1
|
Barth M, Werner M, Otto P, Richwien B, Bahramsari S, Krause M, Schwan B, Abendroth C. Microwave-assisted organic acids and green hydrogen production during mixed culture fermentation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:123. [PMID: 39342259 PMCID: PMC11439308 DOI: 10.1186/s13068-024-02573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The integration of anaerobic digestion into bio-based industries can create synergies that help render anaerobic digestion self-sustaining. Two-stage digesters with separate acidification stages allow for the production of green hydrogen and short-chain fatty acids, which are promising industrial products. Heat shocks can be used to foster the production of these products, the practical applicability of this treatment is often not addressed sufficiently, and the presented work therefore aims to close this gap. METHODS Batch experiments were conducted in 5 L double-walled tank reactors incubated at 37 °C. Short microwave heat shocks of 25 min duration and exposure times of 5-10 min at 80 °C were performed and compared to oven heat shocks. Pairwise experimental group differences for gas production and chemical parameters were determined using ANOVA and post-hoc tests. High-throughput 16S rRNA gene amplicon sequencing was performed to analyse taxonomic profiles. RESULTS After heat-shocking the entire seed sludge, the highest hydrogen productivity was observed at a substrate load of 50 g/l with 1.09 mol H2/mol hexose. With 1.01 mol H2/mol hexose, microwave-assisted treatment was not significantly different from oven-based treatments. This study emphasised the better repeatability of heat shocks with microwave-assisted experiments, revealing low variation coefficients averaging 29%. The pre-treatment with microwaves results in a high predictability and a stronger microbial community shift to Clostridia compared to the treatment with the oven. The pre-treatment of heat shocks supported the formation of butyric acid up to 10.8 g/l on average, with a peak of 24.01 g/l at a butyric/acetic acid ratio of 2.0. CONCLUSION The results support the suitability of using heat shock for the entire seed sludge rather than just a small inoculum, making the process more relevant for industrial applications. The performed microwave-based treatment has proven to be a promising alternative to oven-based treatments, which ultimately may facilitate their implementation into industrial systems. This approach becomes economically sustainable with high-temperature heat pumps with a coefficient of performance (COP) of 4.3.
Collapse
Affiliation(s)
- Maximilian Barth
- Institute for Waste Management and Circular Economy, TUD Dresden University of Technology, Pirna, Germany
| | - Magdalena Werner
- Institute for Waste Management and Circular Economy, TUD Dresden University of Technology, Pirna, Germany
| | - Pascal Otto
- Institute for Waste Management and Circular Economy, TUD Dresden University of Technology, Pirna, Germany
| | | | | | - Maximilian Krause
- Dresden-concept Genome Center, CMCB Center for Molecular and Cellular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
| | - Benjamin Schwan
- Institute for Waste Management and Circular Economy, TUD Dresden University of Technology, Pirna, Germany
| | - Christian Abendroth
- Department of Circular Economy, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany.
| |
Collapse
|
2
|
Sivagurunathan P, Sahoo PC, Kumar M, Prakash Gupta R, Bhattacharyya D, Ramakumar SSV. Unrevealing the role of metal oxide nanoparticles on biohydrogen production by Lactobacillus delbrueckii. BIORESOURCE TECHNOLOGY 2023; 367:128260. [PMID: 36343775 DOI: 10.1016/j.biortech.2022.128260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The positive interaction between Clostridium sp. and lactic acid-producing bacteria (Lactobacillus sp) is commonly seen in various high-rate hydrogen production systems. However, the exact role of the hydrogen production ability of Lactobacillus sp in a dark fermentation production system is rarely studied. Lactobacillus delbrueckii was herein used for the first time, to the best of the author's knowledge, to demonstrate biohydrogen production under anaerobic conditions. At first, the pH condition was optimized, followed by the addition of nanoparticles for enhanced biohydrogen production. Under optimized conditions of pH 6.5, substrate concentration 10 g/L, and 100 mg/L of NiO/Fe2O3, the maximum hydrogen yield (HY) of 1.94 mol/mol hexose was obtained, which is 18 % more than the control. The enhanced H2 production upon the addition of nanoparticles is supported via the external electron transfer (EET) mechanism, which regulates the metabolic pathway regulation with increased production of acetate and butyrate and reduced formation of lactate.
Collapse
Affiliation(s)
- Periyasamy Sivagurunathan
- Indian Oil Corporation Limited, Research & Development Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Prakash C Sahoo
- Indian Oil Corporation Limited, Research & Development Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Manoj Kumar
- Indian Oil Corporation Limited, Research & Development Centre, Sector 13, Faridabad 121007, Haryana, India.
| | - Ravi Prakash Gupta
- Indian Oil Corporation Limited, Research & Development Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Debasis Bhattacharyya
- Indian Oil Corporation Limited, Research & Development Centre, Sector 13, Faridabad 121007, Haryana, India
| | - S S V Ramakumar
- Indian Oil Corporation Limited, Research & Development Centre, Sector 13, Faridabad 121007, Haryana, India
| |
Collapse
|
3
|
Cao Y, Liu H, Liu W, Guo J, Xian M. Debottlenecking the biological hydrogen production pathway of dark fermentation: insight into the impact of strain improvement. Microb Cell Fact 2022; 21:166. [PMID: 35986320 PMCID: PMC9389701 DOI: 10.1186/s12934-022-01893-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Confronted with the exhaustion of the earth’s fossil fuel reservoirs, bio-based process to produce renewable energy is receiving significant interest. Hydrogen is considered as an attractive energy carrier that can replace fossil fuels in the future mainly due to its high energy content, recyclability and environment-friendly nature. Biological hydrogen production from renewable biomass or waste materials by dark fermentation is a promising alternative to conventional routes since it is energy-saving and reduces environmental pollution. However, the current yield and evolution rate of fermentative hydrogen production are still low. Strain improvement of the microorganisms employed for hydrogen production is required to make the process competitive with traditional production methods. The present review summarizes recent progresses on the screening for highly efficient hydrogen-producing strains using various strategies. As the metabolic pathways for fermentative hydrogen production have been largely resolved, it is now possible to engineer the hydrogen-producing strains by rational design. The hydrogen yields and production rates by different genetically modified microorganisms are discussed. The key limitations and challenges faced in present studies are also proposed. We hope that this review can provide useful information for scientists in the field of fermentative hydrogen production. Hydrogen can be generated by microorganisms. Dark fermentation is efficient for biological hydrogen production. Strain improvement is critical to enhancing hydrogen-producing ability.
Collapse
|
4
|
Jayachandran V, Basak N, De Philippis R, Adessi A. Novel strategies towards efficient molecular biohydrogen production by dark fermentative mechanism: present progress and future perspective. Bioprocess Biosyst Eng 2022; 45:1595-1624. [PMID: 35713786 DOI: 10.1007/s00449-022-02738-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/27/2022] [Indexed: 01/05/2023]
Abstract
In the scenario of alarming increase in greenhouse and toxic gas emissions from the burning of conventional fuels, it is high time that the population drifts towards alternative fuel usage to obviate pollution. Hydrogen is an environment-friendly biofuel with high energy content. Several production methods exist to produce hydrogen, but the least energy intensive processes are the fermentative biohydrogen techniques. Dark fermentative biohydrogen production (DFBHP) is a value-added, less energy-consuming process to generate biohydrogen. In this process, biohydrogen can be produced from sugars as well as complex substrates that are generally considered as organic waste. Yet, the process is constrained by many factors such as low hydrogen yield, incomplete conversion of substrates, accumulation of volatile fatty acids which lead to the drop of the system pH resulting in hindered growth and hydrogen production by the bacteria. To circumvent these drawbacks, researchers have come up with several strategies that improve the yield of DFBHP process. These strategies can be classified as preliminary methodologies concerned with the process optimization and the latter that deals with pretreatment of substrate and seed sludge, bioaugmentation, co-culture of bacteria, supplementation of additives, bioreactor design considerations, metabolic engineering, nanotechnology, immobilization of bacteria, etc. This review sums up some of the improvement techniques that profoundly enhance the biohydrogen productivity in a DFBHP process.
Collapse
Affiliation(s)
- Varsha Jayachandran
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, 144 027, Punjab, India
| | - Nitai Basak
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, 144 027, Punjab, India.
| | - Roberto De Philippis
- Department of Agriculture, Food, Environment and Forestry, Florence University, Florence, Italy
| | - Alessandra Adessi
- Department of Agriculture, Food, Environment and Forestry, Florence University, Florence, Italy
| |
Collapse
|
5
|
Mostafa A, Im S, Kim J, Lim KH, Kim I, Kim DH. Electron bifurcation reactions in dark fermentation: An overview for better understanding and improvement. BIORESOURCE TECHNOLOGY 2022; 344:126327. [PMID: 34785332 DOI: 10.1016/j.biortech.2021.126327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Electron bifurcation (EB) is the most recently found mode of energy conservation, which involves both exergonic and endergonic electron transfer reactions to minimize energy loss. Several works have been devoted on EB reactions (EBRs) in anaerobic digestion but limited in dark fermentative hydrogen production (DF). Two main electron carriers in DF are ferredoxin (Fd) and reduced nicotinamide adenine dinucleotide (NADH), complicatedly involved in EB. Here, i) the importance of EB involvement in DF, ii) all EBRs possible to present in DF, as well as iii) the limitation of previous studies that tried incorporating any of EBRs in DF metabolic model, were highlighted. In addition, the concept of using metagenomic analysis for estimating the share of each EB reaction in the metabolic model, was proposed. This review is expected to initiate a new wave for studying EB, as a tool for explaining and predicting DF products.
Collapse
Affiliation(s)
- Alsayed Mostafa
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seongwon Im
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Jimin Kim
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Kyeong-Ho Lim
- Department of Civil and Environmental Engineering, Kongju National University, Cheonan, Chungnam 31080, Republic of Korea
| | - Ijung Kim
- Department of Civil and Environmental Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Republic of Korea
| | - Dong-Hoon Kim
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
6
|
Fuentes L, Palomo-Briones R, de Jesús Montoya-Rosales J, Braga L, Castelló E, Vesga A, Tapia-Venegas E, Razo-Flores E, Ecthebehere C. Knowing the enemy: homoacetogens in hydrogen production reactors. Appl Microbiol Biotechnol 2021; 105:8989-9002. [PMID: 34716461 DOI: 10.1007/s00253-021-11656-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
One of the bottlenecks of the hydrogen production by dark fermentation is the low yields obtained because of the homoacetogenesis persistence, a metabolic pathway where H2 and CO2 are consumed to produce acetate. The central reactions of H2 production and homoacetogenesis are catalyzed by enzyme hydrogenase and the formyltetrahydrofolate synthetase, respectively. In this work, genes encoding for the formyltetrahydrofolate synthetase (fthfs) and hydrogenase (hydA) were used to investigate the diversity of homoacetogens as well as their phylogenetic relationships through quantitative PCR (qPCR) and next-generation amplicon sequencing. A total of 70 samples from 19 different H2-producing bioreactors with different configurations and operating conditions were analyzed. Quantification through qPCR showed that the abundance of fthfs and hydA was strongly associated with the type of substrate, organic loading rate, and H2 production performance. In particular, fthfs sequencing revealed that homoacetogens diversity was low with one or two dominant homoacetogens in each sample. Clostridium carboxivorans was detected in the reactors fed with agave hydrolisates; Acetobacterium woodii dominated in systems fed with glucose; Blautia coccoides and unclassified Sporoanaerobacter species were present in reactors fed with cheese whey; finally, Eubacterium limosum and Selenomonas sp. were co-dominant in reactors fed with glycerol. Altogether, quantification and sequencing analysis revealed that the occurrence of homoacetogenesis could take place due to (1) metabolic changes of H2-producing bacteria towards homoacetogenesis or (2) the displacement of H2-producing bacteria by homoacetogens. Overall, it was demonstrated that the fthfs gene was a suitable marker to investigate homoacetogens in H2-producing reactors. KEY POINTS: • qPCR and sequencing analysis revealed two homoacetogenesis phenomena. • fthfs gene was a suitable marker to investigate homoacetogens in H2 reactors.
Collapse
Affiliation(s)
- Laura Fuentes
- Laboratorio de Ecología Microbiana, Departamento de Bioquímica Y Genómica Microbiana, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia, 3318, Montevideo, Uruguay
| | - Rodolfo Palomo-Briones
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica A.C, Camino a La Presa San José No, 2055, Col. Lomas 4a Sección, C.P., 78216, San Luis Potosí, SLP, México
| | - José de Jesús Montoya-Rosales
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica A.C, Camino a La Presa San José No, 2055, Col. Lomas 4a Sección, C.P., 78216, San Luis Potosí, SLP, México
| | - Lucía Braga
- Laboratorio Bioprocesos Ambientales, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de La República, Herrera Y Reissig, 565, Montevideo, Uruguay
| | - Elena Castelló
- Laboratorio Bioprocesos Ambientales, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de La República, Herrera Y Reissig, 565, Montevideo, Uruguay
| | - Alejandra Vesga
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, 2085, Valparaíso, Av. Brasil, Chile
| | - Estela Tapia-Venegas
- Departamento de Medio Ambiente, Facultad de Ingeniería, Universidad de Playa Ancha Av, Leopoldo Carvallo 270, Valparaíso, Chile
| | - Elías Razo-Flores
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica A.C, Camino a La Presa San José No, 2055, Col. Lomas 4a Sección, C.P., 78216, San Luis Potosí, SLP, México
| | - Claudia Ecthebehere
- Laboratorio de Ecología Microbiana, Departamento de Bioquímica Y Genómica Microbiana, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia, 3318, Montevideo, Uruguay.
| |
Collapse
|
7
|
Continuous hydrogen production and microbial community profile in the dark fermentation of tequila vinasse: Response to increasing loading rates and immobilization of biomass. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Detman A, Laubitz D, Chojnacka A, Kiela PR, Salamon A, Barberán A, Chen Y, Yang F, Błaszczyk MK, Sikora A. Dynamics of dark fermentation microbial communities in the light of lactate and butyrate production. MICROBIOME 2021; 9:158. [PMID: 34261525 PMCID: PMC8281708 DOI: 10.1186/s40168-021-01105-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/28/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND This study focuses on the processes occurring during the acidogenic step of anaerobic digestion, especially resulting from nutritional interactions between dark fermentation (DF) bacteria and lactic acid bacteria (LAB). Previously, we have confirmed that DF microbial communities (MCs) that fed on molasses are able to convert lactate and acetate to butyrate. The aims of the study were to recognize the biodiversity of DF-MCs able and unable to convert lactate and acetate to butyrate and to define the conditions for the transformation. RESULTS MCs sampled from a DF bioreactor were grown anaerobically in mesophilic conditions on different media containing molasses or sucrose and/or lactate and acetate in five independent static batch experiments. The taxonomic composition (based on 16S_rRNA profiling) of each experimental MC was analysed in reference to its metabolites and pH of the digestive liquids. In the samples where the fermented media contained carbohydrates, the two main tendencies were observed: (i) a low pH (pH ≤ 4), lactate and ethanol as the main fermentation products, MCs dominated with Lactobacillus, Bifidobacterium, Leuconostoc and Fructobacillus was characterized by low biodiversity; (ii) pH in the range 5.0-6.0, butyrate dominated among the fermentation products, the MCs composed mainly of Clostridium (especially Clostridium_sensu_stricto_12), Lactobacillus, Bifidobacterium and Prevotella. The biodiversity increased with the ability to convert acetate and lactate to butyrate. The MC processing exclusively lactate and acetate showed the highest biodiversity and was dominated by Clostridium (especially Clostridium_sensu_stricto_12). LAB were reduced; other genera such as Terrisporobacter, Lachnoclostridium, Paraclostridium or Sutterella were found. Butyrate was the main metabolite and pH was 7. Shotgun metagenomic analysis of the selected butyrate-producing MCs independently on the substrate revealed C.tyrobutyricum as the dominant Clostridium species. Functional analysis confirmed the presence of genes encoding key enzymes of the fermentation routes. CONCLUSIONS Batch tests revealed the dynamics of metabolic activity and composition of DF-MCs dependent on fermentation conditions. The balance between LAB and the butyrate producers and the pH values were shown to be the most relevant for the process of lactate and acetate conversion to butyrate. To close the knowledge gaps is to find signalling factors responsible for the metabolic shift of the DF-MCs towards lactate fermentation. Video Abstract.
Collapse
Affiliation(s)
- Anna Detman
- Institute of Biochemistry and Biophysics – Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Daniel Laubitz
- Department of Pediatrics at Steel Children’s Research Center College of Medicine, University of Arizona, 1501 N. Campbell Avenue, Room 3301, PO Box 245073, Tucson, Arizona 85724-5073 USA
| | - Aleksandra Chojnacka
- Institute of Biochemistry and Biophysics – Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
- Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Pawel R. Kiela
- Department of Pediatrics at Steel Children’s Research Center College of Medicine, University of Arizona, 1501 N. Campbell Avenue, Room 3301, PO Box 245073, Tucson, Arizona 85724-5073 USA
| | - Agnieszka Salamon
- Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, 1177 E. 4th Street, P.O. Box 210038, Tucson, Arizona 85721-0038 USA
| | - Yongjian Chen
- Department of Environmental Science, University of Arizona, 1177 E. 4th Street, P.O. Box 210038, Tucson, Arizona 85721-0038 USA
| | - Fei Yang
- Department of Environmental Science, University of Arizona, 1177 E. 4th Street, P.O. Box 210038, Tucson, Arizona 85721-0038 USA
| | - Mieczysław K. Błaszczyk
- Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Sikora
- Institute of Biochemistry and Biophysics – Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
9
|
Gabriel-Barajas JE, Arreola-Vargas J, Toledo-Cervantes A, Méndez-Acosta HO, Rivera-González JC, Snell-Castro R. Prokaryotic population dynamics and interactions in an AnSBBR using tequila vinasses as substrate in co-digestion with acid hydrolysates of Agave tequilana var. azul bagasse for hydrogen production. J Appl Microbiol 2021; 132:413-428. [PMID: 34189819 DOI: 10.1111/jam.15196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022]
Abstract
AIMS The purpose of this study was to characterize the prokaryotic community and putative microbial interactions between H2 -producing bacteria (HPB) and non-HPB using two anaerobic sequencing batch biofilm reactors (AnSBBRs) fed with tequila vinasses in co-digestion with acid hydrolysates of Agave tequilana var. azul bagasse (ATAB). METHODS AND RESULTS Two AnSBBRs were operated for H2 production to correlate changes in physicochemical and biological variables by principal component analysis (PCA). Results indicated that H2 yield was supported by Ethanoligenens harbinense and Clostridium tyrobutyricum through the PFOR pathway. However, only E. harbinense was able to compete for sugars against non-HPB. Competitive exclusion associated with competition for sugars, depletion of essential trace elements, bacteriocin production and resistance to inhibitory compounds could be carried out by non-HPB, increasing their relative abundances during the dark fermentation (DF) process. CONCLUSIONS The global scenario obtained by PCA correlated the decrease in H2 production with the lactate:acetate molar ratio in the influent. At the beginning of co-digestion, this ratio had the minimum value considered for a net gain of ATP. This fact could cause the reduction of the relative abundance of C. tyrobutyricum. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study that demonstrated the feasibility of H2 production by Clostridiales from acid hydrolysates of ATAB in co-digestion with tequila vinasses.
Collapse
Affiliation(s)
| | - Jorge Arreola-Vargas
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Alma Toledo-Cervantes
- Departamento de Ingeniería química, CUCEI-Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Hugo Oscar Méndez-Acosta
- Departamento de Ingeniería química, CUCEI-Universidad de Guadalajara, Guadalajara, Jalisco, México
| | | | - Raúl Snell-Castro
- Departamento de Ingeniería química, CUCEI-Universidad de Guadalajara, Guadalajara, Jalisco, México
| |
Collapse
|
10
|
Detman A, Laubitz D, Chojnacka A, Wiktorowska-Sowa E, Piotrowski J, Salamon A, Kaźmierczak W, Błaszczyk MK, Barberan A, Chen Y, Łupikasza E, Yang F, Sikora A. Dynamics and Complexity of Dark Fermentation Microbial Communities Producing Hydrogen From Sugar Beet Molasses in Continuously Operating Packed Bed Reactors. Front Microbiol 2021; 11:612344. [PMID: 33488554 PMCID: PMC7819888 DOI: 10.3389/fmicb.2020.612344] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
This study describes the dynamics and complexity of microbial communities producing hydrogen-rich fermentation gas from sugar-beet molasses in five packed-bed reactors (PBRs). The bioreactors constitute a part of a system producing hydrogen from the by-products of the sugar-beet industry that has been operating continuously in one of the Polish sugar factories. PBRs with different working volumes, packing materials, construction and inocula were tested. This study focused on analysis (based on 16S rRNA profiling and shotgun metagenomics sequencing) of the microbial communities selected in the PBRs under the conditions of high (>100 cm3/g COD of molasses) and low (<50 cm3/g COD of molasses) efficiencies of hydrogen production. The stability and efficiency of the hydrogen production are determined by the composition of dark fermentation microbial communities. The most striking difference between the tested samples is the ratio of hydrogen producers to lactic acid bacteria. The highest efficiency of hydrogen production (130-160 cm3/g COD of molasses) was achieved at the ratios of HPB to LAB ≈ 4:2.5 or 2.5:1 as determined by 16S rRNA sequencing or shotgun metagenomics sequencing, respectively. The most abundant Clostridium species were C. pasteurianum and C. tyrobutyricum. A multiple predominance of LAB over HPB (3:1-4:1) or clostridia over LAB (5:1-60:1) results in decreased hydrogen production. Inhibition of hydrogen production was illustrated by overproduction of short chain fatty acids and ethanol. Furthermore, concentration of ethanol might be a relevant marker or factor promoting a metabolic shift in the DF bioreactors processing carbohydrates from hydrogen-yielding toward lactic acid fermentation or solventogenic pathways. The novelty of this study is identifying a community balance between hydrogen producers and lactic acid bacteria for stable hydrogen producing systems. The balance stems from long-term selection of hydrogen-producing microbial community, operating conditions such as bioreactor construction, packing material, hydraulic retention time and substrate concentration. This finding is confirmed by additional analysis of the proportions between HPB and LAB in dark fermentation bioreactors from other studies. The results contribute to the advance of knowledge in the area of relationships and nutritional interactions especially the cross-feeding of lactate between bacteria in dark fermentation microbial communities.
Collapse
Affiliation(s)
- Anna Detman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Daniel Laubitz
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Aleksandra Chojnacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Wiktorowska-Sowa
- Krajowa Spółka Cukrowa S.A. Production Facility Dobrzelin Sugar Factory, Dobrzelin, Poland
| | - Jan Piotrowski
- Krajowa Spółka Cukrowa S.A. Production Facility Dobrzelin Sugar Factory, Dobrzelin, Poland
| | | | - Wiktor Kaźmierczak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysław K. Błaszczyk
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Albert Barberan
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Yongjian Chen
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Ewa Łupikasza
- Faculty of Earth Sciences, University of Silesia in Katowice, Sosnowiec, Poland
| | - Fei Yang
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Anna Sikora
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Park JH, Chandrasekhar K, Jeon BH, Jang M, Liu Y, Kim SH. State-of-the-art technologies for continuous high-rate biohydrogen production. BIORESOURCE TECHNOLOGY 2021; 320:124304. [PMID: 33129085 DOI: 10.1016/j.biortech.2020.124304] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Dark fermentation is a technically feasible technology for achieving carbon dioxide-free hydrogen production. This review presents the current findings on continuous hydrogen production using dark fermentation. Several operational strategies and reactor configurations have been suggested. The formation of attached mixed-culture microorganisms is a typical prerequisite for achieving high production rate, hydrogen yield, and resilience. To date, fixed-bed reactors and dynamic membrane bioreactors yielded higher biohydrogen performance than other configurations. The symbiosis between H2-producing bacteria and biofilm-forming bacteria was essential to avoid washout and maintain the high loading rates and hydrogenic metabolic flux. Recent research has initiated a more in-depth comparison of microbial community changes during dark fermentation, primarily with computational science techniques based on 16S rRNA gene sequencing investigations. Future techno-economic analysis of dark fermentative biohydrogen production and perspectives on unraveling mitigation mechanisms induced by attached microorganisms in dark fermentation processes are further discussed.
Collapse
Affiliation(s)
- Jong-Hun Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
12
|
Montiel-Corona V, Palomo-Briones R, Razo-Flores E. Continuous thermophilic hydrogen production from an enzymatic hydrolysate of agave bagasse: Inoculum origin, homoacetogenesis and microbial community analysis. BIORESOURCE TECHNOLOGY 2020; 306:123087. [PMID: 32172085 DOI: 10.1016/j.biortech.2020.123087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
In this research, the performance of two thermophilic inocula of different origin on continuous hydrogen production from an enzymatic hydrolysate of agave bagasse were compared; one of them was obtained from a thermophilic reactor and the second one was taken from a mesophilic reactor and acclimated to thermophilic conditions. The acclimation process in one-step quickly established a high-performance hydrogen producing community, obtaining a volumetric hydrogen production rate of 3811 ± 19 mL H2/L-d with an hydrogen yield of 121 L H2/kg bagasse compared to 1473 ± 6 mL H2/L-d and 26.6 L H2/kg obtained with the thermophilic-origin inoculum. The differences in the performance of both inocula were closely linked to the profile of volatile fatty acids produced, the homoacetogenic pathway and the microbial community, the latter being the determining factor. The use of mesophilic-origin inoculum acclimated to thermophilic conditions can significantly improve the hydrogen production from lignocellulosic bagasse.
Collapse
Affiliation(s)
- Virginia Montiel-Corona
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P. 78216 San Luis Potosí, SLP, Mexico.
| | - Rodolfo Palomo-Briones
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P. 78216 San Luis Potosí, SLP, Mexico
| | - Elías Razo-Flores
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P. 78216 San Luis Potosí, SLP, Mexico
| |
Collapse
|
13
|
Plante L, Sheehan NP, Bier P, Murray K, Quell K, Ouellette C, Martinez E. Bioenergy from biofuel residues and waste. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1199-1204. [PMID: 31433529 DOI: 10.1002/wer.1214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/26/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This section presents a review of the scientific literature published in 2018 on topics relating to sustainable bioenergy from biofuel residues and waste. This review is divided into the following sections: Feedstocks, Bioethanol, Biodiesel, Biohydrogen, Hydrogen, Biofuel Residues, Microalgae, and Lignocelluloses.
Collapse
Affiliation(s)
- Luke Plante
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York
| | - Nathaniel P Sheehan
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York
| | - Peter Bier
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York
| | - Kyle Murray
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York
| | - Kimberly Quell
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York
| | - Charles Ouellette
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York
| | - Erick Martinez
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York
| |
Collapse
|
14
|
Valdez-Guzmán BE, Rios-Del Toro EE, Cardenas-López RL, Méndez-Acosta HO, González-Álvarez V, Arreola-Vargas J. Enhancing biohydrogen production from Agave tequilana bagasse: Detoxified vs. Undetoxified acid hydrolysates. BIORESOURCE TECHNOLOGY 2019; 276:74-80. [PMID: 30611089 DOI: 10.1016/j.biortech.2018.12.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
The aim of this work was to compare the biohydrogen production potential of undetoxified and detoxified acid hydrolysates from A. tequilana bagasse. Detoxification was carried out with activated carbon at different concentrations and pH values. Results indicated that pH was not a significant variable, while the lowest evaluated concentration of activated carbon (1% p/v) significantly promoted the highest removal of acetic acid (89%) with minimal losses of fermentable sugars. Regarding dark fermentation experiments, central composite designs were used to optimize COD and pH variables for both substrates, undetoxified and detoxified hydrolysates (activated carbon 1% p/v and pH 0.6). At optimal conditions, the detoxified hydrolysate produced 33% more biohydrogen than the undetoxified one. Hydrogen molar yields were 1.71 and 1.23 mol H2/molsugar, respectively. This improvement was correlated to changes in metabolic byproducts, since the detoxified hydrolysate produced only acetic and butyric acids, while lactic acid was detected in the undetoxified hydrolysate.
Collapse
Affiliation(s)
- B Estela Valdez-Guzmán
- Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Blvd. M. García Barragán 1451, C.P. 44430 Guadalajara, Jalisco, Mexico
| | - E Emilia Rios-Del Toro
- División de Procesos Industriales, Universidad Tecnológica de Jalisco, Luis J. Jiménez 577-1° de Mayo, C.P. 44979, Guadalajara, Jalisco, Mexico
| | - Rosa L Cardenas-López
- Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Blvd. M. García Barragán 1451, C.P. 44430 Guadalajara, Jalisco, Mexico
| | - Hugo O Méndez-Acosta
- Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Blvd. M. García Barragán 1451, C.P. 44430 Guadalajara, Jalisco, Mexico
| | - Víctor González-Álvarez
- Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Blvd. M. García Barragán 1451, C.P. 44430 Guadalajara, Jalisco, Mexico
| | - Jorge Arreola-Vargas
- División de Procesos Industriales, Universidad Tecnológica de Jalisco, Luis J. Jiménez 577-1° de Mayo, C.P. 44979, Guadalajara, Jalisco, Mexico.
| |
Collapse
|