1
|
Wang X, Sun ML, Lin L, Ledesma-Amaro R, Wang K, Ji XJ. Engineering strategies for producing medium-long chain dicarboxylic acids in oleaginous yeasts. BIORESOURCE TECHNOLOGY 2025; 430:132593. [PMID: 40294756 DOI: 10.1016/j.biortech.2025.132593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/20/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Medium-long chain dicarboxylic acids (DCAs, C ≥ 6) are essential chemical raw materials, with wide applications in the chemical, pharmaceutical, material and food industries. However, the traditional chemical synthesis methods cause environmental pollution and are not in line with goals of sustainable development. With the development of synthetic biology, high-value-added DCAs can be biosynthesized from hydrophobic substrates (HSs) using suitable microorganisms. This review first summarizes the biosynthetic pathway of DCAs in oleaginous yeasts and then emphasizes the related engineering strategies for increasing the product yield, including promoter, enzyme, pathway, cell, fermentation, and downstream engineering. In addition, the challenges and development trends in the biosynthesis of DCAs are discussed, in light of the current progress, challenges, and trends in this field. Finally, guidelines for future research are proposed. Overall, this review systematically summarizes recent engineering strategies for DCAs production in oleaginous yeasts and offers valuable insights for future DCAs biosynthesis.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
2
|
Koo YS, Chen AX, Tay CYJ, Wang VYE, See JY, Lim YH, Tay DWP. Navigating Side Reactions for Robust Colorimetric Detection of Galactose Oxidase Activity. Anal Chem 2025; 97:5266-5273. [PMID: 40021128 PMCID: PMC11912124 DOI: 10.1021/acs.analchem.4c07034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 03/03/2025]
Abstract
Colorimetric assays are a rapid, scalable technique well suited to enzyme activity screening. However, side reactions or chromogenic reagent instability can result in false positives or false negatives that compromise the accuracy of such assays. Here, we identify three classes of compounds incompatible with the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) colorimetric assay for galactose oxidase activity. Dark green ABTS·+ cationic radicals indicating enzyme activity can get quenched to yield colorless solutions or couple with substrates to form differently colored adducts, thus preventing accurate colorimetric measurements. These side reactions limit the utility of the ABTS assay and introduce uncertainty in the substrate scope to which it is applicable. We have investigated the underlying mechanisms behind these side reactions to conclude that free radical scavengers, phenols with electron-donating substituents, and β,γ-unsaturated aryl ketones are incompatible with the ABTS colorimetric assay. In search of a viable alternative, we developed an assay using 2,4-dinitrophenylhydrazine under neutral conditions with isopropyl alcohol as a solubilizing agent. The use of neutral conditions was found to be critical to avoid hydrolysis of hydrazone adducts, ensuring reproducible measurements. Our assay is compatible with free radical scavengers (R2 = 0.98), phenols with electron-donating substituents (R2 = 0.97), and β,γ-unsaturated aryl ketones (R2 = 0.88). This modified assay enables galactose oxidase activity screening across a broader substrate scope, thus facilitating enzyme use for more practical applications.
Collapse
Affiliation(s)
- Ying Sin Koo
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore 138665, Republic of Singapore
| | - Adrielle Xianwen Chen
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore 138665, Republic of Singapore
| | - Charlotte Y. J. Tay
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore 138665, Republic of Singapore
| | - Valerie Y. E. Wang
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore 138665, Republic of Singapore
| | - Jie Yang See
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore 138665, Republic of Singapore
| | - Yee Hwee Lim
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore 138665, Republic of Singapore
- Synthetic
Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | - Dillon W. P. Tay
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore 138665, Republic of Singapore
| |
Collapse
|
3
|
Jain A, Teshima M, Buryska T, Romeis D, Haslbeck M, Döring M, Sieber V, Stavrakis S, de Mello A. High-Throughput Absorbance-Activated Droplet Sorting for Engineering Aldehyde Dehydrogenases. Angew Chem Int Ed Engl 2024; 63:e202409610. [PMID: 39087463 PMCID: PMC11586695 DOI: 10.1002/anie.202409610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Recent decades have seen a dramatic increase in the commercial use of biocatalysts, transitioning from energy-intensive traditional chemistries to more sustainable methods. Current enzyme engineering techniques, such as directed evolution, require the generation and testing of large mutant libraries to identify optimized variants. Unfortunately, conventional screening methods are unable to screen such large libraries in a robust and timely manner. Droplet-based microfluidic systems have emerged as a powerful high-throughput tool for library screening at kilohertz rates. Unfortunately, almost all reported systems are based on fluorescence detection, restricting their use to a limited number of enzyme types that naturally convert fluorogenic substrates or require the use of surrogate substrates. To expand the range of enzymes amenable to evolution using droplet-based microfluidic systems, we present an absorbance-activated droplet sorter that allows droplet sorting at kilohertz rates without the need for optical monitoring of the microfluidic system. To demonstrate the utility of the sorter, we rapidly screen a 105-member aldehyde dehydrogenase library towards D-glyceraldehyde using a NADH mediated coupled assay that generates WST-1 formazan as the colorimetric product. We successfully identify a variant with a 51 % improvement in catalytic efficiency and a significant increase in overall activity across a broad substrate spectrum.
Collapse
Affiliation(s)
- Ankit Jain
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied BiosciencesETH ZürichVladimir Prelog Weg 18093ZürichSwitzerland
| | - Mariko Teshima
- Chemistry of Biogenic ResourcesTechnical University of Munich, Campus Straubing for Biotechnology and SustainabilitySchulgasse 1694315StraubingGermany
| | - Tomas Buryska
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied BiosciencesETH ZürichVladimir Prelog Weg 18093ZürichSwitzerland
| | - Dennis Romeis
- Chemistry of Biogenic ResourcesTechnical University of Munich, Campus Straubing for Biotechnology and SustainabilitySchulgasse 1694315StraubingGermany
| | - Magdalena Haslbeck
- Chemistry of Biogenic ResourcesTechnical University of Munich, Campus Straubing for Biotechnology and SustainabilitySchulgasse 1694315StraubingGermany
| | - Manuel Döring
- Chemistry of Biogenic ResourcesTechnical University of Munich, Campus Straubing for Biotechnology and SustainabilitySchulgasse 1694315StraubingGermany
| | - Volker Sieber
- Chemistry of Biogenic ResourcesTechnical University of Munich, Campus Straubing for Biotechnology and SustainabilitySchulgasse 1694315StraubingGermany
- Catalytic Research CenterTechnical University of MunichErnst-Otto-Fischer-Straße 185748GarchingGermany
- School of Chemistry and Molecular BiosciencesThe University of Queensland68 Copper RoadSt. Lucia4072, QueenslandAustralia
- SynBioFoundry@TUMTechnical University of MunichSchulgasse 2294315StraubingGermany
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied BiosciencesETH ZürichVladimir Prelog Weg 18093ZürichSwitzerland
| | - Andrew de Mello
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied BiosciencesETH ZürichVladimir Prelog Weg 18093ZürichSwitzerland
| |
Collapse
|
4
|
He L, Yan M, Naeem M, Chen M, Chen Y, Ni Z, Chen H. Enhancing Manganese Peroxidase: Innovations in Genetic Modification, Screening Processes, and Sustainable Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26040-26056. [PMID: 39535434 DOI: 10.1021/acs.jafc.4c05878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Manganese peroxidase (MnP), a vital extracellular enzyme for the degradation of lignin and other organic pollutants, has demonstrated immense potential for agricultural and environmental applications, including straw pretreatment, feed fermentation, mycotoxin degradation, and water treatment. However, current research remains in its exploratory phase, with naturally sourced MnP unable to meet industrial-scale demands and no mature commercial enzyme preparations available on the market. This comprehensive review innovatively constructs a framework for MnP research, probing into its molecular conformation and catalytic principles, while providing an overview of the advancements in high-throughput screening and In silco designing strategies. Specifically, this review focuses on the practical applications of MnP in sustainable agriculture, elaborating on its potential and challenges in straw resource utilization, efficient feed fermentation, mycotoxin control, and water quality improvement. Furthermore, this review summarizes the recent achievements in optimizing MnP activity through enzyme engineering techniques and discuss customized mutation strategies tailored to specific agricultural and environmental requirements, thereby laying a solid theoretical foundation and scientific basis for the industrial production and commercialization of MnP.
Collapse
Affiliation(s)
- Lu He
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Mingchen Yan
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Muhammad Naeem
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Minghaonan Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Yong Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Zhong Ni
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Huayou Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| |
Collapse
|
5
|
Ndochinwa OG, Wang QY, Amadi OC, Nwagu TN, Nnamchi CI, Okeke ES, Moneke AN. Current status and emerging frontiers in enzyme engineering: An industrial perspective. Heliyon 2024; 10:e32673. [PMID: 38912509 PMCID: PMC11193041 DOI: 10.1016/j.heliyon.2024.e32673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024] Open
Abstract
Protein engineering mechanisms can be an efficient approach to enhance the biochemical properties of various biocatalysts. Immobilization of biocatalysts and the introduction of new-to-nature chemical reactivities are also possible through the same mechanism. Discovering new protocols that enhance the catalytic active protein that possesses novelty in terms of being stable, active, and, stereoselectivity with functions could be identified as essential areas in terms of concurrent bioorganic chemistry (synergistic relationship between organic chemistry and biochemistry in the context of enzyme engineering). However, with our current level of knowledge about protein folding and its correlation with protein conformation and activities, it is almost impossible to design proteins with specific biological and physical properties. Hence, contemporary protein engineering typically involves reprogramming existing enzymes by mutagenesis to generate new phenotypes with desired properties. These processes ensure that limitations of naturally occurring enzymes are not encountered. For example, researchers have engineered cellulases and hemicellulases to withstand harsh conditions encountered during biomass pretreatment, such as high temperatures and acidic environments. By enhancing the activity and robustness of these enzymes, biofuel production becomes more economically viable and environmentally sustainable. Recent trends in enzyme engineering have enabled the development of tailored biocatalysts for pharmaceutical applications. For instance, researchers have engineered enzymes such as cytochrome P450s and amine oxidases to catalyze challenging reactions involved in drug synthesis. In addition to conventional methods, there has been an increasing application of machine learning techniques to identify patterns in data. These patterns are then used to predict protein structures, enhance enzyme solubility, stability, and function, forecast substrate specificity, and assist in rational protein design. In this review, we discussed recent trends in enzyme engineering to optimize the biochemical properties of various biocatalysts. Using examples relevant to biotechnology in engineering enzymes, we try to expatiate the significance of enzyme engineering with how these methods could be applied to optimize the biochemical properties of a naturally occurring enzyme.
Collapse
Affiliation(s)
- Obinna Giles Ndochinwa
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| | - Qing-Yan Wang
- State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Oyetugo Chioma Amadi
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| | - Tochukwu Nwamaka Nwagu
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| | | | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Anene Nwabu Moneke
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
6
|
O'Connell A, Barry A, Burke AJ, Hutton AE, Bell EL, Green AP, O'Reilly E. Biocatalysis: landmark discoveries and applications in chemical synthesis. Chem Soc Rev 2024; 53:2828-2850. [PMID: 38407834 DOI: 10.1039/d3cs00689a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Biocatalysis has become an important tool in chemical synthesis, allowing access to complex molecules with high levels of activity and selectivity and with low environmental impact. Key discoveries in protein engineering, bioinformatics, recombinant technology and DNA sequencing have contributed towards the rapid acceleration of the field. This tutorial review explores enzyme engineering strategies and high-throughput screening approaches that have been applied for the discovery and development of enzymes for synthetic application. Landmark developments in the field are discussed and have been carefully selected to highlight the diverse synthetic applications of enzymes within the pharmaceutical, agricultural, food and chemical industries. The design and development of artificial biocatalytic cascades is also examined. This tutorial review will give readers an insight into the landmark discoveries and milestones that have helped shape and grow this branch of catalysis since the discovery of the first enzyme.
Collapse
Affiliation(s)
- Adam O'Connell
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Amber Barry
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ashleigh J Burke
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Amy E Hutton
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Elizabeth L Bell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Anthony P Green
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Elaine O'Reilly
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
7
|
Wang B, Xu JZ, Liu S, Rao ZM, Zhang WG. Engineering of human tryptophan hydroxylase 2 for efficient synthesis of 5-hydroxytryptophan. Int J Biol Macromol 2024; 260:129484. [PMID: 38242416 DOI: 10.1016/j.ijbiomac.2024.129484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
L-Tryptophan hydroxylation catalyzed by tryptophan hydroxylase (TPH) presents a promising method for synthesizing 5-hydroxytryptophan (5-HTP), yet the limited activity of wild-type human TPH2 restricts its application. A high-activity mutant, MT10 (H318E/H323E), was developed through semi-rational active site saturation testing (CAST) of wild-type TPH2, exhibiting a 2.85-fold increase in kcat/Km over the wild type, thus enhancing catalytic efficiency. Two biotransformation systems were developed, including an in vitro one-pot system and a Whole-Cell Catalysis System (WCCS). In the WCCS, MT10 achieved a conversion rate of only 31.5 % within 32 h. In the one-pot reaction, MT10 converted 50 mM L-tryptophan to 44.5 mM 5-HTP within 8 h, achieving an 89 % conversion rate, outperforming the M1 (NΔ143/CΔ26) variant. Molecular dynamics simulations indicated enhanced interactions of MT10 with the substrate, suggesting improved binding affinity and system stability. This study offers an effective approach for the efficient production of 5-HTP.
Collapse
Affiliation(s)
- BingBing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China
| | - Shuai Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China
| | - Zhi-Ming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China; National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China.
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China.
| |
Collapse
|
8
|
Li L, Liu X, Bai Y, Yao B, Luo H, Tu T. High-Throughput Screening Techniques for the Selection of Thermostable Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3833-3845. [PMID: 38285533 DOI: 10.1021/acs.jafc.3c07554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The acquisition of a thermostable enzyme is an indispensable prerequisite for its successful implementation in industrial applications and the development of novel functionalities. Various protein engineering approaches, including rational design, semirational design, and directed evolution, have been employed to enhance thermostability. However, all of these approaches require sensitive and reliable high-throughput screening (HTS) technologies to efficiently and rapidly identify variants with improved properties. While numerous reviews focus on modification strategies for enhancing enzyme thermostability, there is a dearth of literature reviewing HTS methods specifically aimed at this objective. Herein, we present a comprehensive overview of various HTS methods utilized for modifying enzyme thermostability across different screening platforms. Additionally, we highlight significant recent examples that demonstrate the successful application of these methods. Furthermore, we address the technical challenges associated with HTS technologies used for screening thermostable enzyme variants and discuss valuable perspectives to promote further advancements in this field. This review serves as an authoritative reference source offering theoretical support for selecting appropriate screening strategies tailored to specific enzymes with the aim of improving their thermostability.
Collapse
Affiliation(s)
- Lanxue Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
9
|
Chen H, Liu R, Cai S, Zhang Y, Zhu C, Yu H, Li S. Intermediate product control in cascade reaction for one-pot production of ε-caprolactone by Escherichia coli. Biotechnol J 2024; 19:e2300210. [PMID: 38403458 DOI: 10.1002/biot.202300210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 02/27/2024]
Abstract
ε-Caprolactone is an important non-toxic compound for polymer synthesis like polycaprolactone which has been widely used in drug delivery and degradable plastics. To meet the demand for a green economy, a bi-enzymatic cascade, consisting of an alcohol dehydrogenase (ADH) and a cyclohexanone monooxygenase (CHMO), was designed and introduced into Escherichia coli to synthesize ε-caprolactone from cyclohexanol with a self-sufficient NADPH-cofactor regeneration system. To further improve the catalytic efficiency, a carbonyl group-dependent colorimetric method using inexpensive 2,4-dinitrophenylhydrazine (DNPH) was developed for assay of cyclohexanone, an intermediate production of cascade reaction. It can be used to screen mutant strains with high catalytic efficiency from high-throughput library by detecting the absorbance value in microtiter plates (MTP) instead of gas chromatography (GC) analysis. Moreover, an RBS combinatorial library was constructed for balancing the expression of ADH and CHMO from two independent transcriptional units. After the high-throughput screening based on intermediate product control, an optimal variant with higher substrate tolerance and long-term stability was obtained from RBS combinatorial library. Through a fed-batch process, ε-caprolactone production reached 148.2 mM after 70 h of reaction under the optimized conditions, which was the highest yield achieved to date.
Collapse
Affiliation(s)
- Hefeng Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ran Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shengliang Cai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yingjiao Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Chaoyi Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hao Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Su B, Deng MR, Zhu H. Advances in the Discovery and Engineering of Gene Targets for Carotenoid Biosynthesis in Recombinant Strains. Biomolecules 2023; 13:1747. [PMID: 38136618 PMCID: PMC10742120 DOI: 10.3390/biom13121747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Carotenoids are naturally occurring pigments that are abundant in the natural world. Due to their excellent antioxidant attributes, carotenoids are widely utilized in various industries, including the food, pharmaceutical, cosmetic industries, and others. Plants, algae, and microorganisms are presently the main sources for acquiring natural carotenoids. However, due to the swift progress in metabolic engineering and synthetic biology, along with the continuous and thorough investigation of carotenoid biosynthetic pathways, recombinant strains have emerged as promising candidates to produce carotenoids. The identification and manipulation of gene targets that influence the accumulation of the desired products is a crucial challenge in the construction and metabolic regulation of recombinant strains. In this review, we provide an overview of the carotenoid biosynthetic pathway, followed by a summary of the methodologies employed in the discovery of gene targets associated with carotenoid production. Furthermore, we focus on discussing the gene targets that have shown potential to enhance carotenoid production. To facilitate future research, we categorize these gene targets based on their capacity to attain elevated levels of carotenoid production.
Collapse
Affiliation(s)
| | - Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| |
Collapse
|
11
|
Ouyang B, Wang G, Zhang N, Zuo J, Huang Y, Zhao X. Recent Advances in β-Glucosidase Sequence and Structure Engineering: A Brief Review. Molecules 2023; 28:4990. [PMID: 37446652 DOI: 10.3390/molecules28134990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
β-glucosidases (BGLs) play a crucial role in the degradation of lignocellulosic biomass as well as in industrial applications such as pharmaceuticals, foods, and flavors. However, the application of BGLs has been largely hindered by issues such as low enzyme activity, product inhibition, low stability, etc. Many approaches have been developed to engineer BGLs to improve these enzymatic characteristics to facilitate industrial production. In this article, we review the recent advances in BGL engineering in the field, including the efforts from our laboratory. We summarize and discuss the BGL engineering studies according to the targeted functions as well as the specific strategies used for BGL engineering.
Collapse
Affiliation(s)
- Bei Ouyang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Guoping Wang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Nian Zhang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Jiali Zuo
- School of Computer and Information Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunhong Huang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xihua Zhao
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
12
|
Enhanced Thermal Stability of Polyphosphate-Dependent Glucomannokinase by Directed Evolution. Catalysts 2022. [DOI: 10.3390/catal12101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polyphosphate-dependent glucomannokinase (PPGMK) is able to utilize inorganic polyphosphate to synthesize mannose-6-phosphate (M6P) instead of highly costly ATP. This enzyme was modified and designed by combining error-prone PCR (EP-PCR) and site-directed saturation mutagenesis. Two mutants, H92L/A138V and E119V, were screened out from the random mutation library, and we used site-specific saturation mutations to find the optimal amino acid at each site. Finally, we found the optimal combination mutant, H92K/E119R. The thermal stability of H92K/E119R increased by 5.4 times at 50 °C, and the half-life at 50 °C increased to 243 min. Moreover, the enzyme activity of H92K/E119R increased to 16.6 U/mg, and its enzyme activity is twice that of WT. We analyzed the structure of the mutant using molecular dynamics simulation. We found that the shortening of the hydrogen bond distance and the formation of salt bridges can firmly connect the α-helix and β-sheet and improve the stability of the PPGMK structure.
Collapse
|
13
|
Substrate multiplexed protein engineering facilitates promiscuous biocatalytic synthesis. Nat Commun 2022; 13:5242. [PMID: 36068220 PMCID: PMC9448781 DOI: 10.1038/s41467-022-32789-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Enzymes with high activity are readily produced through protein engineering, but intentionally and efficiently engineering enzymes for an expanded substrate scope is a contemporary challenge. One approach to address this challenge is Substrate Multiplexed Screening (SUMS), where enzyme activity is measured on competing substrates. SUMS has long been used to rigorously quantitate native enzyme specificity, primarily for in vivo settings. SUMS has more recently found sporadic use as a protein engineering approach but has not been widely adopted by the field, despite its potential utility. Here, we develop principles of how to design and interpret SUMS assays to guide protein engineering. This rich information enables improving activity with multiple substrates simultaneously, identifies enzyme variants with altered scope, and indicates potential mutational hot-spots as sites for further engineering. These advances leverage common laboratory equipment and represent a highly accessible and customizable method for enzyme engineering. Efficient engineering of enzymes for expanded substrate scope is currently challenging. Here, the authors develop simple principles of how to design and interpret Substrate Multiplexed Screening assays to guide protein engineering to enable activity improvements with simultaneously with multiple substrates.
Collapse
|
14
|
Huang C, Wang C, Luo Y. Research progress of pathway and genome evolution in microbes. Synth Syst Biotechnol 2022; 7:648-656. [PMID: 35224232 PMCID: PMC8857405 DOI: 10.1016/j.synbio.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Microbes can produce valuable natural products widely applied in medicine, food and other important fields. Nevertheless, it is usually challenging to achieve ideal industrial yields due to low production rate and poor toxicity tolerance. Evolution is a constant mutation and adaptation process used to improve strain performance. Generally speaking, the synthesis of natural products in microbes is often intricate, involving multiple enzymes or multiple pathways. Individual evolution of a certain enzyme often fails to achieve the desired results, and may lead to new rate-limiting nodes that affect the growth of microbes. Therefore, it is inevitable to evolve the biosynthetic pathways or the whole genome. Here, we reviewed the pathway-level evolution including multi-enzyme evolution, regulatory elements engineering, and computer-aided engineering, as well as the genome-level evolution based on several tools, such as genome shuffling and CRISPR/Cas systems. Finally, we also discussed the major challenges faced by in vivo evolution strategies and proposed some potential solutions.
Collapse
Affiliation(s)
- Chaoqun Huang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Chang Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yunzi Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen, 518071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
- Corresponding author. Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
15
|
Giri P, Pagar AD, Patil MD, Yun H. Chemical modification of enzymes to improve biocatalytic performance. Biotechnol Adv 2021; 53:107868. [PMID: 34774927 DOI: 10.1016/j.biotechadv.2021.107868] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/23/2022]
Abstract
Improvement in intrinsic enzymatic features is in many instances a prerequisite for the scalable applicability of many industrially important biocatalysts. To this end, various strategies of chemical modification of enzymes are maturing and now considered as a distinct way to improve biocatalytic properties. Traditional chemical modification methods utilize reactivities of amine, carboxylic, thiol and other side chains originating from canonical amino acids. On the other hand, noncanonical amino acid- mediated 'click' (bioorthogoal) chemistry and dehydroalanine (Dha)-mediated modifications have emerged as an alternate and promising ways to modify enzymes for functional enhancement. This review discusses the applications of various chemical modification tools that have been directed towards the improvement of functional properties and/or stability of diverse array of biocatalysts.
Collapse
Affiliation(s)
- Pritam Giri
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mahesh D Patil
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, PO Manauli, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
16
|
Revolutionizing enzyme engineering through artificial intelligence and machine learning. Emerg Top Life Sci 2021; 5:113-125. [PMID: 33835131 DOI: 10.1042/etls20200257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022]
Abstract
The combinatorial space of an enzyme sequence has astronomical possibilities and exploring it with contemporary experimental techniques is arduous and often ineffective. Multi-target objectives such as concomitantly achieving improved selectivity, solubility and activity of an enzyme have narrow plausibility under approaches of restricted mutagenesis and combinatorial search. Traditional enzyme engineering approaches have a limited scope for complex optimization due to the requirement of a priori knowledge or experimental burden of screening huge protein libraries. The recent surge in high-throughput experimental methods including Next Generation Sequencing and automated screening has flooded the field of molecular biology with big-data, which requires us to re-think our concurrent approaches towards enzyme engineering. Artificial Intelligence (AI) and Machine Learning (ML) have great potential to revolutionize smart enzyme engineering without the explicit need for a complete understanding of the underlying molecular system. Here, we portray the role and position of AI techniques in the field of enzyme engineering along with their scope and limitations. In addition, we explain how the traditional approaches of directed evolution and rational design can be extended through AI tools. Recent successful examples of AI-assisted enzyme engineering projects and their deviation from traditional approaches are highlighted. A comprehensive picture of current challenges and future avenues for AI in enzyme engineering are also discussed.
Collapse
|
17
|
Robotics for enzyme technology: innovations and technological perspectives. Appl Microbiol Biotechnol 2021; 105:4089-4097. [PMID: 33970318 DOI: 10.1007/s00253-021-11302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
The use of robotics in the life science sector has created a considerable and significant impact on a wide range of research areas, including enzyme technology due to their immense applications in enzyme and microbial engineering as an indispensable tool in high-throughput screening applications. Scientists are experiencing the advanced applications of various biological robots (nanobots), fabricated based on bottom-up or top-down approaches for making nanotechnology scaffolds. Nanobots and enzyme-powered nanomotors are particularly attractive because they are self-propelled vehicles, which consume biocompatible fuels. These smart nanostructures are widely used as drug delivery systems for the efficient treatment of various diseases. This review gives insights into the escalating necessity of robotics and nanobots and their ever-widening applications in enzyme technology, including biofuel production and biomedical applications. It also offers brief insights into high-throughput robotic platforms that are currently being used in enzyme screening applications for monitoring and control of microbial growth conditions. KEY POINTS: • Robotics and their applications in biotechnology are highlighted. • Robotics for high-throughput enzyme screening and microbial engineering are described. • Nanobots and enzyme-powered nanomotors as controllable drug delivery systems are reviewed.
Collapse
|
18
|
Peculiarities of promiscuous L-threonine transaldolases for enantioselective synthesis of β-hydroxy-α-amino acids. Appl Microbiol Biotechnol 2021; 105:3507-3520. [PMID: 33900425 PMCID: PMC8072733 DOI: 10.1007/s00253-021-11288-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The introduction of β-hydroxy-α-amino acids (βHAAs) into organic molecules has received considerable attention as these molecules have often found widespread applications in bioorganic chemistry, medicinal chemistry and biomaterial science. Despite innovation of asymmetric synthesis of βHAAs, stereoselective synthesis to control the two chiral centres at Cα and Cβ positions is still challenging, with poor atomic economy and multi protection and deprotection steps. These syntheses are often operated under harsh conditions. Therefore, a biotransformation approach using biocatalysts is needed to selectively introduce these two chiral centres into structurally diverse molecules. Yet, there are few ways that enable one-step synthesis of βHAAs. One is to extend the substrate scope of the existing enzyme inventory. Threonine aldolases have been explored to produce βHAAs. However, the enzymes have poor controlled installation at Cβ position, often resulting in a mixture of diastereoisomers which are difficult to be separated. In this respect, L-threonine transaldolases (LTTAs) offer an excellent potential as the enzymes often provide controlled stereochemistry at Cα and Cβ positions. Another is to mine LTTA homologues and engineer the enzymes using directed evolution with the aim of finding engineered biocatalysts to accept broad substrates with enhanced conversion and stereoselectivity. Here, we review the development of LTTAs that incorporate various aldehyde acceptors to generate structurally diverse βHAAs and highlight areas for future developments. KEY POINTS: • The general mechanism of the transaldolation reaction catalysed by LTTAs • Recent advances in LTTAs from different biosynthetic pathways • Applications of LTTAs as biocatalysts for production of βHAAs.
Collapse
|
19
|
Li J, Jiang L, Cao X, Wu Y, Lu F, Liu F, Li Y, Liu Y. Improving the activity and stability of Bacillus clausii alkaline protease using directed evolution and molecular dynamics simulation. Enzyme Microb Technol 2021; 147:109787. [PMID: 33992409 DOI: 10.1016/j.enzmictec.2021.109787] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Detergent enzymes have been developed extensively as eco-friendly substitutes for the harmful chemicals in detergent. Among them, alkaline protease accounts for a large share of detergent enzyme sales. Thus, improving the specific activity of alkaline protease could play an important role in reducing the cost of detergent enzymes. In our study, alkaline protease from Bacillus clausii (PRO) was used to construct a mutant library through directed evolution using error-prone PCR, and a variant (G95P) with 9-fold enhancement in specific activity was obtained. After incubation at a pH of 11.0 for 70 h, G95P maintained 67 % of its maximal activity, which was 46 % more than wild-type PRO (WT), indicating that G95P has better alkaline stability than WT. The thermostability of G95P was also enhanced, as G95P achieved 17 % initial activity after incubation for 50 h at 60 °C, while WT lost its activity. The MD simulation results verified that variant G95P possessed improved stability of its Gly95-Gly100 loop region and Arg19-Asp265 salt bridge, leading to enhanced stability and catalytic efficiency. This work enhances the understanding of the structure-function relationship of PRO and provides an academic foundation for improving the enzymatic properties of PRO to satisfy industrial requirements using protein engineering.
Collapse
Affiliation(s)
- Jialin Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Xue Cao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yifan Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| |
Collapse
|
20
|
Yang J, Tu R, Yuan H, Wang Q, Zhu L. Recent advances in droplet microfluidics for enzyme and cell factory engineering. Crit Rev Biotechnol 2021; 41:1023-1045. [PMID: 33730939 DOI: 10.1080/07388551.2021.1898326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Enzymes and cell factories play essential roles in industrial biotechnology for the production of chemicals and fuels. The properties of natural enzymes and cells often cannot meet the requirements of different industrial processes in terms of cost-effectiveness and high durability. To rapidly improve their properties and performances, laboratory evolution equipped with high-throughput screening methods and facilities is commonly used to tailor the desired properties of enzymes and cell factories, addressing the challenges of achieving high titer and the yield of the target products at high/low temperatures or extreme pH, in unnatural environments or in the presence of unconventional media. Droplet microfluidic screening (DMFS) systems have demonstrated great potential for exploring vast genetic diversity in a high-throughput manner (>106/h) for laboratory evolution and have been increasingly used in recent years, contributing to the identification of extraordinary mutants. This review highlights the recent advances in concepts and methods of DMFS for library screening, including the key factors in droplet generation and manipulation, signal sources for sensitive detection and sorting, and a comprehensive summary of success stories of DMFS implementation for engineering enzymes and cell factories during the past decade.
Collapse
Affiliation(s)
- Jianhua Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ran Tu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Huiling Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Leilei Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
21
|
Victorino da Silva Amatto I, Gonsales da Rosa-Garzon N, Antônio de Oliveira Simões F, Santiago F, Pereira da Silva Leite N, Raspante Martins J, Cabral H. Enzyme engineering and its industrial applications. Biotechnol Appl Biochem 2021; 69:389-409. [PMID: 33555054 DOI: 10.1002/bab.2117] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/18/2021] [Indexed: 01/03/2023]
Abstract
Recently, there has been an increase in the demand for enzymes with modified activity, specificity, and stability. Enzyme engineering is an important tool to meet the demand for enzymes adjusted to different industrial processes. Knowledge of the structure and function of enzymes guides the choice of the best strategy for engineering enzymes. Each enzyme engineering strategy, such as rational design, directed evolution, and semi-rational design, has specific applications, as well as limitations, which must be considered when choosing a suitable strategy. Engineered enzymes can be optimized for different industrial applications by choosing the appropriate strategy. This review features engineered enzymes that have been applied in food, animal feed, pharmaceuticals, medical applications, bioremediation, biofuels, and detergents.
Collapse
Affiliation(s)
- Isabela Victorino da Silva Amatto
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Biosciences and Biotechnology Program, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nathalia Gonsales da Rosa-Garzon
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávio Antônio de Oliveira Simões
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Pharmaceutical Sciences Program, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernanda Santiago
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Biosciences and Biotechnology Program, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nathália Pereira da Silva Leite
- Pharmaceutical Sciences Program, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, XUniversity of São Paulo, Ribeirão Preto, SP, Brazil
| | - Júlia Raspante Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Biosciences and Biotechnology Program, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Hamilton Cabral
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Biosciences and Biotechnology Program, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Pharmaceutical Sciences Program, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
22
|
Davies JA. SynPharm and the guide to pharmacology database: A toolset for conferring drug control on engineered proteins. Protein Sci 2021; 30:160-167. [PMID: 33047381 PMCID: PMC7737777 DOI: 10.1002/pro.3971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/09/2023]
Abstract
Optimizing synthetic biological systems, for example novel metabolic pathways, becomes more complicated with more protein components. One method of taming the complexity and allowing more rapid optimization is engineering external control into components. Pharmacology is essentially the science of controlling proteins using (mainly) small molecules, and a great deal of information, spread between different databases, is known about structural interactions between these ligands and their target proteins. In principle, protein engineers can use an inverse pharmacological approach to include drug response in their design, by identifying ligand-binding domains from natural proteins that are amenable to being included in a designed protein. In this context, "amenable" means that the ligand-binding domain is in a relatively self-contained subsequence of the parent protein, structurally independent of the rest of the molecule so that its function should be retained in another context. The SynPharm database is a tool, built on to the Guide to Pharmacology database and connected to various structural databases, to help protein engineers identify ligand-binding domains suitable for transfer. This article describes the tool, and illustrates its use in seeking candidate domains for transfer. It also briefly describes already-published proof-of-concept studies in which the CRISPR effectors Cas9 and Cpf1 were placed separately under the control of tamoxifen and mefipristone, by including ligand-binding domains of the Estrogen Receptor and Progesterone Receptor in modified versions of Cas9 and Cpf1. The advantages of drug control or the rival protein-control technology of optogenetics, for different purposes and in different situations, are also briefly discussed.
Collapse
Affiliation(s)
- Jamie A. Davies
- Synthsys Centre for Systems and Synthetic Biology, Deanery of Biomedical ScienceUniversity of EdinburghEdinburghUK
| |
Collapse
|
23
|
Schmermund L, Bierbaumer S, Schein VK, Winkler CK, Kara S, Kroutil W. Extending the Library of Light‐Dependent Protochlorophyllide Oxidoreductases and their Solvent Tolerance, Stability in Light and Cofactor Flexibility. ChemCatChem 2020. [DOI: 10.1002/cctc.202000561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Luca Schmermund
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Sarah Bierbaumer
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Viktor K. Schein
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Christoph K. Winkler
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Selin Kara
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing Group Aarhus University Gustav Wieds Vej 10 8000 Aarhus Denmark
| | - Wolfgang Kroutil
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
24
|
Xu L, Wang LC, Su BM, Xu XQ, Lin J. Multi-enzyme cascade for improving β-hydroxy-α-amino acids production by engineering L-threonine transaldolase and combining acetaldehyde elimination system. BIORESOURCE TECHNOLOGY 2020; 310:123439. [PMID: 32361648 DOI: 10.1016/j.biortech.2020.123439] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
L-threonine transaldolase(PsLTTA) could asymmetric synthesize β-hydroxy-α-amino acids (HAAs) with excellentstereoselectivity, while the poor yield limited its further application. Here we provided a combinatorial strategy to improve HAAs production, by directed evolution of PsLTTA towards enhanced activity and introducing an acetaldehyde elimination system to avoid acetaldehyde over-accumulation. A novel high throughput screening (HTS) method for evaluating PsLTTA activity was developed andapplied for directed evolution of PsLTTA. Subsequently, we co-expressedalcohol dehydrogenase andformate dehydrogenase to construct an acetaldehyde elimination system toremove acetaldehyde inhibition.Moreover, the above positive strategies were integrated. As a result,the (2S,3R)-p-methylsulfonyl phenylserine yield reached 154.0 mM andwith 94.6% devalue, the highest productivity and stereoselectivity of (2S,3R)-HAAs reported by enzymatic synthesis so far. Taken together, our studies provided an efficient and green route for chiral synthesis of (2S,3R)-HAAs, which might contribute to the industrialization production of these useful building blocks.
Collapse
Affiliation(s)
- Lian Xu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Li-Chao Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Bing-Mei Su
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xin-Qi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Juan Lin
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
25
|
Winning the numbers game in enzyme evolution - fast screening methods for improved biotechnology proteins. Curr Opin Struct Biol 2020; 63:123-133. [PMID: 32615371 DOI: 10.1016/j.sbi.2020.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 01/02/2023]
Abstract
The booming demand for environmentally benign industrial processes relies on the ability to quickly find or engineer a biocatalyst suitable to ideal process conditions. Both metagenomic approaches and directed evolution involve the screening of huge libraries of protein variants, which can only be managed reasonably by flexible platforms for (ultra)high-throughput profiling against the desired criteria. Here, we review the most recent additions toward a growing toolbox of versatile assays using fluorescence, absorbance and mass spectrometry readouts. While conventional solution based high-throughput screening in microtiter plate formats is still important, the implementation of novel screening protocols for microfluidic cell or droplet sorting systems supports technological advances for ultra-high-frequency screening that now can dramatically reduce the timescale of engineering projects. We discuss practical issues of scope, scalability, sensitivity and stereoselectivity for the improvement of biotechnologically relevant enzymes from different classes.
Collapse
|
26
|
Gul I, Bogale TF, Chen Y, Yang X, Fang R, Feng J, Gao H, Tang L. A paper-based whole-cell screening assay for directed evolution-driven enzyme engineering. Appl Microbiol Biotechnol 2020; 104:6013-6022. [DOI: 10.1007/s00253-020-10615-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
|
27
|
Gul I, Fantaye Bogale T, Deng J, Wang L, Feng J, Tang L. A high-throughput screening assay for the directed evolution-guided discovery of halohydrin dehalogenase mutants for epoxide ring-opening reaction. J Biotechnol 2020; 311:19-24. [DOI: 10.1016/j.jbiotec.2020.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023]
|
28
|
Begander B, Huber A, Döring M, Sperl J, Sieber V. Development of an Improved Peroxidase-Based High-Throughput Screening for the Optimization of D-Glycerate Dehydratase Activity. Int J Mol Sci 2020; 21:ijms21010335. [PMID: 31947885 PMCID: PMC6982167 DOI: 10.3390/ijms21010335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
Successful directed evolution examples span a broad range of improved enzyme properties. Nevertheless, the most challenging step for each single directed evolution approach is an efficient identification of improved variants from a large genetic library. Thus, the development and choice of a proper high-throughput screening is a central key for the optimization of enzymes. The detection of low enzymatic activities is especially complicated when they lead to products that are present in the metabolism of the utilized genetic host. Coupled enzymatic assays based on colorimetric products have enabled the optimization of many of such enzymes, but are susceptible to problems when applied on cell extract samples. The purpose of this study was the development of a high-throughput screening for D-glycerate dehydratase activity in cell lysates. With the aid of an automated liquid handling system, we developed a high-throughput assay that relied on a pre-treatment step of cell extract prior to performing the enzymatic and assay reactions. We could successfully apply our method, which should also be transferable to other cell extract-based peroxidase assays, to identify an improved enzyme for the dehydration of D-glycerate.
Collapse
Affiliation(s)
- Benjamin Begander
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, D-94315 Straubing, Germany
| | - Anna Huber
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, D-94315 Straubing, Germany
| | - Manuel Döring
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, D-94315 Straubing, Germany
| | - Josef Sperl
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, D-94315 Straubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, D-94315 Straubing, Germany
- Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Correspondence: ; Tel.: +49-9421-187-300
| |
Collapse
|
29
|
Thomas A, Cutlan R, Finnigan W, van der Giezen M, Harmer N. Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction. Commun Biol 2019; 2:429. [PMID: 31799431 PMCID: PMC6874671 DOI: 10.1038/s42003-019-0677-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022] Open
Abstract
Carboxylic acid reductases (CARs) are biocatalysts of industrial importance. Their properties, especially their poor stability, render them sub-optimal for use in a bioindustrial pipeline. Here, we employed ancestral sequence reconstruction (ASR) - a burgeoning engineering tool that can identify stabilizing but enzymatically neutral mutations throughout a protein. We used a three-algorithm approach to reconstruct functional ancestors of the Mycobacterial and Nocardial CAR1 orthologues. Ancestral CARs (AncCARs) were confirmed to be CAR enzymes with a preference for aromatic carboxylic acids. Ancestors also showed varied tolerances to solvents, pH and in vivo-like salt concentrations. Compared to well-studied extant CARs, AncCARs had a Tm up to 35 °C higher, with half-lives up to nine times longer than the greatest previously observed. Using ancestral reconstruction we have expanded the existing CAR toolbox with three new thermostable CAR enzymes, providing access to the high temperature biosynthesis of aldehydes to drive new applications in biocatalysis.
Collapse
Affiliation(s)
- Adam Thomas
- Living Systems Institute, Stocker Road, Exeter, EX4 4QD UK
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - Rhys Cutlan
- Living Systems Institute, Stocker Road, Exeter, EX4 4QD UK
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - William Finnigan
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - Mark van der Giezen
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
- Centre for Organelle Research, University of Stavanger, Richard Johnsens gate 4, Stavanger, 4021 Norway
| | - Nicholas Harmer
- Living Systems Institute, Stocker Road, Exeter, EX4 4QD UK
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| |
Collapse
|
30
|
Chiu FWY, Stavrakis S. High-throughput droplet-based microfluidics for directed evolution of enzymes. Electrophoresis 2019; 40:2860-2872. [PMID: 31433062 PMCID: PMC6899980 DOI: 10.1002/elps.201900222] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/12/2023]
Abstract
Natural enzymes have evolved over millions of years to allow for their effective operation within specific environments. However, it is significant to note that despite their wide structural and chemical diversity, relatively few natural enzymes have been successfully applied to industrial processes. To address this limitation, directed evolution (DE) (a method that mimics the process of natural selection to evolve proteins toward a user‐defined goal) coupled with droplet‐based microfluidics allows the detailed analysis of millions of enzyme variants on ultra‐short timescales, and thus the design of novel enzymes with bespoke properties. In this review, we aim at presenting the development of DE over the last years and highlighting the most important advancements in droplet‐based microfluidics, made in this context towards the high‐throughput demands of enzyme optimization. Specifically, an overview of the range of microfluidic unit operations available for the construction of DE platforms is provided, focusing on their suitability and benefits for cell‐based assays, as in the case of directed evolution experimentations.
Collapse
Affiliation(s)
- Flora W Y Chiu
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
31
|
Recent Advances of Cellulase Immobilization onto Magnetic Nanoparticles: An Update Review. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5020036] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellulosic enzymes, including cellulase, play an important role in biotechnological processes in the fields of food, cosmetics, detergents, pulp, paper, and related industries. Low thermal and storage stability of cellulase, presence of impurities, enzyme leakage, and reusability pose great challenges in all these processes. These challenges can be overcome via enzyme immobilization methods. In recent years, cellulase immobilization onto nanomaterials became the focus of research attention owing to the surface features of these materials. However, the application of these nanomaterials is limited due to the efficacy of their recovery process. The application of magnetic nanoparticles (MNPs) was suggested as a solution to this problem since they can be easily removed from the reaction mixture by applying an external magnet. Recently, MNPs were extensively employed for enzyme immobilization owing to their low toxicity and various practical advantages. In the present review, recent advances in cellulase immobilization onto functionalized MNPs is summarized. Finally, we discuss enhanced enzyme reusability, activity, and stability, as well as improved enzyme recovery. Enzyme immobilization techniques offer promising potential for industrial applications.
Collapse
|
32
|
Sun Z, Liu Q, Qu G, Feng Y, Reetz MT. Utility of B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability. Chem Rev 2019; 119:1626-1665. [PMID: 30698416 DOI: 10.1021/acs.chemrev.8b00290] [Citation(s) in RCA: 334] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|