1
|
Xu Y, Liu M, Zhao R, Pan Y, Wu P, Zhang C, Chi X, Zhang B, Wu H. TetR family regulator AbrT controls lincomycin production and morphological development in Streptomyces lincolnensis. Microb Cell Fact 2024; 23:223. [PMID: 39118116 PMCID: PMC11308395 DOI: 10.1186/s12934-024-02498-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The TetR family of transcriptional regulators (TFRs), serving as crucial regulators of diverse cellular processes, undergo conformational changes induced by small-molecule ligands, which either inhibit or activate them to modulate target gene expression. Some ligands of TFRs in actinomycetes and their regulatory effects have been identified and studied; however, regulatory mechanisms of the TetR family in the lincomycin-producing Streptomyces lincolnensis remain poorly understood. RESULTS In this study, we found that AbrT (SLCG_1979), a TetR family regulator, plays a pivotal role in regulating lincomycin production and morphological development in S. lincolnensis. Deletion of abrT gene resulted in increased lincomycin A (Lin-A) production, but delayed mycelium formation and sporulation on solid media. AbrT directly or indirectly repressed the expression of lincomycin biosynthetic (lin) cluster genes and activated that of the morphological developmental genes amfC, whiB, and ftsZ. We demonstrated that AbrT bound to two motifs (5'-CGCGTACTCGTA-3' and 5'-CGTACGATAGCT-3') present in the bidirectional promoter between abrT and SLCG_1980 genes. This consequently repressed abrT itself and its adjacent gene SLCG_1980 that encodes an arabinose efflux permease. D-arabinose, not naturally occurring as L-arabinose, was identified as the effector molecule of AbrT, reducing its binding affinity to abrT-SLCG_1980 intergenic region. Furthermore, based on functional analysis of the AbrT homologue in Saccharopolyspora erythraea, we inferred that the TetR family regulator AbrT may play an important role in regulating secondary metabolism in actinomycetes. CONCLUSIONS AbrT functions as a regulator for governing lincomycin production and morphological development of S. lincolnensis. Our findings demonstrated that D-arabinose acts as a ligand of AbrT to mediate the regulation of lincomycin biosynthesis in S. lincolnensis. Our findings provide novel insights into ligand-mediated regulation in antibiotic biosynthesis.
Collapse
Affiliation(s)
- Yurong Xu
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, China.
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Meng Liu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Ruidong Zhao
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yue Pan
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Panpan Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Chi Zhang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xiangying Chi
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, China
| | - Buchang Zhang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hang Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| |
Collapse
|
2
|
Pai H, Liu Y, Zhang C, Su J, Lu W. Effects of the pleiotropic regulator DasR on lincomycin production in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2024; 108:373. [PMID: 38878095 PMCID: PMC11180011 DOI: 10.1007/s00253-024-13201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/19/2024]
Abstract
The lincoamide antibiotic lincomycin, derived from Streptomyces lincolnensis, is widely used for the treatment of infections caused by gram-positive bacteria. As a common global regulatory factor of GntR family, DasR usually exists as a regulatory factor that negatively regulates antibiotic synthesis in Streptomyces. However, the regulatory effect of DasR on lincomycin biosynthesis in S. lincolnensis has not been thoroughly investigated. The present study demonstrates that DasR functions as a positive regulator of lincomycin biosynthesis in S. lincolnensis, and its overexpression strain OdasR exhibits a remarkable 7.97-fold increase in lincomycin production compared to the wild-type strain. The effects of DasR overexpression could be attenuated by the addition of GlcNAc in the medium in S. lincolnensis. Combined with transcriptome sequencing and RT-qPCR results, it was found that most structural genes in GlcNAc metabolism and central carbon metabolism were up-regulated, but the lincomycin biosynthetic gene cluster (lmb) were down-regulated after dasR knock-out. However, DasR binding were detected with the DasR responsive elements (dre) of genes involved in GlcNAc metabolism pathway through electrophoretic mobility shift assay, while they were not observed in the lmb. These findings will provide novel insights for the genetic manipulation of S. lincolnensis to enhance lincomycin production. KEY POINTS: • DasR is a positive regulator that promotes lincomycin synthesis and does not affect spore production • DasR promotes lincomycin production through indirect regulation • DasR correlates with nutrient perception in S. lincolnensis.
Collapse
Affiliation(s)
- Huihui Pai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Yiying Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, PR China
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, PR China
| | - Jianyu Su
- Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, 750021, China.
- College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China.
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China.
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, PR China.
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, PR China.
| |
Collapse
|
3
|
Mao Y, Zhang X, Zhou T, Hou B, Ye J, Wu H, Wang R, Zhang H. Three new LmbU targets outside lmb cluster inhibit lincomycin biosynthesis in Streptomyces lincolnensis. Microb Cell Fact 2024; 23:3. [PMID: 38172890 PMCID: PMC10763038 DOI: 10.1186/s12934-023-02284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Antibiotics biosynthesis is usually regulated by the cluster-situated regulatory gene(s) (CSRG(s)), which directly regulate the genes within the corresponding biosynthetic gene cluster (BGC). Previously, we have demonstrated that LmbU functions as a cluster-situated regulator (CSR) of lincomycin. And it has been found that LmbU regulates twenty non-lmb genes through comparative transcriptomic analysis. However, the regulatory mode of CSRs' targets outside the BGC remains unknown. RESULTS We screened the targets of LmbU in the whole genome of Streptomyces lincolnensis and found fourteen candidate targets, among which, eight targets can bind to LmbU by electrophoretic mobility shift assays (EMSA). Reporter assays in vivo revealed that LmbU repressed the transcription of SLINC_0469 and SLINC_1037 while activating the transcription of SLINC_8097. In addition, disruptions of SLINC_0469, SLINC_1037, and SLINC_8097 promoted the production of lincomycin, and qRT-PCR showed that SLINC_0469, SLINC_1037, and SLINC_8097 inhibited transcription of the lmb genes, indicating that all the three regulators can negatively regulate lincomycin biosynthesis. CONCLUSIONS LmbU can directly regulate genes outside the lmb cluster, and these genes can affect both lincomycin biosynthesis and the transcription of lmb genes. Our results first erected the cascade regulatory circuit of LmbU and regulators outside lmb cluster, which provides the theoretical basis for the functional research of LmbU family proteins.
Collapse
Affiliation(s)
- Yue Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xianyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Tianyu Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Wang R, Zhao J, Chen L, Ye J, Wu H, Zhang H. LcbR1, a newly identified GntR family regulator, represses lincomycin biosynthesis in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2023; 107:7501-7514. [DOI: doi.org/10.1007/s00253-023-12756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 10/09/2023]
|
5
|
Zou J, Mao Y, Hou B, Kang Y, Wang R, Wu H, Ye J, Zhang H. DeoR regulates lincomycin production in Streptomyces lincolnensis. World J Microbiol Biotechnol 2023; 39:332. [DOI: doi.org/10.1007/s11274-023-03788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
|
6
|
Wang R, Zhao J, Chen L, Ye J, Wu H, Zhang H. LcbR1, a newly identified GntR family regulator, represses lincomycin biosynthesis in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2023; 107:7501-7514. [PMID: 37768348 DOI: 10.1007/s00253-023-12756-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
The Actinomycetes Streptomyces lincolnensis is the producer of lincosamide-type antibiotic lincomycin, a widely utilized drug against Gram-positive bacteria and protozoans. In this work, through gene knockout, complementation, and overexpression experiments, we identified LcbR1 (SLINC_1595), a GntR family transcriptional regulator, as a repressor for lincomycin biosynthesis. Deletion of lcbR1 boosted lincomycin production by 3.8-fold, without obvious change in morphological development or cellular growth. The homologues of LcbR1 are widely distributed in Streptomyces. Heterologous expression of SCO1410 from Streptomyces coelicolor resulted in the reduction of lincomycin yield, implying that the function of LcbR1 is conserved across different species. Alignment among sequences upstream of lcbR1 and their homologues revealed a conserved 16-bp palindrome (-TTGAACGATCCTTCAA-), which was further proven to be the recognition motif of LcbR1 by electrophoretic mobility shift assays (EMSAs). Via this motif, LcbR1 suppressed the transcription of lcbR1 and SLINC_1596 sharing the same bi-directional promoter. SLINC_1596, one important target of LcbR1, exerted a positive effect on lincomycin production. As detected by quantitative real-time PCR (qRT-PCR) analyses, the expressions of all selected structural (lmbA, lmbC, lmbJ, lmbV, and lmbW), resistance (lmrA and lmrB) and regulatory genes (lmrC and lmbU) from lincomycin biosynthesis cluster were upregulated in deletion strain ΔlcbR1 at 48 h of fermentation, while the mRNA amounts of bldD, glnR, ramR, SLCG_Lrp, and SLCG_2919, previously characterized as the regulators on lincomycin production, were decreased in strain ΔlcbR1, although the regulatory effects of LcbR1 on the above differential expression genes seemed to be indirect. Besides, indicated by EMSAs, the expression of lcbR1 might be regulated by GlnR, SLCG_Lrp, and SLCG_2919, which shows the complexity of the regulatory network on lincomycin biosynthesis. KEY POINTS: • LcbR1 is a novel and conservative GntR family regulator regulating lincomycin production. • LcbR1 modulates the expressions of lcbR1 and SLINC_1596 through a palindromic motif. • GlnR, SLCG_Lrp, and SLCG_2919 can control the expression of lcbR1.
Collapse
Affiliation(s)
- Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaqi Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
7
|
Zou J, Mao Y, Hou B, Kang Y, Wang R, Wu H, Ye J, Zhang H. DeoR regulates lincomycin production in Streptomyces lincolnensis. World J Microbiol Biotechnol 2023; 39:332. [PMID: 37801155 DOI: 10.1007/s11274-023-03788-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Regulators belonging to the DeoR family are widely distributed among the bacteria. Few studies have reported that DeoR family proteins regulate secondary metabolism of Streptomyces. This study explored the function of DeoR (SLINC_8027) in Streptomyces lincolnensis. Deletion of deoR in NRRL 2936 led to an increase in cell growth. The lincomycin production of the deoR deleted strain ΔdeoR was 3.4-fold higher than that of the wild strain. This trait can be recovered to a certain extent in the deoR complemented strain ΔdeoR::pdeoR. According to qRT-PCR analysis, DeoR inhibited the transcription of all detectable genes in the lincomycin biosynthesis cluster and repressed the expression of glnR, bldD, and SLCG_Lrp, which encode regulators outside the cluster. DeoR also inhibited the transcription of itself, as revealed by the XylE reporter. Furthermore, we demonstrated that DeoR bound directly to the promoter region of deoR, lmbA, lmbC-D, lmbJ-K, lmrA, lmrC, glnR, and SLCG_Lrp, by recognizing the 5'-CGATCR-3' motif. This study found that versatile regulatory factor DeoR negatively regulates lincomycin biosynthesis and cellular growth in S. lincolnensis, which expanded the regulatory network of lincomycin biosynthesis.
Collapse
Affiliation(s)
- Jingyun Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
Wu W, Kang Y, Hou B, Ye J, Wang R, Wu H, Zhang H. Characterization of a TetR-type positive regulator AtrA for lincomycin production in Streptomyces lincolnensis. Biosci Biotechnol Biochem 2023; 87:786-795. [DOI: doi.org/10.1093/bbb/zbad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
ABSTRACT
AtrA belongs to the TetR family and has been well characterized for its roles in antibiotic biosynthesis regulation. Here, we identified an AtrA homolog (AtrA-lin) in Streptomyces lincolnensis. Disruption of atrA-lin resulted in reduced lincomycin production, whereas the complement restored the lincomycin production level to that of the wild-type. In addition, atrA-lin disruption did not affect cell growth and morphological differentiation. Furthermore, atrA-lin disruption hindered the transcription of regulatory gene lmbU, structural genes lmbA and lmbW inside the lincomycin biosynthesis gene cluster, and 2 other regulatory genes, adpA and bldA. Completement of atrA-lin restored the transcription of these genes to varying degrees. Notably, we found that AtrA-lin directly binds to the promoter region of lmbU. Collectively, AtrA-lin positively modulated lincomycin production via both pathway-specific and global regulators. This study offers further insights into the functional diversity of AtrA homologs and the mechanism of lincomycin biosynthesis regulation.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| |
Collapse
|
9
|
Wang R, Zhou T, Kong F, Hou B, Ye J, Wu H, Zhang H. AflQ1-Q2 represses lincomycin biosynthesis via multiple cascades in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2023; 107:2933-2945. [DOI: doi.org/10.1007/s00253-023-12429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 10/09/2023]
|
10
|
Wang R, Zhou T, Kong F, Hou B, Ye J, Wu H, Zhang H. AflQ1-Q2 represses lincomycin biosynthesis via multiple cascades in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2023; 107:2933-2945. [PMID: 36930277 DOI: 10.1007/s00253-023-12429-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 03/18/2023]
Abstract
Lincomycin is a broad-spectrum antibiotic and particularly effective against Gram-positive pathogens. Albeit familiar with the biosynthetic mechanism of lincomycin, we know less about its regulation, limiting the rational design for strain improvement. We therefore analyzed two-component systems (TCSs) in Streptomyces lincolnensis, and selected eight TCS gene(s) to construct their deletion mutants utilizing CRISPR/Cas9 system. Among them, lincomycin yield increased in two strains (Δ3900-3901 and Δ5290-5291) while decreased in other four strains (Δ3415-3416, Δ4153-4154, Δ4985, and Δ7949). Considering the conspicuous effect, SLINC_5291-5290 (AflQ1-Q2) was subsequently studied in detail. Its repression on lincomycin biosynthesis was further proved by gene complementation and overexpression. By binding to a 16-bp palindromic motif, the response regulator AflQ1 inhibits the transcription of its encoding gene and the expression of eight operons inside the lincomycin synthetic cluster (headed by lmbA, lmbJ, lmbK, lmbV, lmbW, lmbU, lmrA, and lmrC), as demonstrated by quantitative RT-PCR and electrophoretic mobility shift assays. Besides, the regulatory genes including bldD, glnR, lcbR1, and ramR are also regulated by the TCS. According to the screening towards nitrogen sources, aspartate affects the regulatory behavior of histidine kinase AflQ2. And in return, AflQ1 accelerates aspartate metabolism via ask-asd, asd2, and thrA. In summary, we acquired six novel regulators related to lincomycin biosynthesis, and elucidated the regulatory mechanism of AflQ1-Q2. This highly conserved TCS is a promising target for the construction of antibiotic high-yield strains. KEY POINTS: • AflQ1-Q2 is a repressor for lincomycin production. • AflQ1 modulates the expression of lincomycin biosynthetic and regulatory genes. • Aspartate affects the behavior of AflQ2, and its metabolism is promoted by AflQ1.
Collapse
Affiliation(s)
- Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Tianyu Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Fanjing Kong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China. .,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China. .,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
11
|
Wang R, Cao Y, Kong F, Hou B, Zhao J, Kang Y, Ye J, Wu H, Zhang H. Developmental regulator RamRsl controls both morphological development and lincomycin biosynthesis in Streptomyces lincolnensis. J Appl Microbiol 2022; 133:400-409. [DOI: doi.org/10.1111/jam.15568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
Abstract
Aims
Assessing the role of ramRsl, a gene absent in a lincomycin over-producing strain, in the regulation of morphological development and lincomycin biosynthesis in Streptomyces lincolnensis.
Methods and Results
The gene ramRsl was deleted from the wild-type strain NRRL 2936 and the ΔramR mutant strain was characterized by a slower growth rate and a delayed morphological differentiation compared to the original strain NRRL 2936. Furthermore, the ΔramR produced 2.6-fold more lincomycin than the original strain, and consistently the level of expression of all lincomycin cluster located genes was enhanced at 48 and 96 h in the ΔramR. Complementation of ΔramR with an intact copy of ramRsl restored all wild-type features, whereas the over-expression of ramRsl led to a reduction of 33% of the lincomycin yield. Furthermore, the level of expression of glnR, bldA and SLCG_2919, three of known lincomycin biosynthesis regulators, was lower in the ΔramR than in the original strain at the early stage of fermentation and we demonstrated, using electrophoretic mobility shift assay and XylE reporter assay, that glnR is a novel direct target of RamR.
Conclusions
Altogether, these results indicated that, beyond promoting the morphological development, RamR regulates negatively lincomycin biosynthesis and positively the expression of the nitrogen regulator GlnR.
Significance and Impact of the Study
We demonstrated that RamR plays a negative role in the regulation of lincomycin biosynthesis in S. lincolnensis. Interestingly, the deletion of this gene in other antibiotic-producing Streptomyces strains might also increase their antibiotic-producing abilities.
Collapse
Affiliation(s)
- Ruida Wang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Yuan Cao
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Fanjing Kong
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Jiaqi Zhao
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Yajing Kang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| |
Collapse
|
12
|
Li C, Wang J, Lin H, Zhang Y, Ma Z, Bechthold A, Yu X. Protein X0P338, a GntR-type pleiotropic regulator for morphological differentiation and secondary metabolites production in Streptomyces diastatochromogenes 1628. J Basic Microbiol 2022; 62:788-800. [PMID: 35485240 DOI: 10.1002/jobm.202200086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/07/2022]
Abstract
The nucleoside antibiotic, toyocamycin (TM) exhibits excellent potent activity against several phytopathogenic fungi. Despite of its importance, little is known about key factors regulating TM biosynthesis and morphological differentiation in S. diastatochromogenes 1628. Based on proteomics data obtained from the analysis between wild-type (WT) S. diastatochromogenes 1628 strain and mutant strain 1628-T62 having a low-yield of TM, we observed that the differentially expressed protein, X0P338, which was proposed to be a regulator of the GntR-family, exhibited a higher expression level in S. diastatochromogenes 1628. Therefore, in this study, to explore whether protein X0P338 was involved in morphological differentiation and biosynthesis of secondary metabolites, especially TM, the gene called the gntR sd -encoding protein X0P338 was cloned and over-expressed in WT strain 1628 and mutant strain 1628-T62, respectively. The results indicated that the over-expression of gntR sd enhanced TM production in both strain 1628 (120.6 mg/L vs. 306.6 mg/L) and strain 1628-T62 (15.6 mg/L vs. 258.9 mg/L). Besides, the over-expression of gntR sd had positive and negative effects on morphological differentiation in strain 1628 and strain 1628-T62, respectively. The results also showed opposite effects on tetraene macrolide production during the over-expression of gntR sd in strain 1628 and strain 1628-T62. Moreover, transcription levels of genes involved in morphological differentiation and secondary metabolites production were affected by the over-expression of gntR sd gene, both in strain 1628 and strain 1628-T62. These results confirm that X0P338 as a GntR-type pleiotropic regulator that regulates the morphological differentiation and biosynthesis of secondary metabolites, and especially has a positive effect on TM biosynthesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chouqiang Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Juan Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Hengyi Lin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Yongyong Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | | | - Andreas Bechthold
- University of Freiburg, Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, Freiburg, Germany
| | | |
Collapse
|
13
|
Wang R, Cao Y, Kong F, Hou B, Zhao J, Kang Y, Ye J, Wu H, Zhang H. Developmental regulator RamR sl controls both morphological development and lincomycin biosynthesis in Streptomyces lincolnensis. J Appl Microbiol 2022; 133:400-409. [PMID: 35384192 DOI: 10.1111/jam.15568] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022]
Abstract
AIMS Assessing the role of ramRsl , a gene absent in a lincomycin over-producing strain, in the regulation of morphological development and lincomycin biosynthesis in S. lincolnensis. METHODS AND RESULTS The gene ramRsl was deleted from the wild type strain NRRL 2936 and the ΔramR mutant strain was characterized by a slower growth rate and a delayed morphological differentiation compared to the original strain NRRL 2936. Furthermore, the ΔramR produced 2.6-fold more lincomycin than the original strain, and consistently the level of expression of all lincomycin cluster located genes was enhanced at 48 h and 96 h in the ΔramR. Complementation of ΔramR with an intact copy of ramRsl restored all wild type features whereas the over-expression of ramRsl led to a reduction of 33% of the lincomycin yield. Furthermore, the level of expression of glnR, bldA, and SLCG_2919, three of known lincomycin biosynthesis regulators, was lower in the ΔramR than in the original strain at the early stage of fermentation and we demonstrated, using EMSA and XylE reporter assay, that glnR is a novel direct target of RamR. CONCLUSIONS Altogether these results indicated that, beyond promoting the morphological development, RamR regulates negatively lincomycin biosynthesis and positively the expression of the nitrogen regulator GlnR. SIGNIFICANCE AND IMPACT OF THE STUDY We demonstrated that RamR plays a negative role in the regulation of lincomycin biosynthesis in S. lincolnensis. Interestingly, the deletion of this gene in other antibiotic producing Streptomyces strains might also increase their antibiotic producing abilities.
Collapse
Affiliation(s)
- Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuan Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fanjing Kong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jiaqi Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Hou B, Wang R, Zou J, Zhang F, Wu H, Ye J, Zhang H. A putative redox‐sensing regulator Rex regulates lincomycin biosynthesis in Streptomyces lincolnensis. J Basic Microbiol 2021; 61:772-781. [DOI: doi.org/10.1002/jobm.202100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/04/2021] [Indexed: 10/09/2023]
Abstract
AbstractLincomycin is an important antimicrobial agent which is widely used in clinical and animal husbandry. The biosynthetic pathway of lincomycin comes to light in the past 10 years, however, the regulatory mechanism is still unclear. In this study, a redox‐sensing regulator Rex from Streptomyces lincolnensis (Rexlin) was identified and characterized to affect cell growth and lincomycin biosynthesis. Disruption of rex resulted in an increase in cell growth, but a decrease in lincomycin production. The results of quantitative real‐time polymerase chain reaction showed that Rexlin can promote transcription of the regulatory gene lmbU and the structural genes lmbA, lmbC, lmbJ, lmbV, and lmbW. However, electrophoretic mobility shift assay analysis demonstrated that Rexlin can not bind to the promoter regions of these genes above. Findings in this study broadened our horizons in the regulatory mechanism of lincomycin production and laid a foundation for strain improvement of antibiotic producers.
Collapse
Affiliation(s)
- Bingbing Hou
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Jingyun Zou
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Feixue Zhang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| |
Collapse
|
15
|
Hou B, Wang R, Zou J, Zhang F, Wu H, Ye J, Zhang H. A putative redox-sensing regulator Rex regulates lincomycin biosynthesis in Streptomyces lincolnensis. J Basic Microbiol 2021; 61:772-781. [PMID: 34313330 DOI: 10.1002/jobm.202100249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/17/2021] [Accepted: 07/04/2021] [Indexed: 01/06/2023]
Abstract
Lincomycin is an important antimicrobial agent which is widely used in clinical and animal husbandry. The biosynthetic pathway of lincomycin comes to light in the past 10 years, however, the regulatory mechanism is still unclear. In this study, a redox-sensing regulator Rex from Streptomyces lincolnensis (Rexlin ) was identified and characterized to affect cell growth and lincomycin biosynthesis. Disruption of rex resulted in an increase in cell growth, but a decrease in lincomycin production. The results of quantitative real-time polymerase chain reaction showed that Rexlin can promote transcription of the regulatory gene lmbU and the structural genes lmbA, lmbC, lmbJ, lmbV, and lmbW. However, electrophoretic mobility shift assay analysis demonstrated that Rexlin can not bind to the promoter regions of these genes above. Findings in this study broadened our horizons in the regulatory mechanism of lincomycin production and laid a foundation for strain improvement of antibiotic producers.
Collapse
Affiliation(s)
- Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jingyun Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Feixue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
16
|
Du L, Li G, Gong W, Zhu J, Liu L, Zhu L, Liu Z. Establishment and validation of the LC-MS/MS method for the determination of lincomycin in human blood: Application to an allergy case in forensic science. J Forensic Leg Med 2020; 77:102094. [PMID: 33383379 DOI: 10.1016/j.jflm.2020.102094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/30/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
An analytical method to quantify lincomycin in human blood samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed and validated. The selected method was based on a protein precipitation extraction (PPE) with methanol. Instrumental determination was carried out by LC-MS/MS, with quantification based on the internal standard method. Linearity for lincomycin was established in the concentration range of 5-100 ng/mL. The limit of detection (LOD) and limit of quantification (LOQ) were 0.2 and 1 ng/mL, respectively. Analyte recoveries were in the range of 72.70%-84.13% for spiked blood samples. The accuracies ranged between 92.82% and 100.40%, and the intraday and inter-day precisions ranged between 1.19% and 6.40%, respectively. The developed method was applied to an authentic allergy case of lincomycin. By testing the lincomycin content in the venous blood of the deceased and combined with the pathological test results, lincomycin acute allergy appeared to be the most likely cause of death. The acquired results confirm that the developed method is capable of identifying and quantifying lincomycin in human blood and can be suitable for the detection of allergy cases in clinical or forensic science.
Collapse
Affiliation(s)
- Le Du
- Jining Medical University, Jining, Shandong, China; Center of Forensic Science, Jining Medical University, Jining, 272067, Shandong, China
| | - Guangyan Li
- Weishan People's Hospital, Jining, Shandong, China
| | - Wenjing Gong
- Jining Medical University, Jining, Shandong, China.
| | - Jun Zhu
- Jining Medical University, Jining, Shandong, China
| | - Li Liu
- Jining Medical University, Jining, Shandong, China
| | - Lei Zhu
- Jining Medical University, Jining, Shandong, China
| | - Zengjia Liu
- Jining Medical University, Jining, Shandong, China
| |
Collapse
|
17
|
Liao Z, Song Z, Xu J, Ma Z, Bechthold A, Yu X. Identification of a gene from Streptomyces rimosus M527 negatively affecting rimocidin biosynthesis and morphological differentiation. Appl Microbiol Biotechnol 2020; 104:10191-10202. [PMID: 33057790 DOI: 10.1007/s00253-020-10955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022]
Abstract
The polyene macrolide rimocidin, produced by Streptomyces rimosus M527, was found to be highly effective against a broad range of fungal plant pathogens. Current understanding of the regulatory mechanism of rimocidin biosynthesis and morphological differentiation in S. rimosus M527 is limited. NsdA is considered a negative regulator involved in morphological differentiation and biosynthesis of secondary metabolites in some Streptomyces species. In this study, nsdAsr was cloned from S. rimosus M527. The role of nsdAsr in rimocidin biosynthesis and morphological differentiation was investigated by gene deletion, complementation, and over-expression. A ΔnsdAsr mutant was obtained using CRISPR/Cas9. The mutant produced more rimocidin (46%) and accelerated morphological differentiation than the wild-type strain. Over-expression of nsdAsr led to a decrease in rimocidin production and impairment of morphological differentiation. Quantitative RT-PCR analysis revealed that transcription of rim genes responsible for rimocidin biosynthesis was upregulated in the ΔnsdAsr mutant but downregulated in the nsdAsr over-expression strain. Similar effects have been described for Streptomyces coelicolor M145 and the industrial toyocamycin-producing strain Streptomyces diastatochromogenes 1628. KEY POINTS: • A negative regulator for sporulation and rimocidin production was identified. • The CRISPR/Cas9 system was used for gene deletion in S. rimosus M527.
Collapse
Affiliation(s)
- Zhijun Liao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China
| | - Zhangqing Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China
| | - Jie Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China.
| | - Andreas Bechthold
- Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104, Freiburg, Germany
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China.
| |
Collapse
|
18
|
Wang R, Kong F, Wu H, Hou B, Kang Y, Cao Y, Duan S, Ye J, Zhang H. Complete genome sequence of high-yield strain S. lincolnensis B48 and identification of crucial mutations contributing to lincomycin overproduction. Synth Syst Biotechnol 2020; 5:37-48. [DOI: doi.org/10.1016/j.synbio.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023] Open
|
19
|
Complete genome sequence of high-yield strain S. lincolnensis B48 and identification of crucial mutations contributing to lincomycin overproduction. Synth Syst Biotechnol 2020; 5:37-48. [PMID: 32322696 PMCID: PMC7160387 DOI: 10.1016/j.synbio.2020.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 02/08/2023] Open
Abstract
The lincosamide family antibiotic lincomycin is a widely used antibacterial pharmaceutical generated by Streptomyces lincolnensis, and the high-yield strain B48 produces 2.5 g/L lincomycin, approximately 30-fold as the wild-type strain NRRL 2936. Here, the genome of S. lincolnensis B48 was completely sequenced, revealing a ~10.0 Mb single chromosome with 71.03% G + C content. Based on the genomic information, lincomycin-related primary metabolism network was constructed and the secondary metabolic potential was analyzed. In order to dissect the overproduction mechanism, a comparative genomic analysis with NRRL 2936 was performed. Three large deletions (LDI-III), one large inverted duplication (LID), one long inversion and 80 small variations (including 50 single nucleotide variations, 13 insertions and 17 deletions) were found in B48 genome. Then several crucial mutants contributing to higher production phenotype were validated. Deleting of a MarR-type regulator-encoding gene slinc377 from LDI, and the whole 24.7 kb LDII in NRRL 2936 enhanced lincomycin titer by 244% and 284%, respectively. Besides, lincomycin production of NRRL 2936 was increased to 7.7-fold when a 71 kb supercluster BGC33 from LDIII was eliminated. As for the duplication region, overexpression of the cluster situated genes lmbB2 and lmbU, as well as two novel transcriptional regulator-encoding genes (slinc191 and slinc348) elevated lincomycin titer by 77%, 75%, 114% and 702%, respectively. Furthermore, three negative correlation genes (slinc6156, slinc4481 and slinc6011) on lincomycin biosynthesis, participating in regulation were found out. And surprisingly, inactivation of RNase J-encoding gene slinc6156 and TPR (tetratricopeptide repeat) domain-containing protein-encoding gene slinc4481 achieved lincomycin titer equivalent to 83% and 68% of B48, respectively, to 22.4 and 18.4-fold compared to NRRL 2936. Therefore, the comparative genomics approach combined with confirmatory experiments identified that large fragment deletion, long sequence duplication, along with several mutations of genes, especially regulator genes, are crucial for lincomycin overproduction.
Collapse
|
20
|
Lin CY, Pang AP, Zhang Y, Qiao J, Zhao GR. Comparative transcriptomic analysis reveals the significant pleiotropic regulatory effects of LmbU on lincomycin biosynthesis. Microb Cell Fact 2020; 19:30. [PMID: 32050973 PMCID: PMC7014725 DOI: 10.1186/s12934-020-01298-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/05/2020] [Indexed: 01/02/2023] Open
Abstract
Background Lincomycin, produced by Streptomyces lincolnensis, is a lincosamide antibiotic and widely used for the treatment of the infective diseases caused by Gram-positive bacteria. The mechanisms of lincomycin biosynthesis have been deeply explored in recent years. However, the regulatory effects of LmbU that is a transcriptional regulator in lincomycin biosynthetic (lmb) gene cluster have not been fully addressed. Results LmbU was used to search for homologous LmbU (LmbU-like) proteins in the genomes of actinobacteria, and the results showed that LmbU-like proteins are highly distributed regulators in the biosynthetic gene clusters (BGCs) of secondary metabolites or/and out of the BGCs in actinomycetes. The overexpression, inactivation and complementation of the lmbU gene indicated that LmbU positively controls lincomycin biosynthesis in S. lincolnensis. Comparative transcriptomic analysis further revealed that LmbU activates the 28 lmb genes at whole lmb cluster manner. Furthermore, LmbU represses the transcription of the non-lmb gene hpdA in the biosynthesis of l-tyrosine, the precursor of lincomycin. LmbU up-regulates nineteen non-lmb genes, which would be involved in multi-drug flux to self-resistance, nitrate and sugar transmembrane transport and utilization, and redox metabolisms. Conclusions LmbU is a significant pleiotropic transcriptional regulator in lincomycin biosynthesis by entirely activating the lmb cluster and regulating the non-lmb genes in Streptomyces lincolnensis. Our results first revealed the pleiotropic regulatory function of LmbU, and shed new light on the transcriptional effects of LmbU-like family proteins on antibiotic biosynthesis in actinomycetes.
Collapse
Affiliation(s)
- Chun-Yan Lin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Ai-Ping Pang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yue Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jianjun Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China. .,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
21
|
He H, Yuan S, Hu J, Chen J, Rang J, Tang J, Liu Z, Xia Z, Ding X, Hu S, Xia L. Effect of the TetR family transcriptional regulator Sp1418 on the global metabolic network of Saccharopolyspora pogona. Microb Cell Fact 2020; 19:27. [PMID: 32046731 PMCID: PMC7011500 DOI: 10.1186/s12934-020-01299-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Background Saccharopolyspora pogona is a prominent industrial strain due to its production of butenyl-spinosyn, a high-quality insecticide against a broad spectrum of insect pests. TetR family proteins are diverse in a tremendous number of microorganisms and some are been researched to have a key role in metabolic regulation. However, specific functions of TetR family proteins in S. pogona are yet to characterize. Results In the present study, the overexpression of the tetR-like gene sp1418 in S. pogona resulted in marked effects on vegetative growth, sporulation, butenyl-spinosyn biosynthesis, and oxidative stress. By using qRT-PCR analysis, mass spectrometry, enzyme activity detection, and sp1418 knockout verification, we showed that most of these effects could be attributed to the overexpression of Sp1418, which modulated enzymes related to the primary metabolism, oxidative stress and secondary metabolism, and thereby resulted in distinct growth characteristics and an unbalanced supply of precursor monomers for butenyl-spinosyn biosynthesis. Conclusion This study revealed the function of Sp1418 and enhanced the understanding of the metabolic network in S. pogona, and provided insights into the improvement of secondary metabolite production.
Collapse
Affiliation(s)
- Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuangqin Yuan
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jinjuan Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianming Chen
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianli Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhudong Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
22
|
Herbrík A, Corretto E, Chroňáková A, Langhansová H, Petrásková P, Hrdý J, Čihák M, Krištůfek V, Bobek J, Petříček M, Petříčková K. A Human Lung-Associated Streptomyces sp. TR1341 Produces Various Secondary Metabolites Responsible for Virulence, Cytotoxicity and Modulation of Immune Response. Front Microbiol 2020; 10:3028. [PMID: 32010093 PMCID: PMC6978741 DOI: 10.3389/fmicb.2019.03028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Streptomycetes, typical soil dwellers, can be detected as common colonizers of human bodies, especially the skin, the respiratory tract, the guts and the genital tract using molecular techniques. However, their clinical manifestations and isolations are rare. Recently they were discussed as possible "coaches" of the human immune system in connection with certain immune disorders and cancer. This work aimed for the characterization and evaluation of genetic adaptations of a human-associated strain Streptomyces sp. TR1341. The strain was isolated from sputum of a senior male patient with a history of lung and kidney TB, recurrent respiratory infections and COPD. It manifested remarkably broad biological activities (antibacterial, antifungal, beta-hemolytic, etc.). We found that, by producing specific secondary metabolites, it is able to modulate host immune responses and the niche itself, which increase its chances for long-term survival in the human tissue. The work shows possible adaptations or predispositions of formerly soil microorganism to survive in human tissue successfully. The strain produces two structural groups of cytotoxic compounds: 28-carbon cytolytic polyenes of the filipin type and actinomycin X2. Additionally, we summarize and present data about streptomycete-related human infections known so far.
Collapse
Affiliation(s)
- Andrej Herbrík
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Erika Corretto
- Institute of Soil Biology, Biology Centre Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| | - Alica Chroňáková
- Institute of Soil Biology, Biology Centre Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| | - Helena Langhansová
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Petra Petrásková
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Matouš Čihák
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Václav Krištůfek
- Institute of Soil Biology, Biology Centre Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| | - Jan Bobek
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia.,Department of Chemistry, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czechia
| | - Miroslav Petříček
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Kateřina Petříčková
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
23
|
Kang Y, Wang Y, Hou B, Wang R, Ye J, Zhu X, Wu H, Zhang H. AdpAlin, a Pleiotropic Transcriptional Regulator, Is Involved in the Cascade Regulation of Lincomycin Biosynthesis in Streptomyces lincolnensis. Front Microbiol 2019; 10. [DOI: doi.org/10.3389/fmicb.2019.02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023] Open
|
24
|
Kang Y, Wang Y, Hou B, Wang R, Ye J, Zhu X, Wu H, Zhang H. AdpA lin, a Pleiotropic Transcriptional Regulator, Is Involved in the Cascade Regulation of Lincomycin Biosynthesis in Streptomyces lincolnensis. Front Microbiol 2019; 10:2428. [PMID: 31708899 PMCID: PMC6819324 DOI: 10.3389/fmicb.2019.02428] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/08/2019] [Indexed: 11/13/2022] Open
Abstract
Lincomycin is one of the most important antibiotics in clinical practice. To further understand the regulatory mechanism on lincomycin biosynthesis, we investigated a pleiotropic transcriptional regulator AdpAlin in the lincomycin producer Streptomyces lincolnensis NRRL 2936. Deletion of adpA lin (which generated ΔadpA lin ) interrupted lincomycin biosynthesis and impaired the morphological differentiation. We also found that putative AdpA binding sites were unusually scattered in the promoters of all the 8 putative operons in the lincomycin biosynthetic gene cluster (BGC). In ΔadpA lin , transcript levels of structural genes in 8 putative operons were decreased with varying degrees, and electrophoretic mobility shift assays (EMSAs) confirmed that AdpAlin activated the overall putative operons via directly binding to their promoter regions. Thus, we speculated that the entire lincomycin biosynthesis is under the control of AdpAlin. Besides, AdpAlin participated in lincomycin biosynthesis by binding to the promoter of lmbU which encoded a cluster sited regulator (CSR) LmbU of lincomycin biosynthesis. Results of qRT-PCR and catechol dioxygenase activity assay showed that AdpAlin activated the transcription of lmbU. In addition, AdpAlin activated the transcription of the bldA by binding to its promoter, suggesting that AdpAlin indirectly participated in lincomycin biosynthesis and morphological differentiation. Uncommon but understandable, AdpAlin auto-activated its own transcription via binding to its own promoter region. In conclusion, we provided a molecular mechanism around the effect of AdpAlin on lincomycin biosynthesis in S. lincolnensis, and revealed a cascade regulation of lincomycin biosynthesis by AdpAlin, LmbU, and BldA.
Collapse
Affiliation(s)
- Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yingying Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Xiaoyu Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
25
|
Musiol-Kroll EM, Tocchetti A, Sosio M, Stegmann E. Challenges and advances in genetic manipulation of filamentous actinomycetes - the remarkable producers of specialized metabolites. Nat Prod Rep 2019; 36:1351-1369. [PMID: 31517370 DOI: 10.1039/c9np00029a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to February 2019Actinomycetes are Gram positive bacteria of the phylum Actinobacteria. These organisms are one of the most important sources of structurally diverse, clinically used antibiotics and other valuable bioactive products, as well as biotechnologically relevant enzymes. Most strains were discovered by their ability to produce a given molecule and were often poorly characterized, physiologically and genetically. The development of genetic methods for Streptomyces and related filamentous actinomycetes has led to the successful manipulation of antibiotic biosynthesis to attain structural modification of microbial metabolites that would have been inaccessible by chemical means and improved production yields. Moreover, genome mining reveals that actinomycete genomes contain multiple biosynthetic gene clusters (BGCs), however only a few of them are expressed under standard laboratory conditions, leading to the production of the respective compound(s). Thus, to access and activate the so-called "silent" BGCs, to improve their biosynthetic potential and to discover novel natural products methodologies for genetic manipulation are required. Although different methods have been applied for many actinomycete strains, genetic engineering is still remaining very challenging for some "underexplored" and poorly characterized actinomycetes. This review summarizes the strategies developed to overcome the obstacles to genetic manipulation of actinomycetes and allowing thereby rational genetic engineering of this industrially relevant group of microorganisms. At the end of this review we give some tips to researchers with limited or no previous experience in genetic manipulation of actinomycetes. The article covers the most relevant literature published until February 2019.
Collapse
Affiliation(s)
- Ewa M Musiol-Kroll
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| | | | | | - Evi Stegmann
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| |
Collapse
|
26
|
Bukelskis D, Dabkeviciene D, Lukoseviciute L, Bucelis A, Kriaučiūnas I, Lebedeva J, Kuisiene N. Screening and Transcriptional Analysis of Polyketide Synthases and Non-ribosomal Peptide Synthetases in Bacterial Strains From Krubera-Voronja Cave. Front Microbiol 2019; 10:2149. [PMID: 31572349 PMCID: PMC6753585 DOI: 10.3389/fmicb.2019.02149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/02/2019] [Indexed: 12/25/2022] Open
Abstract
Identification of novel bioactive compounds represents an important field in modern biomedical research. Microorganisms of the underexplored environments, such as deserts, hot springs, oceans, and caves are highly promising candidates for screening such metabolites. Screening for biosynthetic genes is the most effective strategy to characterize bioactivity in a certain environment. However, knowledge is either scant or non-existent about the expression of the biosynthetic genes encoding for various bioactive compounds in the microorganisms from the caves. The aim of the current study was to screen for the genes of polyketide synthases and non-ribosomal peptide synthetases in Krubera–Voronja Cave (43.4184 N 40.3083 E, Western Caucasus) bacterial isolates as well as to evaluate the expression of these genes under laboratory conditions. In total, 91 bacterial strains isolated from the cave were screened for the presence of polyketide synthase and non-ribosomal peptide synthetase genes. Phenotypically inactive strains were the main focus (the test group) of our study, while the strains with the identified antibacterial activity served as the control group. Our PCR-based screening clearly showed that the majority of the strains harbored at least one biosynthetic gene. Prediction of the putative products allowed us to identify bioactive compounds with antibacterial, anticancer, antifungal, anti-inflammatory, antimycoplasmic, antiviral, insecticidal, and thrombolytic activity. For most polyketide synthases and non-ribosomal peptide synthetases, putative products could not be predicted; they are unknown. Qualitative transcriptional analysis did not show substantial differences between the test group and the control group of the strains. One to four biosynthetic genes were constitutively expressed in all the tested strains, irrespective of the group. Quantitative transcriptional analysis of the constitutively expressed biosynthetic genes demonstrated that the expression of a particular gene could be affected by both the amount of the nutrients in the culture medium and the growth phase.
Collapse
Affiliation(s)
- Dominykas Bukelskis
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daiva Dabkeviciene
- Institute of Biosciences, Department of Biochemistry and Molecular Biology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Laima Lukoseviciute
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Airidas Bucelis
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ignas Kriaučiūnas
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jolanta Lebedeva
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Nomeda Kuisiene
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
27
|
Hou B, Zhu X, Kang Y, Wang R, Wu H, Ye J, Zhang H. LmbU, a Cluster-Situated Regulator for Lincomycin, Consists of a DNA-Binding Domain, an Auto-Inhibitory Domain, and Forms Homodimer. Front Microbiol 2019; 10. [DOI: doi.org/10.3389/fmicb.2019.00989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023] Open
|
28
|
Hou B, Zhu X, Kang Y, Wang R, Wu H, Ye J, Zhang H. LmbU, a Cluster-Situated Regulator for Lincomycin, Consists of a DNA-Binding Domain, an Auto-Inhibitory Domain, and Forms Homodimer. Front Microbiol 2019; 10:989. [PMID: 31130942 PMCID: PMC6510168 DOI: 10.3389/fmicb.2019.00989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/18/2019] [Indexed: 12/17/2022] Open
Abstract
Few studies were reported about the regulatory mechanism of lincomycin biosynthesis since it was found in 1962. Although we have proved that a cluster-situated regulator (CSR) LmbU (GenBank Accession No. ABX00623.1) positively modulates lincomycin biosynthesis in Streptomyces lincolnensis NRRL 2936, the molecular mechanism of LmbU regulation is still unclear. In this study, we demonstrated that LmbU binds to the target lmbAp by a central DNA-binding domain (DBD), which interacts with the binding sites through the helix-turn-helix (HTH) motif. N-terminal of LmbU includes an auto-inhibitory domain (AID), inhibiting the DNA-binding activity of LmbU. Without the AID, LmbU variant can bind to its own promoter. Interestingly, compared to other LmbU homologs, the homologs within the biosynthetic gene clusters (BGCs) of known antibiotics generally contain N-terminal AIDs, which offer them the abilities to play complex regulatory functions. In addition, cysteine 12 (C12) has been proved to be mainly responsible for LmbU homodimer formation in vitro. In conclusion, LmbU homologs naturally exist in hundreds of actinomycetes, and belong to a new regulatory family, LmbU family. The present study reveals the DBD, AID and dimerization of LmbU, and sheds new light on the regulatory mechanism of LmbU and its homologs.
Collapse
Affiliation(s)
- Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoyu Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
29
|
Natural tuning of restriction endonuclease synthesis by cluster of rare arginine codons. Sci Rep 2019; 9:5808. [PMID: 30967604 PMCID: PMC6456624 DOI: 10.1038/s41598-019-42311-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/28/2019] [Indexed: 01/21/2023] Open
Abstract
Restriction–modification (R-M) systems are highly widespread among bacteria and archaea, and they appear to play a pivotal role in modulating horizontal gene transfer, as well as in protecting the host organism against viruses and other invasive DNA particles. Type II R-M systems specify two independent enzymes: a restriction endonuclease (REase) and protective DNA methyltransferase (MTase). If the cell is to survive, the counteracting activities as toxin and antitoxin, must be finely balanced in vivo. The molecular basis of this regulatory process remains unclear and current searches for regulatory elements in R-M modules are focused mainly at the transcription step. In this report, we show new aspects of REase control that are linked to translation. We used the EcoVIII R-M system as a model. Both, the REase and MTase genes for this R-M system contain an unusually high number of rare arginine codons (AGA and AGG) when compared to the rest of the E. coli K-12 genome. Clusters of these codons near the N-terminus of the REase greatly affect the translational efficiency. Changing these to higher frequency codons for E. coli (CGC) improves the REase synthesis, making the R-M system more potent to defend its host against bacteriophages. However, this improved efficiency in synthesis reduces host fitness due to increased autorestriction. We hypothesize that expression of the endonuclease gene can be modulated depending on the host genetic context and we propose a novel post-transcriptional mode of R–M system regulation that alleviates the potential lethal action of the restriction enzyme.
Collapse
|
30
|
A Novel AdpA Homologue Negatively Regulates Morphological Differentiation in Streptomyces xiamenensis 318. Appl Environ Microbiol 2019; 85:AEM.03107-18. [PMID: 30683747 DOI: 10.1128/aem.03107-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 01/23/2019] [Indexed: 11/20/2022] Open
Abstract
The pleiotropic transcriptional regulator AdpA positively controls morphological differentiation and regulates secondary metabolism in most Streptomyces species. Streptomyces xiamenensis 318 has a linear chromosome 5.96 Mb in size. How AdpA affects secondary metabolism and morphological differentiation in such a naturally minimized genomic background is unknown. Here, we demonstrated that AdpA Sx , an AdpA orthologue in S. xiamenensis, negatively regulates cell growth and sporulation and bidirectionally regulates the biosynthesis of xiamenmycin and polycyclic tetramate macrolactams (PTMs) in S. xiamenensis 318. Overexpression of the adpASx gene in S. xiamenensis 318 had negative effects on morphological differentiation and resulted in reduced transcription of putative ssgA, ftsZ, ftsH, amfC, whiB, wblA1, wblA2, wblE, and a gene encoding sporulation-associated protein (sxim_29740), whereas the transcription of putative bldD and bldA genes was upregulated. Overexpression of adpASx led to significantly enhanced production of xiamenmycin but had detrimental effects on the production of PTMs. As expected, the transcriptional level of the xim gene cluster was upregulated, whereas the PTM gene cluster was downregulated. Moreover, AdpA Sx negatively regulated the transcription of its own gene. Electrophoretic mobility shift assays revealed that AdpA Sx can bind the promoter regions of structural genes of both the xim and PTM gene clusters as well as to the promoter regions of genes potentially involved in the cell growth and differentiation of S. xiamenensis 318. We report that an AdpA homologue has negative effects on morphological differentiation in S. xiamenensis 318, a finding confirmed when AdpA Sx was introduced into the heterologous host Streptomyces lividans TK24.IMPORTANCE AdpA is a key regulator of secondary metabolism and morphological differentiation in Streptomyces species. However, AdpA had not been reported to negatively regulate morphological differentiation. Here, we characterized the regulatory role of AdpA Sx in Streptomyces xiamenensis 318, which has a naturally streamlined genome. In this strain, AdpA Sx negatively regulated cell growth and morphological differentiation by directly controlling genes associated with these functions. AdpA Sx also bidirectionally controlled the biosynthesis of xiamenmycin and PTMs by directly regulating their gene clusters rather than through other regulators. Our findings provide additional evidence for the versatility of AdpA in regulating morphological differentiation and secondary metabolism in Streptomyces.
Collapse
|
31
|
Zhang S, Klementz D, Zhu J, Makitrynskyy R, Ola Pasternak AR, Günther S, Zechel DL, Bechthold A. Genome mining reveals the origin of a bald phenotype and a cryptic nucleocidin gene cluster in Streptomyces asterosporus DSM 41452. J Biotechnol 2019; 292:23-31. [PMID: 30641108 DOI: 10.1016/j.jbiotec.2018.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/06/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
Streptomyces asterosporus DSM 41452 is a producer of the polyketide annimycin and the non-ribosomal depsipeptide WS9326A. This strain is also notable for exhibiting a bald phenotype that is devoid of spores and aerial mycelium when grown on solid media. Based on the similarity of the 16S rRNA sequence to Streptomyces calvus, the only known producer of the fluorometabolite nucleocidin, the genome of S. asterosporus DSM 41452 was sequenced and analyzed. Twenty-nine natural product gene clusters were detected in the genome, including a gene cluster predicted to encode the fluorometabolite nucleocidin. Through genome analysis and gene complementation experiments, we demonstrate that the bald phenotype arises from a transposon gene inserted within the promoter sequence for the pleiotropic regulator adpA. Complementation of S. asterosporus DSM 41452 with a functional adpA sequence restored morphological differentiation and promoted the production of nucleocidin.
Collapse
Affiliation(s)
- Songya Zhang
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg, Germany
| | - Dennis Klementz
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg, Germany
| | - Jing Zhu
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg, Germany
| | - Roman Makitrynskyy
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg, Germany
| | - A R Ola Pasternak
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - Stefan Günther
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg, Germany
| | - David L Zechel
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada.
| | - Andreas Bechthold
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg, Germany.
| |
Collapse
|
32
|
Luo N, Yang YB, Yang XQ, Miao CP, Li YQ, Xu LH, Ding ZT, Zhao LX. The streptazolin- and obscurolide-type metabolites from soil-derivedStreptomyces albonigerYIM20533 and the mechanism of influence of γ-butyrolactone on the growth ofStreptomycesby their non-enzymatic reaction biosynthesis. RSC Adv 2018; 8:35042-35049. [PMID: 35547034 PMCID: PMC9087211 DOI: 10.1039/c8ra06690f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/27/2018] [Indexed: 11/21/2022] Open
Abstract
Eleven new compounds with streptazolin- and obscurolide-type skeletons were isolated from soil-derivedStreptomyces albonigerobtained from Tibet, China.
Collapse
Affiliation(s)
- Na Luo
- Yunnan Institute of Microbiology
- College of Life Science
- Yunnan University
- Kunming
- People's Republic of China
| | - Ya-Bin Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
- People's Republic of China
| | - Xue-Qiong Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
- People's Republic of China
| | - Cui-Ping Miao
- Yunnan Institute of Microbiology
- College of Life Science
- Yunnan University
- Kunming
- People's Republic of China
| | - Yi-Qing Li
- Yunnan Institute of Microbiology
- College of Life Science
- Yunnan University
- Kunming
- People's Republic of China
| | - Li-Hua Xu
- Yunnan Institute of Microbiology
- College of Life Science
- Yunnan University
- Kunming
- People's Republic of China
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
- People's Republic of China
| | - Li-Xing Zhao
- Yunnan Institute of Microbiology
- College of Life Science
- Yunnan University
- Kunming
- People's Republic of China
| |
Collapse
|