1
|
Filonov VL, Khomutov MA, Tkachev YV, Udod AV, Yanvarev DV, Giovannercole F, Khurs EN, Kochetkov SN, De Biase D, Khomutov AR. Enzymatic Synthesis of Biologically Active H-Phosphinic Analogue of α-Ketoglutarate. Biomolecules 2024; 14:1574. [PMID: 39766281 PMCID: PMC11673680 DOI: 10.3390/biom14121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Amino acid analogues with a phosphorus-containing moiety replacing the carboxylic group are promising sources of biologically active compounds. The H-phosphinic group, with hydrogen-phosphorus-carbon (H-P-C) bonds and a flattened tetrahedral configuration, is a bioisostere of the carboxylic group. Consequently, amino-H-phosphinic acids undergo substrate-like enzymatic transformations, leading to new biologically active metabolites. Previous studies employing NMR-based metabolomic and proteomic analyses show that in Escherichia coli, α-KG-γ-PH (the distal H-phosphinic analogue of α-ketoglutarate) can be converted into L-Glu-γ-PH. Notably, α-KG-γ-PH and L-Glu-γ-PH are antibacterial compounds, but their intracellular targets only partially overlap. L-Glu-γ-PH is known to be a substrate of aspartate transaminase and glutamate decarboxylase, but its substrate properties with NAD+-dependent glutamate dehydrogenase (GDH) have never been investigated. Compounds containing P-H bonds are strong reducing agents; therefore, enzymatic NAD+-dependent oxidation is not self-evident. Herein, we demonstrate that L-Glu-γ-PH is a substrate of eukaryotic GDH and that the pH optimum of L-Glu-γ-PH NAD+-dependent oxidative deamination is shifted to a slightly alkaline pH range compared to L-glutamate. By 31P NMR, we observe that α-KG-γ-PH exists in a pH-dependent equilibrium of keto and germinal diol forms. Furthermore, the stereospecific enzymatic synthesis of α-KG-γ-PH from L-Glu-γ-PH using GDH is a possible route for its bio-based synthesis.
Collapse
Affiliation(s)
- Vsevolod L. Filonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St., 32, 119991 Moscow, Russia; (V.L.F.); (M.A.K.); (Y.V.T.); (A.V.U.); (D.V.Y.); (E.N.K.); (S.N.K.)
| | - Maxim A. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St., 32, 119991 Moscow, Russia; (V.L.F.); (M.A.K.); (Y.V.T.); (A.V.U.); (D.V.Y.); (E.N.K.); (S.N.K.)
| | - Yaroslav V. Tkachev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St., 32, 119991 Moscow, Russia; (V.L.F.); (M.A.K.); (Y.V.T.); (A.V.U.); (D.V.Y.); (E.N.K.); (S.N.K.)
| | - Artem V. Udod
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St., 32, 119991 Moscow, Russia; (V.L.F.); (M.A.K.); (Y.V.T.); (A.V.U.); (D.V.Y.); (E.N.K.); (S.N.K.)
| | - Dmitry V. Yanvarev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St., 32, 119991 Moscow, Russia; (V.L.F.); (M.A.K.); (Y.V.T.); (A.V.U.); (D.V.Y.); (E.N.K.); (S.N.K.)
| | - Fabio Giovannercole
- Département de Biologie, Université de Namur, Rue de Bruxelles 61, 5000 Namur, Belgium;
| | - Elena N. Khurs
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St., 32, 119991 Moscow, Russia; (V.L.F.); (M.A.K.); (Y.V.T.); (A.V.U.); (D.V.Y.); (E.N.K.); (S.N.K.)
| | - Sergei N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St., 32, 119991 Moscow, Russia; (V.L.F.); (M.A.K.); (Y.V.T.); (A.V.U.); (D.V.Y.); (E.N.K.); (S.N.K.)
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy;
| | - Alex R. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St., 32, 119991 Moscow, Russia; (V.L.F.); (M.A.K.); (Y.V.T.); (A.V.U.); (D.V.Y.); (E.N.K.); (S.N.K.)
| |
Collapse
|
2
|
Yang K, Huang Y, Amanze C, Yao L, Anaman R, Huang B, Zeng W. Computer-Aided Flexible Loops Engineering of Glutamate Dehydrogenase for Asymmetric Synthesis of Chiral Pesticides l-phosphinothricin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24643-24654. [PMID: 39436023 DOI: 10.1021/acs.jafc.4c06294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The access to the enantiopure noncanonical amino acid l-phosphinothricin (l-PPT) by applying biocatalysts is highly appealing in organic chemistry. In this study, a NADH-dependent glutamate dehydrogenase from Lachnospiraceae bacterium (LbGluDH) was chosen for the asymmetric synthesis of l-PPT. Three flexible loops undergoing big conformational shifts during the catalysis were identified and rationally engineered following the initial mutagenesis. The enzyme's specific activity toward the key precursor of l-PPT, 2-oxo-4-[(hydroxy) (methyl) phosphinyl] butyric acid (PPO), was improved from negligible to 9 U/mg, and the Km value was reduced to 17 mM. The computational analysis showed that the modified loops broadened the enzyme's narrow tunnels, allowing the substrate to access the binding pocket and get closer to the crucial residue D165, thereby enhancing the catalytic process. Utilizing the variant as the catalyst, the preparation of l-PPT achieved a 100% conversion rate within 60 min, coupled with a stereoselectivity exceeding 99.9%, demonstrating its practical capacity for industrial application. Similar enhancement in catalytic activity was obtained applying the same strategy to a typical NADH-dependent GluDH from Pyrobaculum islandicum (PisGluDH), indicating the effectiveness of our strategy for the protein engineering of GluDHs targeted to the biosynthesis of unnatural compounds.
Collapse
Affiliation(s)
- Kai Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Yueshan Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Liyi Yao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Richmond Anaman
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Bin Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
3
|
Cheng F, Sun KX, Gong XX, Peng W, Zhang HY, Liang XH, Xue YP, Zheng YG. Development of growth selection system and pocket engineering of d-amino acid oxidase to enhance selective deamination activity toward d-phosphinothricin. Biotechnol Bioeng 2024; 121:2893-2906. [PMID: 38822747 DOI: 10.1002/bit.28763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
D-amino acid oxidase (DAAO)-catalyzed selective oxidative deamination is a very promising process for synthesizing l-amino acids including l-phosphinothricin (l-PPT, a high-efficiency and broad-spectrum herbicide). However, the wild-type DAAO's low activity toward unnatural substrates like d-phosphinothricin (d-PPT) hampers its application. Herein, a DAAO from Caenorhabditis elegans (CeDAAO) was screened and engineered to improve the catalytic potential on d-PPT. First, we designed a novel growth selection system, taking into account the intricate relationship between the growth of Escherichia coli (E. coli) and the catalytic mechanism of DAAO. The developed system was used for high-throughput screening of gene libraries, resulting in the discovery of a variant (M6) with significantly increased catalytic activity against d-PPT. The variant displays different catalytic properties on substrates with varying hydrophobicity and hydrophilicity. Analysis using Alphafold2 modeling and molecular dynamic simulations showed that the reason for the enhanced activity was the substrate-binding pocket with enlarged size and suitable charge distribution. Further QM/MM calculations revealed that the crucial factor for enhancing activity lies in reducing the initial energy barrier of the reductive half reaction. Finally, a comprehensive binding-model index to predict the enhanced activity of DAAO toward d-PPT, and an enzymatic deracemization approach was developed, enabling the efficient synthesis of l-PPT with remarkable efficiency.
Collapse
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ke-Xiang Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Xiao Gong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Wei Peng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Hua-Yue Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Xi-Hang Liang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Albayati SH, Nezhad NG, Taki AG, Rahman RNZRA. Efficient and easible biocatalysts: Strategies for enzyme improvement. A review. Int J Biol Macromol 2024; 276:133978. [PMID: 39038570 DOI: 10.1016/j.ijbiomac.2024.133978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Owing to the environmental friendliness and vast advantages that enzymes offer in the biotechnology and industry fields, biocatalysts are a prolific investigation field. However, the low catalytic activity, stability, and specific selectivity of the enzyme limit the range of the reaction enzymes involved in. A comprehensive understanding of the protein structure and dynamics in terms of molecular details enables us to tackle these limitations effectively and enhance the catalytic activity by enzyme engineering or modifying the supports and solvents. Along with different strategies including computational, enzyme engineering based on DNA recombination, enzyme immobilization, additives, chemical modification, and physicochemical modification approaches can be promising for the wide spread of industrial enzyme usage. This is attributed to the successful application of biocatalysts in industrial and synthetic processes requires a system that exhibits stability, activity, and reusability in a continuous flow process, thereby reducing the production cost. The main goal of this review is to display relevant approaches for improving enzyme characteristics to overcome their industrial application.
Collapse
Affiliation(s)
- Samah Hashim Albayati
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Anmar Ghanim Taki
- Department of Radiology Techniques, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Institute Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
5
|
Wang Z, Xu M, Xie Y, Xu M, Liu H, Wei D, Wang H. One-Pot Two-Stage Biocatalytic Cascade to Produce l-Phosphinothricin by Two Enantioselective Complementary Aminotransferases at High Substrate Loading via a Deracemization Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38836289 DOI: 10.1021/acs.jafc.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The bioderacemization of racemic phosphinothricin (D, L-PPT) is a promising route for the synthesis of l-phosphinothricin (L-PPT). However, the low activity and tolerance of wild-type enzymes restrict their industrial applications. Two stereocomplementary aminotransferases with high activity and substrate tolerance were identified in a metagenomic library, and a one-pot, two-stage artificial cascade biocatalytic system was developed to produce L-PPT through kinetic resolution and asymmetric amination. We observed that 500 mM D, L-PPT (100 g/L) could be converted into L-PPT with 94% final conversion and >99.9% enantiomeric excess (e.e.) within 24 h, with only 0.02 eq amino acceptor pyruvate and 1.2 eq amino donor l-aspartate required. The process could be scaled up to 10 L under sufficient oxygen and stirring. The superior catalytic performance of this system provides an eco-friendly and sustainable approach to the industrial deracemization of D, L-PPT to L-PPT.
Collapse
Affiliation(s)
- Zhicai Wang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai 200237, China
| | - Minglu Xu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai 200237, China
| | - Youyu Xie
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai 200237, China
| | - Meng Xu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai 200237, China
| | - He Liu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai 200237, China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Chadha A, Padhi SK, Stella S, Venkataraman S, Saravanan T. Microbial alcohol dehydrogenases: recent developments and applications in asymmetric synthesis. Org Biomol Chem 2024; 22:228-251. [PMID: 38050738 DOI: 10.1039/d3ob01447a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Alcohol dehydrogenases are a well-known group of enzymes in the class of oxidoreductases that use electron transfer cofactors such as NAD(P)+/NAD(P)H for oxidation or reduction reactions of alcohols or carbonyl compounds respectively. These enzymes are utilized mainly as purified enzymes and offer some advantages in terms of green chemistry. They are environmentally friendly and a sustainable alternative to traditional chemical synthesis of bulk and fine chemicals. Industry has implemented several whole-cell biocatalytic processes to synthesize pharmaceutically active ingredients by exploring the high selectivity of enzymes. Unlike the whole cell system where cofactor regeneration is well conserved within the cellular environment, purified enzymes require additional cofactors or a cofactor recycling system in the reaction, even though cleaner reactions can be carried out with fewer downstream work-up problems. The challenge of producing purified enzymes in large quantities has been solved in large part by the use of recombinant enzymes. Most importantly, recombinant enzymes find applications in many cascade biotransformations to produce several important chiral precursors. Inevitably, several dehydrogenases were engineered as mere recombinant enzymes could not meet the industrial requirements for substrate and stereoselectivity. In recent years, a significant number of engineered alcohol dehydrogenases have been employed in asymmetric synthesis in industry. In a parallel development, several enzymatic and non-enzymatic methods have been established for regenerating expensive cofactors (NAD+/NADP+) to make the overall enzymatic process more efficient and economically viable. In this review article, recent developments and applications of microbial alcohol dehydrogenases are summarized by emphasizing notable examples.
Collapse
Affiliation(s)
- Anju Chadha
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India.
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| | - Selvaraj Stella
- Department of Chemistry, Sarah Tucker College (Affiliated to Manonmaniam Sundaranar University), Tirunelveli-627007, Tamil Nadu, India.
| | - Sowmyalakshmi Venkataraman
- Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education & Research, Chennai, 600116, Tamil Nadu, India.
| | - Thangavelu Saravanan
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| |
Collapse
|
7
|
Wang YS, Gong MH, Wang JH, Yu JC, Li MJ, Xue YP, Zheng YG. Heterologous expression of a deacetylase and its application in L-glufosinate preparation. Bioprocess Biosyst Eng 2023; 46:1639-1650. [PMID: 37733076 DOI: 10.1007/s00449-023-02925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
With potent herbicidal activity, biocatalysis synthesis of L-glufosinate has drawn attention. In present research, NAP-Das2.3, a deacetylase capable of stereoselectively resolving N-acetyl-L-glufosinate to L-glufosinate mined from Arenimonas malthae, was heterologously expressed and characterized. In Escherichia coli, NAP-Das2.3 activity only reached 0.25 U/L due to the formation of inclusive bodies. Efficient soluble expression of NAP-Das2.3 was achieved in Pichia pastoris. In shake flask and 5 L bioreactor fermentation, NAP-Das2.3 activity by recombinant P. pastoris reached 107.39 U/L and 1287.52 U/L, respectively. The optimum temperature and pH for N-acetyl-glufosinate hydrolysis by NAP-Das2.3 were 45 °C and pH 8.0, respectively. The Km and Vmax of NAP-Das2.3 towards N-acetyl-glufosinate were 25.32 mM and 19.23 μmol mg-1 min-1, respectively. Within 90 min, 92.71% of L-enantiomer in 100 mM racemic N-acetyl-glufosinate was converted by NAP-Das2.3. L-glufosinate with high optical purity (e.e.P above 99.9%) was obtained. Therefore, the recombinant NAP-Das2.3 might be an alternative for L-glufosinate biosynthesis.
Collapse
Affiliation(s)
- Yuan-Shan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Mei-Hua Gong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jin-Hao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jia-Cheng Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Mei-Jing Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China.
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China.
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
8
|
Li X, Chen B, Chen W, Pu Z, Qi X, Yang L, Wu J, Yu H. Customized multiple sequence alignment as an effective strategy to improve performance of Taq DNA polymerase. Appl Microbiol Biotechnol 2023; 107:6507-6525. [PMID: 37658164 DOI: 10.1007/s00253-023-12744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Engineering Taq DNA polymerase (TaqPol) for improved activity, stability and sensitivity was critical for its wide applications. Multiple sequence alignment (MSA) has been widely used in engineering enzymes for improved properties. Here, we first designed TaqPol mutations based on MSA of 2756 sequences from both thermophilic and non-thermophilic organisms. Two double mutations were generated including a variant H676F/R677G showing a decrease in both activity and stability, and a variant Y686R/E687K showing an improved activity, but a decreased stability. Mutations targeted on coevolutionary residues of Arg677 and Tyr686 were then applied to rescue stability or activity loss of the double mutants, which achieved a partial success. Sequence analysis revealed that the two mutations are abundant in non-thermophilic sequences but not in thermophilic homologues. Then, a small-scale MSA containing sequences from only thermophilic organisms was applied to predict 13 single variants and two of them, E507Q and E734N showed a simultaneous increase in both stability and activity, even in sensitivity. A customized MSA was hence more effective in engineering a thermophilic enzyme and could be used in engineering other enzymes. Molecular dynamics simulations revealed the impact of mutations on the protein dynamics and interactions between TaqPol and substrates. KEY POINTS: • The pool of sequence for alignment is critical to engineering Taq DNA polymerase. • The variants with low properties can be rescued by mutations in coevolving network. • Improving binding with DNA can improve DNA polymerase stability and activity.
Collapse
Affiliation(s)
- Xinjia Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Binbin Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Wanyi Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Zhongji Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Xin Qi
- Building No.4, Zhongguancun Dongsheng International Science Park, No. 1 North Yongtaizhuang Road, Haidian District, Beijing, 100192, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China.
| |
Collapse
|
9
|
Xu JM, Wu ZS, Zhao KJ, Xi ZJ, Wang LY, Cheng F, Xue YP, Zheng YG. IPTG-induced high protein expression for whole-cell biosynthesis of L-phosphinothricin. Biotechnol J 2023; 18:e2300027. [PMID: 37265188 DOI: 10.1002/biot.202300027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Biocatalytic production of L-phosphinothricin (L-PPT) is currently the most promising method. In this work, we use an Escherichia coli strain coexpressing of D-amino acid oxidase and catalase (E. coli DAAO-CAT) to oxidation biocatalytic D-PPT to PPO, then use the second E. coli strain coexpressing glutamate dehydrogenase and formate dehydrogenase (E. coli GluDH-FDH) to reduce biocatalytic PPO to L-PPT. MAIN METHODS AND MAJOR RESULTS We compared the effects of different concentrations of IPTG or lactose on protein expression and enzyme activity in 5 L fermenter. The best induction conditions for E. coli DAAO-CAT were 0.05 mM IPTG, induction for 18 h at 28°C. The specific enzyme activities of DAAO and CAT were 153.20 U g-1 and 896.23 U g-1 , respectively. The optimal induction conditions for E. coli GluDH-FDH were 0.2 mM IPTG, induction for 19 h at 28°C. The specific enzyme activities of GluDH and FDH were 41.72 U g-1 and 109.70 U g-1 , respectively. The 200 mM D-PPT was biocatalyzed by E. coli DAAO-CAT for 4 h with space-time yield of 9.0 g·L-1 ·h-1 and conversion rate of over 99.0%. Then 220 mM PPO was converted to L-PPT by E. coli GluDH-FDH for 3 h with space-time yield of 14.5 g·L-1 ·h-1 and conversion rate of over 99.0%. To our knowledge, this is the most efficient biocatalytic reaction for L-PPT production. CONCLUSIONS AND IMPLICATIONS We found that IPTG has advantages compared with lactose in the enzyme activity and biomass of E. coli DAAO-CAT and E. coli GluDH-FDH, and IPTG is more environmentally friendly. Our data implicated that IPTG can replace lactose in terms of economic feasibility and effectiveness for scaled-up industrial fermentations.
Collapse
Affiliation(s)
- Jian-Miao Xu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhou-Sheng Wu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ke-Ji Zhao
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhi-Jie Xi
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Liu-Yu Wang
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Feng Cheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ya-Ping Xue
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Guo Zheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
10
|
Zhu F, Yan Y, Xue XM, Yu RL, Ye J. Identification and characterization of a phosphinothricin N-acetyltransferase from Enterobacter LSJC7. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105464. [PMID: 37247996 DOI: 10.1016/j.pestbp.2023.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Phosphinothricin (PPT) is a widely used and non-selective herbicide. PPT-resistance genes, especially PPT N-acetyltransferase genes, have been used in the development of transgenic PPT-resistant crops. However, there are only a limited number of available PPT-resistance genes for use in plant biotechnology. In this study, we found that Enterobacter LSJC7 is highly resistant to PPT and can acetylate PPT to N-acetyl phosphinothricin (Ac-PPT). Furthermore, a novel PPT N-acetyltransferase gene, named LsarsN, was identified from LSJC7. When LsarsN was expressed in E. coli AW3110, it confered resistance to PPT. Ac-PPT was detected in both the culture medium and cells of AW3110 expressing the LsarsN-pET22b plasmid. The purified LsArsN protein also showed strong N-acetylation ability in vitro, and its enzymatic kinetic curve was fitted with the Michaelis-Mentan equation. Compared with wild-type LsArsN, both R72A and R74A mutants showed significantly lower PPT N-acetylation ability. In summary, our results systematically characterized LsArsN with strong ability for PPT N-acetylation, which lays the groundwork for future research into the use of this novel gene, LsarsN, to create PPT-resistant crops.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xi-Mei Xue
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Rui-Lian Yu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Jun Ye
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
11
|
Zhao L, Zhang W, Wang Q, Wang H, Gao X, Qin B, Jia X, You S. A novel NADH-dependent leucine dehydrogenase for multi-step cascade synthesis of L-phosphinothricin. Enzyme Microb Technol 2023; 166:110225. [PMID: 36921551 DOI: 10.1016/j.enzmictec.2023.110225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/29/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
L-Phosphinothricin (L-PPT) is the effective constituent in racemic PPT (a high-efficiency and broad-spectrum herbicide), and the exploitation of green and sustainable synthesis route for L-PPT has always been the focus in pesticide industry. In recent years, "one-pot, two-step" enzyme-mediated cascade strategy is a mainstream pathway to obtain L-PPT. Herein, RgDAAO and BsLeuDH were applied to expand "one-pot, two-step" process. Notably, a NADH-dependent leucine dehydrogenase from Bacillus subtilis (BsLeuDH) was firstly characterized and attempted to generate L-PPT, achieving an excellent enantioselectivity (99.9% ee). Meanwhile, a formate dehydrogenase from Pichia pastoris (PpFDH) was utilized to implement NADH cofactor regeneration and only CO2 was by-product. Sufficient amount of the corresponding keto acid precursor PPO was obtained by oxidation of D-PPT relying on a D-amino acid oxidase from Rhodotorula gracilis (RgDAAO) with content conversion (46.1%). L-PPT was ultimately prepared from racemized PPT via oxidative deamination catalyzed by RgDAAO and reductive amination catalyzed by BsLeuDH, achieving 80.3% overall yield and > 99.9% ee value.
Collapse
Affiliation(s)
- Lu Zhao
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Wenhe Zhang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Qi Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Xiao Gao
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Xian Jia
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China.
| | - Song You
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China.
| |
Collapse
|
12
|
Song Z, Zhang Q, Wu W, Pu Z, Yu H. Rational design of enzyme activity and enantioselectivity. Front Bioeng Biotechnol 2023; 11:1129149. [PMID: 36761300 PMCID: PMC9902596 DOI: 10.3389/fbioe.2023.1129149] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
The strategy of rational design to engineer enzymes is to predict the potential mutants based on the understanding of the relationships between protein structure and function, and subsequently introduce the mutations using the site-directed mutagenesis. Rational design methods are universal, relatively fast and have the potential to be developed into algorithms that can quantitatively predict the performance of the designed sequences. Compared to the protein stability, it was more challenging to design an enzyme with improved activity or selectivity, due to the complexity of enzyme molecular structure and inadequate understanding of the relationships between enzyme structures and functions. However, with the development of computational force, advanced algorithm and a deeper understanding of enzyme catalytic mechanisms, rational design could significantly simplify the process of engineering enzyme functions and the number of studies applying rational design strategy has been increasing. Here, we reviewed the recent advances of applying the rational design strategy to engineer enzyme functions including activity and enantioselectivity. Five strategies including multiple sequence alignment, strategy based on steric hindrance, strategy based on remodeling interaction network, strategy based on dynamics modification and computational protein design are discussed and the successful cases using these strategies are introduced.
Collapse
Affiliation(s)
- Zhongdi Song
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Qunfeng Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenhui Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang, China
| | - Zhongji Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Preparation of cross-linked cell aggregates (CLCAs) of recombinant E. coli harboring glutamate dehydrogenase and glucose dehydrogenase for efficient asymmetric synthesis of L-phosphinothricin. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Substrate-Specific Engineering of Amino Acid Dehydrogenase Superfamily for Synthesis of a Variety of Chiral Amines and Amino Acids. Catalysts 2022. [DOI: 10.3390/catal12040380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Amino acid dehydrogenases (AADHs) are a group of enzymes that catalyze the reversible reductive amination of keto acids with ammonia to produce chiral amino acids using either nicotinamide adenine dinucleotide (NAD+) or nicotinamide adenine dinucleotide phosphate (NADP+) as cofactors. Among them, glutamate dehydrogenase, valine dehydrogenase, leucine dehydrogenase, phenylalanine dehydrogenase, and tryptophan dehydrogenase have been classified as a superfamily of amino acid dehydrogenases (s-AADHs) by previous researchers because of their conserved structures and catalytic mechanisms. Owing to their excellent stereoselectivity, high atom economy, and low environmental impact of the reaction pathway, these enzymes have been extensively engineered to break strict substrate specificities for the synthesis of high value-added chiral compounds (chiral amino acids, chiral amines, and chiral amino alcohols). Substrate specificity engineering of s-AADHs mainly focuses on recognition engineering of the substrate side chain R group and substrate backbone carboxyl group. This review summarizes the reported studies on substrate specificity engineering of s-AADHs and reports that this superfamily of enzymes shares substrate specificity engineering hotspots (the inside of the pocket, substrate backbone carboxyl anchor sites, substrate entrance tunnel, and hinge region), which sheds light on the substrate-specific tailoring of these enzymes.
Collapse
|
15
|
Cheng F, Zhang J, Jiang Z, Wu X, Xue Y, Zheng Y. Development of an NAD(H)‐Driven Biocatalytic System for Asymmetric Synthesis of Chiral Amino Acids. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jia‐Min Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zhen‐Tao Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Xiao‐Hu Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Ya‐Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Yu‐Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
16
|
Expression of L-phosphinothricin synthesis enzymes in Pichia pastoris for synthesis of L-phosphinothricin. Biotechnol Lett 2022; 44:561-570. [PMID: 35243590 DOI: 10.1007/s10529-022-03239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 11/02/2022]
Abstract
With the ban of highly toxic herbicides, such as paraquat and glyphosate, phosphinothricin (PPT) is becoming the most popular broad-spectrum and highly effective herbicide. The current PPT products in the market are usually a racemic mixture with two configurations, the D-type and L-type, of which only the L-PPT has the herbicidal activity. The racemic product is not atom economic, more toxic and may cause soil damage. Asymmetric synthesis of L-PPT has become a research focus in recent years, while biological synthesis methods are preferred for its character of environmental friendly and requiring less reaction steps when being compared to the chemical methods. We have developed a biological synthesis route to produce optically pure L-PPT from D,L-PPT in two steps using 2-carbonyl-4- (hydroxymethyl phosphonyl) butyric acid as the intermediate. In this study, we expressed the glutamate dehydrogenase and glucose dehydrogenase using Pichia pastoris as the first time. After a series of optimization, the total L-PPT yield reached 84%. The developed synthesis system showed a high potential for future industrial application. Compare to the previous plasmid-carrying-E. coli expression system, the established method may avoid antibiotic usage and provided an alternative way for industrial synthesis of optically pure L-PPT.
Collapse
|
17
|
Yin X, Zeng Y, Chen J, Liu L, Gao Z. Combined active pocket and hinge region engineering to develop an NADPH-dependent phenylglycine dehydrogenase. Bioorg Chem 2022; 120:105601. [PMID: 35033816 DOI: 10.1016/j.bioorg.2022.105601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/20/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022]
Abstract
NADPH-dependent amino acid dehydrogenases (AADHs) are favorable enzymes to construct artificial biosynthetic pathways in whole-cell for high-value noncanonical amino acids (NcAAs) production. Glutamate dehydrogenases (GluDHs) represent attractive candidates for the development of novel NADPH-dependent AADHs. Here, we report the development of a novel NADPH-dependent phenylglycine dehydrogenase by combining active pocket engineering and hinge region engineering of a GluDH from Pseudomonas putida (PpGluDH). The active pocket of PpGluDH was firstly tailored to optimize its binding mode with bulky substrate α-oxobenzeneacetic acid (α-OA), and then, the hinge region was further engineered to tune the protein conformational dynamics, which finally resulted in a mutant M3 (T196A/T121I/L123D) with a 103-fold increase of catalytic efficiency (kcat/Km) toward α-OA. The M3 mutant exhibited high catalytic performance in both in vitro biocatalysis preparation and in vivo biosynthesis of l-phenylglycine, indicating its promising practical applications. Our results demonstrated that co-engineering of the active pocket and hinge region is an effective strategy for developing novel NADPH-dependent AADHs from GluDHs for NcAAs production.
Collapse
Affiliation(s)
- Xinjian Yin
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yujing Zeng
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China
| | - Jun Chen
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China
| | - Lan Liu
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Zhizeng Gao
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|
18
|
Cen YK, Gong H, Xue YP, Zheng YG. Biosynthesis of l-phosphinothricin with enzymes from chromosomal integrated expression in E. coli. 3 Biotech 2021; 11:477. [PMID: 34777934 DOI: 10.1007/s13205-021-03037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
Phosphinothricin (PPT) is one of the most prevalently using herbicides. The commercial phosphinothricin products are generally in the form of a racemic mixture, of which only the l-phosphinothricin (L-PPT) gives herbicidal function. Synthesis of optically pure L-PPT by deracemization of D/L-PPT is a promising way to cut down the environmental burden and manufacturing cost. To convert D/L-PPT to L-PPT, we expressed the catalytic enzymes by genomic integration in E. coli. The whole production was implemented in two steps in one pot using four catalytic enzymes, namely d-amino acid oxidase, catalase, glutamate dehydrogenase, and glucose dehydrogenase. Finally, after a series of process optimization, the results showed that with our system the overall L-PPT yield reached 86%. Our study demonstrated a new strategy for L-PPT synthesis, based on enzymes from chromosomal integrated expression, which does not depend on antibiotic selection, and shows a high potential for future industrial application.
Collapse
Affiliation(s)
- Yu-Ke Cen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Huo Gong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| |
Collapse
|
19
|
Espina G, Atalah J, Blamey JM. Extremophilic Oxidoreductases for the Industry: Five Successful Examples With Promising Projections. Front Bioeng Biotechnol 2021; 9:710035. [PMID: 34458243 PMCID: PMC8387880 DOI: 10.3389/fbioe.2021.710035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/30/2021] [Indexed: 11/29/2022] Open
Abstract
In a global context where the development of more environmentally conscious technologies is an urgent need, the demand for enzymes for industrial processes is on the rise. Compared to conventional chemical catalysts, the implementation of biocatalysis presents important benefits including higher selectivity, increased sustainability, reduction in operating costs and low toxicity, which translate into cleaner production processes, lower environmental impact as well as increasing the safety of the operating staff. Most of the currently available commercial enzymes are of mesophilic origin, displaying optimal activity in narrow ranges of conditions, which limits their actual application under industrial settings. For this reason, enzymes from extremophilic microorganisms stand out for their specific characteristics, showing higher stability, activity and robustness than their mesophilic counterparts. Their unique structural adaptations allow them to resist denaturation at high temperatures and salinity, remain active at low temperatures, function at extremely acidic or alkaline pHs and high pressure, and participate in reactions in organic solvents and unconventional media. Because of the increased interest to replace chemical catalysts, the global enzymes market is continuously growing, with hydrolases being the most prominent type of enzymes, holding approximately two-third share, followed by oxidoreductases. The latter enzymes catalyze electron transfer reactions and are one of the most abundant classes of enzymes within cells. They hold a significant industrial potential, especially those from extremophiles, as their applications are multifold. In this article we aim to review the properties and potential applications of five different types of extremophilic oxidoreductases: laccases, hydrogenases, glutamate dehydrogenases (GDHs), catalases and superoxide dismutases (SODs). This selection is based on the extensive experience of our research group working with these particular enzymes, from the discovery up to the development of commercial products available for the research market.
Collapse
Affiliation(s)
| | | | - Jenny M. Blamey
- Fundación Biociencia, Santiago, Chile
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
20
|
Simultaneous directed evolution of coupled enzymes for efficient asymmetric synthesis of l-phosphinothricin. Appl Environ Microbiol 2021; 87:AEM.02563-20. [PMID: 33310717 PMCID: PMC8090864 DOI: 10.1128/aem.02563-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The traditional strategy to improve the efficiency of an entire coupled enzyme system relies on separate direction of the evolution of enzymes involved in their respective enzymatic reactions. This strategy can lead to enhanced single-enzyme catalytic efficiency but may also lead to loss of coordination among enzymes. This study aimed to overcome such shortcomings by executing a directed evolution strategy on multiple enzymes in one combined group that catalyzes the asymmetric biosynthesis of l-phosphinothricin. The genes of a glutamate dehydrogenase from Pseudomonas moorei (PmGluDH) and a glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH), along with other gene parts (promoters, ribosomal binding sites (RBSs), and terminators) were simultaneously evolved. The catalytic efficiency of PmGluDH was boosted by introducing the beneficial mutation A164G (from 1.29 s-1mM-1 to 183.52 s-1mM-1), and the EsGDH expression level was improved by optimizing the linker length between the RBS and the start codon of gdh. The total turnover numbers of the bioreaction increased from 115 (GluDH WTNADPH) to 5846 (A164GNADPH coupled with low expression of EsGDH), and to 33950 (A164GNADPH coupled with high expression of EsGDH). The coupling efficiency was increased from ∼30% (GluDH_WT with low expression of GDH) to 83.3% (GluDH_A164G with high expression of GDH). In the batch production of l-phosphinothricin utilizing whole-cell catalysis, the strongest biocatalytic reaction exhibited a high space-time yield (6410 g·L-1·d-1) with strict stereoselectivity (>99% enantiomeric excess).Importance: The traditional strategy to improve multienzyme-catalyzed reaction efficiency may lead to enhanced single-enzyme catalytic efficiency but may also result in loss of coordination among enzymes. We describe a directed evolution strategy of an entire coupled enzyme system to simultaneously enhance enzyme coordination and catalytic efficiency. The simultaneous evolution strategy was applied to a multienzyme-catalyzed reaction for the asymmetric synthesis of l-phosphinothricin, which not only enhanced the catalytic efficiency of GluDH but also improved the coordination between GluDH and GDH. Since this strategy is enzyme-independent, it may be applicable to other coupled enzyme systems for chiral chemical synthesis.
Collapse
|
21
|
Cao CH, Gong H, Dong Y, Li JM, Cheng F, Xue YP, Zheng YG. Enzyme cascade for biocatalytic deracemization of D,L-phosphinothricin. J Biotechnol 2020; 325:372-379. [PMID: 33007350 DOI: 10.1016/j.jbiotec.2020.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/14/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
Deracemization of D,L-phosphinothricin (D,L-PPT) is one of the most promising routes for preparation of optically pure L-PPT. In this work, an efficient multi-enzyme redox cascade was developed for deracemization ofPPT, which includes oxidative reaction and reductive reaction. The oxidative reaction catalyzing oxidative deamination of D-PPT to 2-oxo-4-[(hydroxy)(-methyl)phosphinyl]butyric acid (PPO) was performed by a D-amino acid oxidase and a catalase for removing H2O2. The reductive reaction catalyzing amination of PPO to L-PPT is achieved by a glufosinate dehydrogenase and a glucose dehydrogenase for cofactor regeneration. To avoid the inhibitory effect of glucose on the oxidative reaction, a "two stages in one-pot" strategy was developed to combine these two reactions in deracemization process. By using this strategy, the L-PPT was obtained with a high yield (89 %) and > 99 % enantiomeric excess at substrate loading of 300 mM in absence of addition of extra NADP+. These encouraging results demonstrated that the developed enzyme cascade deracemization process exhibits great potential and economical competitiveness for manufacture of L-PPT from D,L-PPT.
Collapse
Affiliation(s)
- Cheng-Hao Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huo Gong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Dong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ju-Mou Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
22
|
Cheng F, Li JM, Zhou SP, Liu Q, Jin LQ, Xue YP, Zheng YG. A Single-Transaminase-Catalyzed Biocatalytic Cascade for Efficient Asymmetric Synthesis of l-Phosphinothricin. Chembiochem 2020; 22:345-348. [PMID: 32815302 DOI: 10.1002/cbic.202000488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/13/2020] [Indexed: 12/11/2022]
Abstract
A single-transaminase-catalyzed biocatalytic cascade was developed by employing the desired biocatalyst, ATA-117-Rd11, that showed high activity toward 2-oxo-4-[(hydroxy)(methyl)phosphinoyl] butyric acid (PPO) and α-ketoglutarate, and low activity against pyruvate. The cascade successfully promotes a highly asymmetric amination reaction for the synthesis of l-phosphinothricin (l-PPT) with high conversion (>95 %) and>99 % ee. In a scale-up experiment, using 10 kg pre-frozen E. coli cells harboring ATA-117-Rd11 as catalyst, 80 kg PPO was converted to ≈70 kg l-PPT after 24 hours with a high ee value (>99 %).
Collapse
Affiliation(s)
- Feng Cheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ju-Mou Li
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Shi-Peng Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Qi Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Li-Qun Jin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ya-Ping Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
23
|
Cheng F, Li H, Zhang K, Li QH, Xie D, Xue YP, Zheng YG. Tuning amino acid dehydrogenases with featured sequences for L-phosphinothricin synthesis by reductive amination. J Biotechnol 2020; 312:35-43. [PMID: 32135177 DOI: 10.1016/j.jbiotec.2020.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/16/2020] [Accepted: 03/01/2020] [Indexed: 01/23/2023]
Abstract
Biosynthesizing unnatural chiral amino acids is challenging due to the limited reductive amination activity of amino acid dehydrogenase (AADH). Here, for the asymmetric synthesis of l-phosphinothricin from 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO), a glutamate dehydrogenase gene (named GluDH3) from Pseudomonas monteilii was selected, cloned and expressed in Escherichia coli (E. coli). To boost its activity, a "two-step"-based computational approach was developed and applied to select the potential beneficial amino acid positions on GluDH3. l-phosphinothricin was synthesized by GluDH-catalyzed asymmetric amination using the d-glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH) for NADPH regeneration. Using lyophilized E. coli cells that co-expressed GluDH3_V375S and EsGDH, up to 89.04 g L-1 PPO loading was completely converted to l-phosphinothricin within 30 min at 35 °C with a space-time yield of up to 4.752 kg·L-1·d-1. The beneficial substitution V375S with increased polar interactions between K90, T193, and substrate PPO exhibited 168.2-fold improved catalytic efficiency (kcat/KM) and 344.8-fold enhanced specific activity. After the introduction of serine residues into other GluDHs at specific positions, forty engineered GluDHs exhibited the catalytic functions of "glufosinate dehydrogenase" towards PPO.
Collapse
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Heng Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Kai Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Qing-Hua Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Dong Xie
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China
| |
Collapse
|
24
|
Yin X, Liu Y, Meng L, Zhou H, Wu J, Yang L. Semi-rational hinge engineering: modulating the conformational transformation of glutamate dehydrogenase for enhanced reductive amination activity towards non-natural substrates. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02576f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hinge region was identified to be a promising hotspot for activity engineering of GluDHs, providing a potent alternative for developing high-performance biocatalysts toward valuable optically pure l-amino acid production.
Collapse
Affiliation(s)
- Xinjian Yin
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Yayun Liu
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Lijun Meng
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Haisheng Zhou
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jianping Wu
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Lirong Yang
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
25
|
Cao CH, Cheng F, Xue YP, Zheng YG. Efficient synthesis of L-phosphinothricin using a novel aminoacylase mined from Stenotrophomonas maltophilia. Enzyme Microb Technol 2019; 135:109493. [PMID: 32146938 DOI: 10.1016/j.enzmictec.2019.109493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/12/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022]
Abstract
L-phosphinothricin (L-PPT) is a competitive and environmentally friendly herbicide. To develop an efficient approach for synthesis of l-PPT, a kinetic resolution route with a novel aminoacylase (SmAcy) mined from Stenotrophomonas maltophilia using N-acetyl-PPT as a substrate was first constructed. This SmAcy exhibited high hydrolytic activity and excellent enantioselectivity (E > 200) toward N-acetyl-PPT. Optically pure l-PPT (> 99.9 % eep) was acquired with high conversion (> 49 %) within 4 h by the whole cells. On the basis of the docking analysis, a main reason for high enantioselectivity (E > 200) of SmAcy towards l-enantiomer would be that the D-N-acetyl-PPT cannot interact with the key general acid-base residue and the metal ions. A low-cost and simple preparation process of the substrate from commercially available racemic PPT for production of L-PPT was provided. A chemical racemization method of the unreacted D-enantiomer of substrate was also provided to recycle the unwanted substrate enantiomer. This study provides a potential route for the industrial production of L-PPT.
Collapse
Affiliation(s)
- Cheng-Hao Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
26
|
Kang XM, Cai X, Liu ZQ, Zheng YG. Identification and characterization of an amidase from Leclercia adecarboxylata for efficient biosynthesis of L-phosphinothricin. BIORESOURCE TECHNOLOGY 2019; 289:121658. [PMID: 31234070 DOI: 10.1016/j.biortech.2019.121658] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
L-phosphinothricin (L-PPT) is an important broad-spectrum herbicide with expanding utilization because it is environmentally benign. A strain Leclercia adecarboxylata ZJB-17008 with capability of catalyzing rac-4-(hydroxy(methyl)phosphoryl)-2-(2-phenylacetamido) butanoic acid (rac-S) to L-PPT was screened and identified, from which an amidase (La-Ami) was cloned and secretory expressed in Bacillus subtilis WB 800 for the bioproduction of L-PPT. The recombinant La-Ami exhibited an excellent enantioselectivity (99.9% ee) and remarkable thermostability with a half-life of 19.8 h at 50 °C. Furthermore, La-Ami displaying a high space-time yield of 787.2 g L-1 d-1 at 50 °C and pH 8.5 under the rac-S concentration of 500 mM (150 g L-1). The finally refined L-PPT was obtained with a purity of 99% and a total yield reached 90%. These results implying that this secretory expressed amidase La-Ami is possible to be applied in the large-scale bioproduction of L-PPT.
Collapse
Affiliation(s)
- Xue-Mei Kang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
27
|
Meng L, Liu Y, Yin X, Zhou H, Wu J, Wu M, Yang L. Effects of His-tag on Catalytic Activity and Enantioselectivity of Recombinant Transaminases. Appl Biochem Biotechnol 2019; 190:880-895. [PMID: 31515673 DOI: 10.1007/s12010-019-03117-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/25/2019] [Indexed: 11/27/2022]
Abstract
Recombinant proteins were often expressed with His-tag to simplify the purification process. Among them, transaminase was mostly expressed with fusion tags and widely used in the production of numerous amino moieties. However, the existence of the His-tag has been reported to affect various properties of different recombinant enzymes, while the effect on transaminase was rarely studied. In this paper, we investigated the effect of His-tag on transaminase based on the various activities of 4-aminobutyrate-2-oxoglutarate transaminase (GabT) when it was expressed in vector pETDuet-1. We found that His-tag did not affect the enantioselectivity, but decreased the catalytic activity to different extents according to its existence and location. Native GabT maintained the highest catalytic activity; GabT with C-terminal His-tag showed slightly lower activity than native GabT but about 2.2-fold higher than GabT with N-terminal His-tag. Besides, other fusion tags like T7-tag and S-tag inserted between N-His-tag and GabT can relieve the decreasing effect of His-tag on GabT activity. Furthermore, whole cell catalytic activity of several transaminases was improved by deleting the N-terminal His-tag. This study provided a strategy for the efficient expression of recombinant transaminase with improved catalytic activity and might attract attention to the effect of His-tag on other enzymatic properties.
Collapse
Affiliation(s)
- Lijun Meng
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yayun Liu
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinjian Yin
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haisheng Zhou
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianping Wu
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mianbin Wu
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lirong Yang
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
28
|
Asymmetric synthesis of l-phosphinothricin using thermostable alpha-transaminase mined from Citrobacter koseri. J Biotechnol 2019; 302:10-17. [PMID: 31201835 DOI: 10.1016/j.jbiotec.2019.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 11/22/2022]
Abstract
α-Transaminase (α-TA) responsible for catalyzing the reversible transfer of amino groups between amine donors and amine acceptors, is applicable to enzymatic route for asymmetric synthesis of herbicide l-phosphinothricin (l-PPT). In the search for α-TAs with better catalysis performance, three α-TAs were discovered by genome mining approach using a known sequence encoding Escherichia coli tyrosine TA (TyrB) as probe. Through detailed comparison of their expression amount, activities and characteristics, Citrobacter koseri TA (CkTA) exhibited better activity and thermostability, which retain 65.9% of initial activity after incubation at 57 °C for 4 h. The Km and kcat/Km values of CkTA were 36.75 mM and 34.29 mM-1 min-1, respectively. In addition, recombinant CkTA cells were immobilized onto Celite 545 using tris(hydroxymethyl)phosphine as crosslinker. During five repetitive asymmetric synthesis of l-PPT from 20 g/L prostereogenic ketone using l-Glu as amine donor, all the yields of l-PPT reached up to 91.2% (>99% ee). These characteristics made CkTA a valuable addition to the currently scarce α-TA library for stereospecific synthesis of l-PPT.
Collapse
|
29
|
Kang XM, Zhang XJ, Hong LL, Peng F, Liu ZQ, Zheng YG. Establishment of a novel high-throughput screening method for the detection and quantification of L-phosphinothricin produced by a biosynthesis approach. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Yin X, Liu Y, Meng L, Zhou H, Wu J, Yang L. Rational Molecular Engineering of Glutamate Dehydrogenases for Enhancing Asymmetric Reductive Amination of Bulky α-Keto Acids. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801251] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xinjian Yin
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Yayun Liu
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Lijun Meng
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Haisheng Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| |
Collapse
|
31
|
Meng LJ, Liu YY, Zhou HS, Yin XJ, Wu JP, Wu MB, Xu G, Yang LR. Driving Transamination Irreversible by Decomposing Byproduct α-Ketoglutarate into Ethylene Using Ethylene-Forming Enzyme. Catal Letters 2018. [DOI: 10.1007/s10562-018-2552-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|