8
|
Tharmalingam T, Barkhordarian H, Tejeda N, Daris K, Yaghmour S, Yam P, Lu F, Goudar C, Munro T, Stevens J. Characterization of phenotypic and genotypic diversity in subclones derived from a clonal cell line. Biotechnol Prog 2019; 34:613-623. [PMID: 29882350 PMCID: PMC6099272 DOI: 10.1002/btpr.2666] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/09/2018] [Indexed: 12/19/2022]
Abstract
Regulatory guidelines require the sponsors to provide assurance of clonality of the production cell line, and when such evidence is not available, additional studies are typically required to further ensure consistent long‐term manufacturing of the product. One potential approach to provide such assurance of clonal derivation of a production cell line is to characterize subclones generated from the original cell line and assess their phenotypic and genotypic similarity with the hypothesis that cell lines derived from a clonal bank will share performance, productivity and product quality characteristics. In this study, a production cell line that was cloned by a validated FACS approach coupled with day 0 imaging for verification of single‐cell deposition was subcloned using validated FACS and imaging methods. A total of 46 subclones were analyzed for growth, productivity, product quality, copy number, and integration site analysis. Significant diversity in cell growth, protein productivity, product quality attributes, and copy number was observed between the subclones, despite stability of the parent clone over time. The diversity in protein productivity and quality of the subclones were reproduced across time and production scales, suggesting that the resulting population post sub‐cloning originating from a single cell is stable but with unique properties. Overall, this work demonstrates that the characteristics of isolated subclones are not predictive of a clonally derived parental clone. Consequently, the analysis of subclones may not be an effective approach to demonstrate clonal origin of a cell bank. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:613–623, 2018
Collapse
Affiliation(s)
- Tharmala Tharmalingam
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Hedieh Barkhordarian
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Nicole Tejeda
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Kristi Daris
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Sam Yaghmour
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Pheng Yam
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Fang Lu
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Chetan Goudar
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Trent Munro
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Jennitte Stevens
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| |
Collapse
|
9
|
Improved recombinant protein production by regulation of transcription and protein transport in Chinese hamster ovary cells. Biotechnol Lett 2019; 41:719-732. [PMID: 31114947 DOI: 10.1007/s10529-019-02681-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/25/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To identify genes that affected protein expression in Chinese hamster ovary (CHO) cells was significant, and we identified the changes in the transcriptome and the functional gene sets that would contribute to increase expression of recombinant protein. RESULTS Here two sub-clones from a methotrexate-treated parental recombinant CHO cell line were selected. The two sub-clones, with different expression levels (qp were 42.8 pg/cell/day and 14.0 pg/cell/day), were analyzed through RNA-seq. More than 600 genes were identified as differently expressed, and we found that the differentially expressed genes were involved in processes such as RNA processing, transcription, protein catabolism, and protein transport. Among these, we cloned genes encoding proteins that were involved in transcription and protein transport to investigate their effect on protein production. CONCLUSIONS We found that some genes involved in transcription and protein transport would improve recombinant protein production in CHO cells.
Collapse
|
10
|
Marx N, Grünwald-Gruber C, Bydlinski N, Dhiman H, Ngoc Nguyen L, Klanert G, Borth N. CRISPR-Based Targeted Epigenetic Editing Enables Gene Expression Modulation of the Silenced Beta-Galactoside Alpha-2,6-Sialyltransferase 1 in CHO Cells. Biotechnol J 2018; 13:e1700217. [DOI: 10.1002/biot.201700217] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/01/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Nicolas Marx
- Department of Biotechnology; BOKU University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology GmbH; Graz Austria
| | - Clemens Grünwald-Gruber
- Department of Biotechnology; BOKU University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
| | - Nina Bydlinski
- Department of Biotechnology; BOKU University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
| | - Heena Dhiman
- Department of Biotechnology; BOKU University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology GmbH; Graz Austria
| | - Ly Ngoc Nguyen
- Department of Biotechnology; BOKU University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology GmbH; Graz Austria
| | - Gerald Klanert
- Austrian Centre of Industrial Biotechnology GmbH; Graz Austria
| | - Nicole Borth
- Department of Biotechnology; BOKU University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology GmbH; Graz Austria
| |
Collapse
|
11
|
Orellana CA, Marcellin E, Palfreyman RW, Munro TP, Gray PP, Nielsen LK. RNA-Seq Highlights High Clonal Variation in Monoclonal Antibody Producing CHO Cells. Biotechnol J 2018; 13:e1700231. [DOI: 10.1002/biot.201700231] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/12/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Camila A. Orellana
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland; Brisbane QLD 4072 Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland; Brisbane QLD 4072 Australia
- Metabolomics Australia (Queensland Node), The University of Queensland; Brisbane QLD 4072 Australia
| | - Robin W. Palfreyman
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland; Brisbane QLD 4072 Australia
| | - Trent P. Munro
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland; Brisbane QLD 4072 Australia
| | - Peter P. Gray
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland; Brisbane QLD 4072 Australia
| | - Lars K. Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland; Brisbane QLD 4072 Australia
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; 2800 Kgs, Lyngby Denmark
| |
Collapse
|