1
|
Li Y, Yang X, Chen Q, Li Y, Gao R. Unlocking Industrial Potential: Phase-Transition Coimmobilization of Multienzyme Systems for High-Efficiency Uridine Diphosphate Galactose Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22217-22228. [PMID: 39316733 DOI: 10.1021/acs.jafc.4c07173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Transitioning from batch to continuous industrial production often improves the economic returns and production efficiency. Immobilization is a critical strategy that can facilitate this shift. This study refined the previously established method for synthesizing uridine diphosphate galactose (UDP-Gal) by employing thermophilic enzymes. Three thermophilic enzymes (galactokinase, uridine diphosphate glucose pyrophosphorylase, and inorganic pyrophosphatase) were coimmobilized on the pH-responsive carrier Eudragit S-100, promoting enzyme recovery and reuse while their industrial potential was assessed. The coimmobilization system efficiently catalyzed UDP-Gal production, yielding 13.69 mM in 1.5 h, attaining a UTP conversion rate of 91.2% and a space-time yield (STY) of 5.16 g/L/h. Moreover, the system exhibited exceptional reproducibility, retaining 58.9% of its initial activity after five cycles. This research highlighted promising prospects for coimmobilization in industrial synthesis and proposed a novel methodology for enhancing UDP-Gal production in the industry. In addition, the phase-transition property of Eudragit S-100 paves the way for further exploration with the one-pot synthesis of poorly soluble galactosides.
Collapse
Affiliation(s)
- Yajing Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130000, China
| | - Xinrui Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130000, China
| | - Qi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130000, China
| | - Yuejun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130000, China
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130000, China
| |
Collapse
|
2
|
Diamanti E, López-Gallego F. Single-Particle and Single-Molecule Characterization of Immobilized Enzymes: A Multiscale Path toward Optimizing Heterogeneous Biocatalysts. Angew Chem Int Ed Engl 2024; 63:e202319248. [PMID: 38476019 DOI: 10.1002/anie.202319248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Heterogeneous biocatalysis is highly relevant in biotechnology as it offers several benefits and practical uses. To leverage the full potential of heterogeneous biocatalysts, the establishment of well-crafted protocols, and a deeper comprehension of enzyme immobilization on solid substrates are essential. These endeavors seek to optimize immobilized biocatalysts, ensuring maximal enzyme performance within confined spaces. For this aim, multidimensional characterization of heterogeneous biocatalysts is required. In this context, spectroscopic and microscopic methodologies conducted at different space and temporal scales can inform about the intraparticle enzyme kinetics, the enzyme spatial distribution, and the mass transport issues. In this Minireview, we identify enzyme immobilization, enzyme catalysis, and enzyme inactivation as the three main processes for which advanced characterization tools unveil fundamental information. Recent advances in operando characterization of immobilized enzymes at the single-particle (SP) and single-molecule (SM) levels inform about their functional properties, unlocking the full potential of heterogeneous biocatalysis toward biotechnological applications.
Collapse
Affiliation(s)
- Eleftheria Diamanti
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-, Basque Research and Technology Alliance (BRTA), Paseo Miramón, 194, 20014, Donostia-San Sebastián, Spain
| | - Fernando López-Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-, Basque Research and Technology Alliance (BRTA), Paseo Miramón, 194, 20014, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain
| |
Collapse
|
3
|
Trobo-Maseda L, Romero-Fernandez M, Guisan JM, Rocha-Martin J. Glycosylation of polyphenolic compounds: Design of a self-sufficient biocatalyst by co-immobilization of a glycosyltransferase, a sucrose synthase and the cofactor UDP. Int J Biol Macromol 2023; 250:126009. [PMID: 37536414 DOI: 10.1016/j.ijbiomac.2023.126009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/29/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Glycosyltransferases catalyze the regioselective glycosylation of polyphenolic compounds, increasing their solubility without altering their antioxidant properties. Leloir-type glycosyltransferases require UDP-glucose as a cofactor to glycosylate a hydroxyl of the polyphenol, which is expensive and unstable. To simplify these processes for industrial implementation, the preparation of self-sufficient heterogeneous biocatalysts is needed. In this study, a glycosyltransferase and a sucrose synthase (as an UDP-regenerating enzyme) were co-immobilized onto porous agarose-based supports coated with polycationic polymers: polyethylenimine and polyallylamine. In addition, the UDP cofactor was strongly ionically adsorbed and co-immobilized with the enzymes, eliminating the need to add it separately. Thus, the optimal self-sufficient heterogeneous biocatalyst was able to catalyze the glycosylation of three polyphenolic compounds (piceid, phloretin and quercetin) with in situ regeneration of the UDP-glucose, allowing multiple consecutive reaction cycles without the addition of exogenous cofactor. A TTN value of 50 (theoretical maximum) was obtained in the reaction of piceid glycosylation, after 5 reaction cycles, using the self-sufficient biocatalyst based on an improved sucrose synthase variant. This result was 5-fold higher than the obtained using soluble cofactor and the co-immobilized enzymes, and much higher than those reported in the literature for similar processes.
Collapse
Affiliation(s)
- Lara Trobo-Maseda
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - María Romero-Fernandez
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - José M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Enzyme cascades for the synthesis of nucleotide sugars: Updates to recent production strategies. Carbohydr Res 2023; 523:108727. [PMID: 36521208 DOI: 10.1016/j.carres.2022.108727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
Nucleotide sugars play an elementary role in nature as building blocks of glycans, polysaccharides, and glycoconjugates used in the pharmaceutical, cosmetics, and food industries. As substrates of Leloir-glycosyltransferases, nucleotide sugars are essential for chemoenzymatic in vitro syntheses. However, high costs and the limited availability of nucleotide sugars prevent applications of biocatalytic cascades on a large industrial scale. Therefore, the focus is increasingly on nucleotide sugar synthesis strategies to make significant application processes feasible. The chemical synthesis of nucleotide sugars and their derivatives is well established, but the yields of these processes are usually low. Enzyme catalysis offers a suitable alternative here, and in the last 30 years, many synthesis routes for nucleotide sugars have been discovered and used for production. However, many of the published procedures shy away from assessing the practicability of their processes. With this review, we give an insight into the development of the (chemo)enzymatic nucleotide sugar synthesis pathways of the last years and present an assessment of critical process parameters such as total turnover number (TTN), space-time yield (STY), and enzyme loading.
Collapse
|
5
|
Enzyme Immobilization and Co-Immobilization: Main Framework, Advances and Some Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10030494] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Enzymes are outstanding (bio)catalysts, not solely on account of their ability to increase reaction rates by up to several orders of magnitude but also for the high degree of substrate specificity, regiospecificity and stereospecificity. The use and development of enzymes as robust biocatalysts is one of the main challenges in biotechnology. However, despite the high specificities and turnover of enzymes, there are also drawbacks. At the industrial level, these drawbacks are typically overcome by resorting to immobilized enzymes to enhance stability. Immobilization of biocatalysts allows their reuse, increases stability, facilitates process control, eases product recovery, and enhances product yield and quality. This is especially important for expensive enzymes, for those obtained in low fermentation yield and with relatively low activity. This review provides an integrated perspective on (multi)enzyme immobilization that abridges a critical evaluation of immobilization methods and carriers, biocatalyst metrics, impact of key carrier features on biocatalyst performance, trends towards miniaturization and detailed illustrative examples that are representative of biocatalytic applications promoting sustainability.
Collapse
|
6
|
Martins PA, Trobo-Maseda L, Lima FA, de Morais Júnior WG, De Marco JL, Salum TFC, Guisán JM. Omega-3 production by fish oil hydrolysis using a lipase from Burkholderia gladioli BRM58833 immobilized and stabilized by post-immobilization techniques. Biochem Biophys Rep 2022; 29:101193. [PMID: 35128079 PMCID: PMC8808055 DOI: 10.1016/j.bbrep.2021.101193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/06/2022] Open
Abstract
Immobilization of lipase from Burkholderia gladioli BRM58833 on octyl sepharose (OCT) resulted in catalysts with higher activity and stability. Following, strategies were studied to further stabilize and secure the enzyme to the support using functionalized polymers, like polyethylenimine (PEI) and aldehyde-dextran (DEXa), to cover the catalyst with layers at different combinations. Alternatively, the construction of a bifunctional layer was studied using methoxypolyethylene glycol amine (NH 2 -PEG) and glycine. The catalyst OCT-PEI-DEXa was the most thermostable, with a 263.8-fold increase in stability when compared to the control condition. When evaluated under alkaline conditions, OCT-DEXa-PEG 10 /Gly was the most stable, reaching stability 70.1 times greater than the control condition. Proportionally, the stabilization obtained for B. gladioli BRM58833 lipase was superior to that obtained for the commercial B. cepacia lipase. Preliminary results in the hydrolysis of fish oil demonstrated the potential of the coating technique with bifunctional polymers, resulting in a stable catalyst with greater catalytic capacity for the production of omega-3 PUFAs. According to the results obtained, it is possible to modulate B. gladioli BRM58833 lipase properties like stability and catalytic activity for enrichment of omega-3 fatty acids.
Collapse
Affiliation(s)
- Pedro Alves Martins
- Embrapa Agroenergia, Parque Estação Biológica, PqEB s/no, W3 Norte (final), 70770-901, Brasília, DF, Brazil
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, Brazil
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica – CSIC, C/ Marie Curie 2, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Lara Trobo-Maseda
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica – CSIC, C/ Marie Curie 2, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Frederico Alves Lima
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica – CSIC, C/ Marie Curie 2, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Wilson Galvão de Morais Júnior
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica – CSIC, C/ Marie Curie 2, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Janice Lisboa De Marco
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, Brazil
| | - Thaís Fabiana Chan Salum
- Embrapa Agroenergia, Parque Estação Biológica, PqEB s/no, W3 Norte (final), 70770-901, Brasília, DF, Brazil
| | - José Manuel Guisán
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica – CSIC, C/ Marie Curie 2, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
7
|
Efficient Amino Donor Recycling in Amination Reactions: Development of a New Alanine Dehydrogenase in Continuous Flow and Dialysis Membrane Reactors. Catalysts 2021. [DOI: 10.3390/catal11040520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transaminases have arisen as one of the main biocatalysts for amine production but despite their many advantages, their stability is still a concern for widespread application. One of the reasons for their instability is the need to use an excess of the amino donor when trying to synthesise amines with unfavourable equilibria. To circumvent this, recycling systems for the amino donor, such as amino acid dehydrogenases or aldolases, have proved useful to push the equilibria while avoiding high amino donor concentrations. In this work, we report the use of a new alanine dehydrogenase from the halotolerant bacteria Halomonas elongata which exhibits excellent stability to different cosolvents, combined with the well characterised CbFDH as a recycling system of L-alanine for the amination of three model substrates with unfavourable equilibria. In a step forward, the amino donor recycling system has been co-immobilised and used in flow with success as well as re-used as a dialysis enclosed system for the amination of an aromatic aldehyde.
Collapse
|
8
|
Liu H, Tegl G, Nidetzky B. Glycosyltransferase Co‐Immobilization for Natural Product Glycosylation: Cascade Biosynthesis of the
C
‐Glucoside Nothofagin with Efficient Reuse of Enzymes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Liu
- Institute of Biotechnology and Biochemical Engineering Graz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
| | - Gregor Tegl
- Institute of Biotechnology and Biochemical Engineering Graz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering Graz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology (acib) Petersgasse 14 8010 Graz Austria
| |
Collapse
|
9
|
Toprak A, Tükel SS, Yildirim D. Stabilization of multimeric nitrilase via different immobilization techniques for hydrolysis of acrylonitrile to acrylic acid. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2020.1869217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ali Toprak
- Vocational School of Acigol, University of Nevsehir Haci Bektas Veli, Nevsehir, Turkey
- Department of Chemistry, Faculty of Science and Letters, University of Cukurova, Adana, Turkey
| | - S. Seyhan Tükel
- Department of Chemistry, Faculty of Science and Letters, University of Cukurova, Adana, Turkey
| | - Deniz Yildirim
- Department of Chemical Engineering, Faculty of Ceyhan Engineering, University of Cukurova, Adana, Turkey
| |
Collapse
|
10
|
Corradini FAS, Milessi TS, Gonçalves VM, Ruller R, Sargo CR, Lopes LA, Zangirolami TC, Tardioli PW, Giordano RC, Giordano RLC. High stabilization and hyperactivation of a Recombinant β-Xylosidase through Immobilization Strategies. Enzyme Microb Technol 2020; 145:109725. [PMID: 33750534 DOI: 10.1016/j.enzmictec.2020.109725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/15/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
Attainment of a stable and highly active β-xylosidase is of major importance for the efficient and cost-competitive hydrolysis of hemicellulose xylan, as well as for its industrial conversion into biofuels and biochemicals. Here, a recombinant β-xylosidase of the glycoside hydrolase family (GH43) from Bacillus subtilis was produced in Escherichia coli culture, purified, and subsequently immobilized on agarose and chitosan. Glutaraldehyde and glyoxyl groups were evaluated as activating agents to select the most efficient derivative. Multi-point immobilization on agarose led to an extraordinary thermal stability (half-lives 3604 and 164-fold higher than the free enzyme, at 50° and 35 °C, respectively). Even for chitosan activated with glutaraldehyde, a low-cost support, thermal stability of the immobilized enzyme was 326 and 12-fold higher than the free enzyme at 50° and 35°C, respectively. Immobilized enzymes showed no release of any subunit for the agarose-glyoxyl derivative, and only a few ones for the support activated with glutaraldehyde. Most remarkably, the enzyme kinetic behavior after immobilization increased up to 4-fold in relation to the free one. β-xylosidase, a tetrameric enzyme with four identical subunits, exists in equilibrium between the monomeric and oligomeric forms in solution. Depending on the pH of immobilization, the enzyme oligomerization can be favored, thus explaining the hyperactivation phenomenon. Both glyoxyl-agarose and chitosan-glutaraldehyde derivatives were used to catalyze corncob xylan hydrolysis, reaching 72 % conversion, representing a xylose productivity of around 20 g L-1 h-1. After ten 4h-cycles (pH 6.0, 35 °C), the xylan-to-xylose conversion remained approximately unchanged. Therefore, the immobilized β-xylosidases prepared in this work can be of great interest as biocatalysts in a biorefinery context.
Collapse
Affiliation(s)
- Felipe A S Corradini
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Thais S Milessi
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Institute of Natural Resources, Federal University of Itajubá, Av. BPS, 1300, 37500-903, Itajubá, MG, Brazil
| | - Viviane M Gonçalves
- Laboratory of Vaccine Development, Butantan Institute, Av Vital Brasil 1500, 05503-900, São Paulo, SP, Brazil
| | - Roberto Ruller
- General Biochemistry and Microorganism Laboratory, Bioscience Institute, Federal University of Mato Grosso do Sul, Avenida Costa e Silva, s/n, 79070-900, Campo Grande, MS, Brazil
| | - Cíntia R Sargo
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
| | - Laiane A Lopes
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Teresa C Zangirolami
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Paulo W Tardioli
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Roberto C Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Raquel L C Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
11
|
García-García P, Fernandez-Lorente G, Guisan JM. Capture of enzyme aggregates by covalent immobilization on solid supports. Relevant stabilization of enzymes by aggregation. J Biotechnol 2020; 325:138-144. [PMID: 33249106 DOI: 10.1016/j.jbiotec.2020.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 11/24/2022]
Abstract
In this paper, a novel procedure for the immobilization and stabilization of enzymes is proposed: the multipoint covalent attachment of bi-molecular enzyme aggregates. This immobilization protocol allows the "capture" and fixation of the enzyme aggregate on the support surface. In addition to stabilization by multipoint attachment, enzyme aggregation promotes very interesting stabilizing effects. In the presence of low concentrations of polyethylene glycol (30 %) the dimeric amine oxidase from Pisum sativum forms soluble bi-molecular aggregates. Enzyme aggregates were analyzed by Dynamic Light Scattering and by full chemical loading of a mesoporous support (10 % agarose gels activated with glyoxyl groups). The soluble aggregate was immobilized by multipoint attachment on glyoxyl- agarose at pH 8.5 though the four amino termini of the two dimeric molecules (Lys residues are not reactive at this pH). The immobilized aggregated structure cannot undergo any movement (translational or rotational) after multipoint attachment and the aggregate is "fixed" on the support surface even after the removal of PEG. The immobilized aggregate was further incubated at pH 10 in order to allow the Lys residues to react with the glyoxyl groups on the support. Enzyme aggregation has an important effect on enzyme stabilization: the aggregated derivative was 40 fold more stable than a similar derivative of the isolated enzyme and 200 fold more than native enzymes in experiments of thermal inactivation.
Collapse
Affiliation(s)
- Paz García-García
- Laboratory of Microbiology and Food Biocatalysis. Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera, 9, UAM Campus, Cantoblanco, 28049, Madrid, Spain
| | - Gloria Fernandez-Lorente
- Laboratory of Microbiology and Food Biocatalysis. Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera, 9, UAM Campus, Cantoblanco, 28049, Madrid, Spain.
| | - Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP, CSIC), Marie Curie, 2, UAM Campus, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
12
|
Enzymatic Synthesis of Glycans and Glycoconjugates. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:231-280. [PMID: 33052414 DOI: 10.1007/10_2020_148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.
Collapse
|
13
|
García-García P, Guisan JM, Fernandez-Lorente G. A mild intensity of the enzyme-support multi-point attachment promotes the optimal stabilization of mesophilic multimeric enzymes: Amine oxidase from Pisum sativum. J Biotechnol 2020; 318:39-44. [PMID: 32413366 DOI: 10.1016/j.jbiotec.2020.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/15/2022]
Abstract
Stabilization of dimeric enzymes requires the stabilization of the quaternary structure as well as the 3D one. Both subunits may be easily immobilized on a highly activated support. Additional stabilization of the 3D structure may be achieved via multipoint covalent attachment (MCA) on highly activated supports. In the case of monomeric enzymes or thermophilic dimeric ones, the optimal stabilization is obtained via the most intense MCA and it is associated to a small loss of catalytic activity. However, in the case of mesophilic enzymes, a very intense MCA of both subunits may promote negative effects, e.g., associated to distortions of the assembly between subunits and a subsequent very important loss of catalytic activity. A dimeric mesophilic amine oxidase from P.sativum was stabilized by MCA on glyoxyl-agarose. Both subunits were covalently immobilized on the support through the region with the highest density in Lys residues. In addition to that, an interesting activity/stabilization binomial was obtained after only 3 h of enzyme-support multiinteraction (50 % of activity/350 fold stabilization). However, after 24 h of enzyme-support multi-interaction this binomial activity-stabilization decreased down to 30/150. A moderate multiinteraction seems to be the optimal strategy for immobilization-stabilization of mesophilic dimeric enzymes and it promotes moderate losses of activity and interesting stabilizations against the combined effect of heat, acid pH and ethanol. The control of the intensity of enzyme-support multi-interactions becomes now strictly necessary.
Collapse
Affiliation(s)
- Paz García-García
- Laboratory of Microbiology and Food Biocatalysis, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera, 9. UAM Campus, Cantoblanco, 28049, Madrid, Spain
| | - Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP, CSIC), Marie Curie, 2. UAM Campus, Cantoblanco, 28049, Madrid, Spain.
| | - Gloria Fernandez-Lorente
- Laboratory of Microbiology and Food Biocatalysis, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera, 9. UAM Campus, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
14
|
Mrudulakumari Vasudevan U, Lee EY. Flavonoids, terpenoids, and polyketide antibiotics: Role of glycosylation and biocatalytic tactics in engineering glycosylation. Biotechnol Adv 2020; 41:107550. [PMID: 32360984 DOI: 10.1016/j.biotechadv.2020.107550] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, terpenoids, and polyketides are structurally diverse secondary metabolites used widely as pharmaceuticals and nutraceuticals. Most of these molecules exist in nature as glycosides, in which sugar residues act as a decisive factor in their architectural complexity and bioactivity. Engineering glycosylation through selective trimming or extension of the sugar residues in these molecules is a prerequisite to their commercial production as well to creating novel derivatives with specialized functions. Traditional chemical glycosylation methods are tedious and can offer only limited end-product diversity. New in vitro and in vivo biocatalytic tools have emerged as outstanding platforms for engineering glycosylation in these three classes of secondary metabolites to create a large repertoire of versatile glycoprofiles. As knowledge has increased about secondary metabolite-associated promiscuous glycosyltransferases and sugar biosynthetic machinery, along with phenomenal progress in combinatorial biosynthesis, reliable industrial production of unnatural secondary metabolites has gained momentum in recent years. This review highlights the significant role of sugar residues in naturally occurring flavonoids, terpenoids, and polyketide antibiotics. General biocatalytic tools used to alter the identity and pattern of sugar molecules are described, followed by a detailed illustration of diverse strategies used in the past decade to engineer glycosylation of these valuable metabolites, exemplified with commercialized products and patents. By addressing the challenges involved in current bio catalytic methods and considering the perspectives portrayed in this review, exceptional drugs, flavors, and aromas from these small molecules could come to dominate the natural-product industry.
Collapse
Affiliation(s)
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
15
|
High stabilization of immobilized Rhizomucor miehei lipase by additional coating with hydrophilic crosslinked polymers: Poly-allylamine/Aldehyde–dextran. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Trobo-Maseda L, H Orrego A, Guisan JM, Rocha-Martin J. Coimmobilization and colocalization of a glycosyltransferase and a sucrose synthase greatly improves the recycling of UDP-glucose: Glycosylation of resveratrol 3-O-β-D-glucoside. Int J Biol Macromol 2020; 157:510-521. [PMID: 32344088 DOI: 10.1016/j.ijbiomac.2020.04.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/02/2023]
Abstract
Glycosylation is one of the most efficient biocompatible methodologies to enhance the water solubility of natural products, and therefore their bioavailability. The excellent regio- and stereoselectivity of nucleotide sugar-dependent glycosyltransferases enables single-step glycosylations at specific positions of a broad variety of acceptor molecules without the requirement of protection/deprotection steps. However, the need for stoichiometric quantities of high-cost substrates, UDP-sugars, is a limiting factor for its use at an industrial scale. To overcome this challenge, here we report tailor-made coimmobilization and colocalization procedures to assemble a bi-enzymatic cascade composed of a glycosyltransferase and a sucrose synthase for the regioselective 5-O-β-D-glycosylation of piceid with in situ cofactor regeneration. Coimmobilization and colocalization of enzymes was achieved by performing slow immobilization of both enzymes inside the porous support. The colocalization of both enzymes within the porous structure of a solid support promoted an increase in the overall stability of the bi-enzymatic system and improved 50-fold the efficiency of piceid glycosylation compared with the non-colocalized biocatalyst. Finally, piceid conversion to resveratrol 3,5-diglucoside was over 90% after 6 cycles using the optimal biocatalyst and was reused in up to 10 batch reaction cycles accumulating a TTN of 91.7 for the UDP recycling.
Collapse
Affiliation(s)
- Lara Trobo-Maseda
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Alejandro H Orrego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
17
|
Zhong C, Duić B, Bolivar JM, Nidetzky B. Three‐Enzyme Phosphorylase Cascade Immobilized on Solid Support for Biocatalytic Synthesis of Cello−oligosaccharides. ChemCatChem 2020. [DOI: 10.1002/cctc.201901964] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical EngineeringGraz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
| | - Božidar Duić
- Institute of Biotechnology and Biochemical EngineeringGraz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
| | - Juan M. Bolivar
- Institute of Biotechnology and Biochemical EngineeringGraz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical EngineeringGraz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
| |
Collapse
|
18
|
Guisan JM, López-Gallego F, Bolivar JM, Rocha-Martín J, Fernandez-Lorente G. The Science of Enzyme Immobilization. Methods Mol Biol 2020; 2100:1-26. [PMID: 31939113 DOI: 10.1007/978-1-0716-0215-7_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protocols for simple immobilization of unstable enzymes are plenty, but the vast majority of them, unfortunately, have not reached their massive implementation for the preparation of improved heterogeneous biocatalyst. In this context, the science of enzyme immobilization demands new protocols capable of fabricating heterogeneous biocatalysts with better properties than the soluble enzymes. The preparation of very stable immobilized biocatalysts enables the following: (1) higher operational times of enzyme, increasing their total turnover numbers; (2) the use of enzymes under non-conventional media (temperatures, solvents, etc.) in order to increase the concentrations of substrates for intensification of processes or in order to shift reaction equilibria; (3) the design of solvent-free reaction systems; and (4) the prevention of microbial contaminations. These benefits gained with the immobilization are critical to scale up chemical processes like the synthesis of biodiesel, synthesis of food additives or soil decontamination, where the cost of the catalysts has an enormous impact on their economic feasibility. The science of enzyme immobilization requires a multidisciplinary focus that involves several areas of knowledge such as, material science, surface chemistry, protein chemistry, biophysics, molecular biology, biocatalysis, and chemical engineering. In this chapter, we will discuss the most relevant aspects to do "the science of enzyme immobilization." We will emphasize the immobilization techniques that promote multivalent attachments between the surface of the enzymes and the porous carriers. Finally, we will discuss the effect that the structural rigidification promotes at different protein regions on the functional properties of the immobilized enzymes.
Collapse
Affiliation(s)
- Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain.
| | - Fernando López-Gallego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Javier Rocha-Martín
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
| | - Gloria Fernandez-Lorente
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
- Department of Biotechnology and Microbiology, CSIC-UAM, Campus UAM, Madrid, Spain
| |
Collapse
|
19
|
Mestrom L, Przypis M, Kowalczykiewicz D, Pollender A, Kumpf A, Marsden SR, Bento I, Jarzębski AB, Szymańska K, Chruściel A, Tischler D, Schoevaart R, Hanefeld U, Hagedoorn PL. Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach. Int J Mol Sci 2019; 20:ijms20215263. [PMID: 31652818 PMCID: PMC6861944 DOI: 10.3390/ijms20215263] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023] Open
Abstract
Enzymes are nature’s catalyst of choice for the highly selective and efficient coupling of carbohydrates. Enzymatic sugar coupling is a competitive technology for industrial glycosylation reactions, since chemical synthetic routes require extensive use of laborious protection group manipulations and often lack regio- and stereoselectivity. The application of Leloir glycosyltransferases has received considerable attention in recent years and offers excellent control over the reactivity and selectivity of glycosylation reactions with unprotected carbohydrates, paving the way for previously inaccessible synthetic routes. The development of nucleotide recycling cascades has allowed for the efficient production and reuse of nucleotide sugar donors in robust one-pot multi-enzyme glycosylation cascades. In this way, large glycans and glycoconjugates with complex stereochemistry can be constructed. With recent advances, LeLoir glycosyltransferases are close to being applied industrially in multi-enzyme, programmable cascade glycosylations.
Collapse
Affiliation(s)
- Luuk Mestrom
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Marta Przypis
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Daria Kowalczykiewicz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - André Pollender
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Antje Kumpf
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Stefan R Marsden
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Isabel Bento
- EMBL Hamburg, Notkestraβe 85, 22607 Hamburg, Germany.
| | - Andrzej B Jarzębski
- Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland.
| | - Katarzyna Szymańska
- Department of Chemical and Process Engineering, Silesian University of Technology, Ks. M. Strzody 7, 44-100 Gliwice, Poland.
| | | | - Dirk Tischler
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Rob Schoevaart
- ChiralVision, J.H. Oortweg 21, 2333 CH Leiden, The Netherlands.
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
20
|
Abstract
Dextran aldehyde (dexOx), resulting from the periodate oxidative cleavage of 1,2-diol moiety inside dextran, is a polymer that is very useful in many areas, including as a macromolecular carrier for drug delivery and other biomedical applications. In particular, it has been widely used for chemical engineering of enzymes, with the aim of designing better biocatalysts that possess improved catalytic properties, making them more stable and/or active for different catalytic reactions. This polymer possesses a very flexible hydrophilic structure, which becomes inert after chemical reduction; therefore, dexOx comes to be highly versatile in a biocatalyst design. This paper presents an overview of the multiple applications of dexOx in applied biocatalysis, e.g., to modulate the adsorption of biomolecules on carrier surfaces in affinity chromatography and biosensors design, to serve as a spacer arm between a ligand and the support in biomacromolecule immobilization procedures or to generate artificial microenvironments around the enzyme molecules or to stabilize multimeric enzymes by intersubunit crosslinking, among many other applications.
Collapse
|
21
|
Stabilization of Enzymes by Multipoint Covalent Attachment on Aldehyde-Supports: 2-Picoline Borane as an Alternative Reducing Agent. Catalysts 2018. [DOI: 10.3390/catal8080333] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enzyme immobilization by multipoint covalent attachment on supports activated with aliphatic aldehyde groups (e.g., glyoxyl agarose) has proven to be an excellent immobilization technique for enzyme stabilization. Borohydride reduction of immobilized enzymes is necessary to convert enzyme–support linkages into stable secondary amino groups and to convert the remaining aldehyde groups on the support into hydroxy groups. However, the use of borohydride can adversely affect the structure–activity of some immobilized enzymes. For this reason, 2-picoline borane is proposed here as an alternative milder reducing agent, especially, for those enzymes sensitive to borohydride reduction. The immobilization-stabilization parameters of five enzymes from different sources and nature (from monomeric to multimeric enzymes) were compared with those obtained by conventional methodology. The most interesting results were obtained for bacterial (R)-mandelate dehydrogenase (ManDH). Immobilized ManDH reduced with borohydride almost completely lost its catalytic activity (1.5% of expressed activity). In contrast, using 2-picoline borane and blocking the remaining aldehyde groups on the support with glycine allowed for a conjugate with a significant activity of 19.5%. This improved biocatalyst was 357-fold more stable than the soluble enzyme at 50 °C and pH 7. The results show that this alternative methodology can lead to more stable and active biocatalysts.
Collapse
|
22
|
Nidetzky B, Gutmann A, Zhong C. Leloir Glycosyltransferases as Biocatalysts for Chemical Production. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00710] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, A-8010 Graz, Austria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| |
Collapse
|