1
|
Alfei S. Shifting from Ammonium to Phosphonium Salts: A Promising Strategy to Develop Next-Generation Weapons against Biofilms. Pharmaceutics 2024; 16:80. [PMID: 38258091 PMCID: PMC10819902 DOI: 10.3390/pharmaceutics16010080] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Since they are difficult and sometimes impossible to treat, infections sustained by multidrug-resistant (MDR) pathogens, emerging especially in nosocomial environments, are an increasing global public health concern, translating into high mortality and healthcare costs. In addition to having acquired intrinsic abilities to resist available antibiotic treatments, MDR bacteria can transmit genetic material encoding for resistance to non-mutated bacteria, thus strongly decreasing the number of available effective antibiotics. Moreover, several pathogens develop resistance by forming biofilms (BFs), a safe and antibiotic-resistant home for microorganisms. BFs are made of well-organized bacterial communities, encased and protected in a self-produced extracellular polymeric matrix, which impedes antibiotics' ability to reach bacteria, thus causing them to lose efficacy. By adhering to living or abiotic surfaces in healthcare settings, especially in intensive care units where immunocompromised older patients with several comorbidities are hospitalized BFs cause the onset of difficult-to-eradicate infections. In this context, recent studies have demonstrated that quaternary ammonium compounds (QACs), acting as membrane disruptors and initially with a low tendency to develop resistance, have demonstrated anti-BF potentialities. However, a paucity of innovation in this space has driven the emergence of QAC resistance. More recently, quaternary phosphonium salts (QPSs), including tri-phenyl alkyl phosphonium derivatives, achievable by easy one-step reactions and well known as intermediates of the Wittig reaction, have shown promising anti-BF effects in vitro. Here, after an overview of pathogen resistance, BFs, and QACs, we have reviewed the QPSs developed and assayed to this end, so far. Finally, the synthetic strategies used to prepare QPSs have also been provided and discussed to spur the synthesis of novel compounds of this class. We think that the extension of the knowledge about these materials by this review could be a successful approach to finding effective weapons for treating chronic infections and device-associated diseases sustained by BF-producing MDR bacteria.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
| |
Collapse
|
2
|
Knisz J, Eckert R, Gieg LM, Koerdt A, Lee JS, Silva ER, Skovhus TL, An Stepec BA, Wade SA. Microbiologically influenced corrosion-more than just microorganisms. FEMS Microbiol Rev 2023; 47:fuad041. [PMID: 37437902 PMCID: PMC10479746 DOI: 10.1093/femsre/fuad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023] Open
Abstract
Microbiologically influenced corrosion (MIC) is a phenomenon of increasing concern that affects various materials and sectors of society. MIC describes the effects, often negative, that a material can experience due to the presence of microorganisms. Unfortunately, although several research groups and industrial actors worldwide have already addressed MIC, discussions are fragmented, while information sharing and willingness to reach out to other disciplines are limited. A truly interdisciplinary approach, which would be logical for this material/biology/chemistry-related challenge, is rarely taken. In this review, we highlight critical non-biological aspects of MIC that can sometimes be overlooked by microbiologists working on MIC but are highly relevant for an overall understanding of this phenomenon. Here, we identify gaps, methods, and approaches to help solve MIC-related challenges, with an emphasis on the MIC of metals. We also discuss the application of existing tools and approaches for managing MIC and propose ideas to promote an improved understanding of MIC. Furthermore, we highlight areas where the insights and expertise of microbiologists are needed to help progress this field.
Collapse
Affiliation(s)
- J Knisz
- Department of Water Supply and Sewerage, Faculty of Water Sciences, University of Public Service, 6500, Baja, Hungary
| | - R Eckert
- Microbial Corrosion Consulting, LLC, Commerce Township, 48382, MI, USA
| | - L M Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - A Koerdt
- Federal Institute for Materials Research and Testing (BAM), 12205, Berlin, Germany
| | - J S Lee
- Naval Research Laboratory, Ocean Sciences Division, Stennis Space Center, 39529, MS, USA
| | - E R Silva
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016, Lisboa, Portugal
- CERENA - Centre for Natural Resources and the Environment, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
| | - T L Skovhus
- Research Center for Built Environment, Energy, Water and Climate, VIA, University College, 8700, Horsens, Denmark
| | - B A An Stepec
- Department of Energy and Technology, NORCE Norwegian Research Centre AS, Nygårdsgaten 112, 5008 Bergen, Norway
| | - S A Wade
- Bioengineering Research Group, Swinburne University of Technology, 3122, Melbourne, Australia
| |
Collapse
|
3
|
Rufino BN, Procópio L. Influence of Salt Water Flow on Structures and Diversity of Biofilms Grown on 316L Stainless Steel. Curr Microbiol 2021; 78:3394-3402. [PMID: 34232364 DOI: 10.1007/s00284-021-02596-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Salt water, in addition to being a naturally corrosive environment, also includes factors such as temperature, pressure, and the presence of the microbial community in the environment that influence degradation processes on metal surfaces. The presence or absence of water flow over the metal surfaces is also an important aspect that influences the corrosion of metals. The objective of this study was to evaluate the presence or absence of salt water flow in the formation of biofilms grown in 316L stainless steel coupons. For this, the 316L stainless steel coupons were exposed in two different microcosms, the first being a system with continuous salt water flow, and the second without salt water flow system. The results of the sequencing of the 16S rDNA genes showed a clear difference in structures and diversity between the evaluated biofilms. There was greater abundance and diversity in the "In Flux" system when compared to the "No Flux" biofilm. The analysis of bacterial diversity showed a predominance of the Gammaproteobacteria class in both systems. However, at lower taxonomic levels, there were considerable differences in representativeness. Representatives of Vibrionales, Alteromonadales, Oceanospirillales, and Flavobacteriales were predominant in "No Flux", whereas in "In Flux" there was a greater representation of Alteromonadales, Rhodobacterales, and Saprospirales. These findings help to understand how the flow of water influences the dynamics of the formation of microbial biofilms on metal surfaces, which will contribute to the choice of strategies used to mitigate microbial biofouling.
Collapse
Affiliation(s)
- Bárbara Nascimento Rufino
- Microbial Corrosion Laboratory, Estácio University (UNESA), Bispo Street, 83, Room AG405, Rio de Janeiro, Rio de Janeiro, 20261-063, Brazil
| | - Luciano Procópio
- Microbial Corrosion Laboratory, Estácio University (UNESA), Bispo Street, 83, Room AG405, Rio de Janeiro, Rio de Janeiro, 20261-063, Brazil. .,Industrial Microbiology and Bioremediation Department, Federal University of Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Jaén-Gil A, Ferrando-Climent L, Ferrer I, Thurman EM, Rodríguez-Mozaz S, Barceló D, Escudero-Oñate C. Sustainable microalgae-based technology for biotransformation of benzalkonium chloride in oil and gas produced water: A laboratory-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141526. [PMID: 32814300 DOI: 10.1016/j.scitotenv.2020.141526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Many countries have implemented stringent regulatory standards for discharging produced water (PW) from the oil and gas extraction process. Among the different chemical pollutants occurring in PW, surfactants are widely applied in the oil and gas industry to provide a barrier from metal corrosion. However, the release of these substances from the shale formation can pose serious hazardous impacts on the aquatic environment. In this study, a low-cost and eco-friendly microalgae laboratory-scale technology has been tested for biotransformation of benzalkonium chloride (BACC12 and BACC14) in seawater and PW during 14-days of treatment (spiked at 5 mg/L). From the eight microalgae strains selected, Tetraselmis suecica showed the highest removal rates of about 100% and 54% in seawater and PW, respectively. Suspect screening analysis using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) allowed the identification of 12 isomeric intermediates generated coming from biotransformation mechanisms. Among them, the intermediate [OH-BACC12] was found as the most intense compound generated from BACC12, while the intermediate [2OH-BACC14] was found as the most intense compound generated from BACC14. The suggested chemical structures demonstrated a high reduction on their amphiphilic properties, and thus, their tendency to be adsorbed into sediments after water discharge. In this study, Tetraselmis suecica was classified as the most successful specie to reduce the surfactant activity of benzalkonium chloride in treated effluents.
Collapse
Affiliation(s)
- Adrián Jaén-Gil
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| | | | - Imma Ferrer
- Center for Environmental Mass Spectrometry, University of Colorado, Boulder, United States
| | - E Michael Thurman
- Center for Environmental Mass Spectrometry, University of Colorado, Boulder, United States
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | | |
Collapse
|
5
|
An BA, Kleinbub S, Ozcan O, Koerdt A. Iron to Gas: Versatile Multiport Flow-Column Revealed Extremely High Corrosion Potential by Methanogen-Induced Microbiologically Influenced Corrosion (Mi-MIC). Front Microbiol 2020; 11:527. [PMID: 32296410 PMCID: PMC7136402 DOI: 10.3389/fmicb.2020.00527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 01/01/2023] Open
Abstract
Currently, sulfate-reducing bacteria (SRB) is regarded as the main culprit of microbiologically influenced corrosion (MIC), mainly due to the low reported corrosion rates of other microorganisms. For example, the highest reported corrosion rate for methanogens is 0.065 mm/yr. However, by investigating methanogen-induced microbiologically influenced corrosion (Mi-MIC) using an in-house developed versatile multiport flow test column, extremely high corrosion rates were observed. We analyzed a large set of carbon steel beads, which were sectionally embedded into the test columns as substrates for iron-utilizing methanogen Methanobacterium IM1. After 14 days of operation using glass beads as fillers for section separation, the highest average corrosion rate of Methanobacterium IM1 was 0.2 mm/yr, which doubled that of Desulfovibrio ferrophilus IS5 and Desulfovibrio alaskensis 16109 investigated at the same conditions. At the most corroded region, nearly 80% of the beads lost 1% of their initial weight (fast-corrosion), resulting in an average corrosion rate of 0.2 mm/yr for Methanobacterium IM1-treated columns. When sand was used as filler material to mimic sediment conditions, average corrosion rates for Methanobacterium IM1 increased to 0.3 mm/yr (maximum 0.52 mm/yr) with over 83% of the beads having corrosion rates above 0.3 mm/yr. Scanning electron images of metal coupons extracted from the column showed methanogenic cells were clustered close to the metal surface. Methanobacterium IM1 is a hydrogenotrophic methanogen with higher affinity to metal than H2. Unlike SRB, Methanobacterium IM1 is not restricted to the availability of sulfate concentration in the environment. Thus, the use of the multiport flow column provided a new insight on the corrosion potential of methanogens, particularly in dynamic conditions, that offers new opportunities for monitoring and development of mitigation strategies. Overall, this study shows (1) under certain conditions methanogenic archaea can cause higher corrosion than SRB, (2) specific quantifications, i.e., maximum, average, and minimum corrosion rates can be determined, and (3) that spatial statistical evaluations of MIC can be carried out.
Collapse
Affiliation(s)
| | | | | | - Andrea Koerdt
- Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
| |
Collapse
|
6
|
Synergistic action of Bacillus subtilis, Escherichia coli and Shewanella putrefaciens along with Pseudomonas putida on inhibiting mild steel against oxygen corrosion. Appl Microbiol Biotechnol 2019; 103:5891-5905. [DOI: 10.1007/s00253-019-09866-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/24/2022]
|
7
|
Sharma M, Liu H, Chen S, Cheng F, Voordouw G, Gieg L. Effect of selected biocides on microbiologically influenced corrosion caused by Desulfovibrio ferrophilus IS5. Sci Rep 2018; 8:16620. [PMID: 30413730 PMCID: PMC6226443 DOI: 10.1038/s41598-018-34789-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/24/2018] [Indexed: 01/26/2023] Open
Abstract
The marine bacterial strain Desulfovibrio ferrophilus IS5, known for its lithotrophic growth ability to use metallic iron as a sole electron donor and for causing corrosion of steel, was used in the current study. Four commonly used biocides in the oil and gas industry, namely tetrakis(hydroxymethyl) phosphonium sulfate (THPS), glutaraldehyde (GLUT), benzalkonium chloride (BAC), and GLUT/BAC were selected to study their efficacy in controlling carbon steel corrosion in the presence of this strain. Incubations containing strain IS5 and low carbon steel coupons were prepared in the presence and absence of the four biocides, and these were monitored using both electrochemical methods (electrochemical impedance spectroscopy, linear polarization resistance and potentiodynamic polarization) and surface analyses (scanning electron microscopy, confocal measurements, optical microscopy, and profilometry) to assess the biofilm/metal interactions. When THPS, BAC, and GLUT/BAC treatments were applied, minimal corrosion was measured by all methods. In contrast, severe pitting was observed in the presence of 50 ppm GLUT, similar to what was observed when D. ferrophilus IS5 was incubated in the absence of biocide, suggesting that GLUT alone may not be effective in controlling MIC in marine environments. This study also showed that the use of non-destructive electrochemical methods is effective for screening for real time biocide selection and monitoring of the impact of chemicals post-dosage in oil and gas operations.
Collapse
Affiliation(s)
- Mohita Sharma
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Hongwei Liu
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Shiqiang Chen
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Frank Cheng
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Gerrit Voordouw
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Lisa Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|