1
|
Muchimapura S, Thukham-mee W, Tong-un T, Sangartit W, Phuthong S. Effects of a Functional Cone Mushroom ( Termitomyces fuliginosus) Protein Snack Bar on Cognitive Function in Middle Age: A Randomized Double-Blind Placebo-Controlled Trial. Nutrients 2024; 16:3616. [PMID: 39519449 PMCID: PMC11548036 DOI: 10.3390/nu16213616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Due to the rising prevalence of cognitive impairment in the middle-aged and elderly population, combined with consumer demand for functional foods to improve health and well-being. Objective: This study aimed to formulate a functional cone mushroom (Termitomyces fuliginosus) (FCM) protein snack bar and evaluate its amino acid profile, phytochemical contents, biological activity and impact on cognitive function. Methods: A total of 26 middle-aged male and female participants were randomized and divided into placebo, FCM1 and FCM2 groups. Continuous consumption was performed for 6 weeks. Demographic data, body composition, cognitive function and memory were evaluated at baseline and at the end of the study period (6 weeks). Results: The event-related potential (ERP) analysis results showed a significant increase in N100 and P300 amplitude at the Fz location in participants who consumed the functional cone mushroom protein snack bar at a dose of 1 g compared to the placebo group (p = 0.015). Additionally, subjects who consumed the functional cone mushroom protein snack bar at a dose of 2 g showed a significantly increased P300 amplitude and percent accuracy of numeric working memory (p = 0.048) compared to those in the placebo group (p = 0.044). The possible underlying mechanism may involve AChE and MAO suppression activity alongside antioxidant activity. Conclusions: These data suggest that FCM can improve cognitive function and memory and may be considered for use in natural supplementation products with possible health benefits.
Collapse
Affiliation(s)
- Supaporn Muchimapura
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukham-mee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Terdthai Tong-un
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sophida Phuthong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Schmidt S, Murphy R, Vizueta J, Schierbech SK, Conlon BH, Kreuzenbeck NB, Vreeburg SME, van de Peppel LJJ, Aanen DK, Silué KS, Kone NA, Beemelmanns C, Weber T, Poulsen M. Comparative genomics unravels a rich set of biosynthetic gene clusters with distinct evolutionary trajectories across fungal species (Termitomyces) farmed by termites. Commun Biol 2024; 7:1269. [PMID: 39369058 PMCID: PMC11455885 DOI: 10.1038/s42003-024-06887-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
The use of compounds produced by hosts or symbionts for defence against antagonists has been identified in many organisms, including in fungus-farming termites (Macrotermitinae). The obligate mutualistic fungus Termitomyces plays a pivotal role in plant biomass decomposition and as the primary food source for these termites. Despite the isolation of various specialized metabolites from different Termitomyces species, our grasp of their natural product repertoire remains incomplete. To address this knowledge gap, we conducted a comprehensive analysis of 39 Termitomyces genomes, representing 21 species associated with members of five termite host genera. We identified 754 biosynthetic gene clusters (BGCs) coding for specialized metabolites and categorized 660 BGCs into 61 biosynthetic gene cluster families (GCFs) spanning five compound classes. Seven GCFs were shared by all 21 Termitomyces species and 21 GCFs were present in all genomes of subsets of species. Evolutionary constraint analyses on the 25 most abundant GCFs revealed distinctive evolutionary histories, signifying that millions of years of termite-fungus symbiosis have influenced diverse biosynthetic pathways. This study unveils a wealth of non-random and largely undiscovered chemical potential within Termitomyces and contributes to our understanding of the intricate evolutionary trajectories of biosynthetic gene clusters in the context of long-standing symbiosis.
Collapse
Affiliation(s)
- Suzanne Schmidt
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| | - Robert Murphy
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Joel Vizueta
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Signe Kjærsgaard Schierbech
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Benjamin H Conlon
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Nina B Kreuzenbeck
- Group of Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Sabine M E Vreeburg
- Laboratory of Genetics, Wageningen University, 6700 AA, Wageningen, The Netherlands
| | | | - Duur K Aanen
- Laboratory of Genetics, Wageningen University, 6700 AA, Wageningen, The Netherlands
| | - Kolotchèlèma S Silué
- Unité de Formation et de Recherche Sciences de la Nature (UFR-SN), Laboratoire d'Ecologie et de Développement Durable (UREB), Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
- Centre de Recherche en Écologie (CRE), Station de Recherche en Ecologie du Parc national de la Comoé, Bouna, Côte d'Ivoire
| | - N'Golo A Kone
- Unité de Formation et de Recherche Sciences de la Nature (UFR-SN), Laboratoire d'Ecologie et de Développement Durable (UREB), Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
- Centre de Recherche en Écologie (CRE), Station de Recherche en Ecologie du Parc national de la Comoé, Bouna, Côte d'Ivoire
| | - Christine Beemelmanns
- Group of Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
- Department Anti-infectives from Microbiota, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8, 66123, Saarbrücken, Germany
- Universität des Saarlandes, Campus E8, 66123, Saarbrücken, Germany
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| |
Collapse
|
3
|
Zhou Q, Yu T, Li W, Nasser R, Chidwala N, Mo J. Prostaglandin A3 regulates the colony development of Odontotermes formosanus by reducing worker proportion. CROP HEALTH 2024; 2:11. [PMID: 38984319 PMCID: PMC11232360 DOI: 10.1007/s44297-024-00030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
Subterranean termites cause significant economic losses worldwide due to their destruction of agricultural and forest plants. In the past, soil termiticides were commonly used to control subterranean termites because they were effective and affordable. However, due to growing environmental concerns, these harmful substances have become less popular as they cause damage to non-target organisms and lead to environmental contamination. Baits crafted from plants and other easily metabolized compounds serve as excellent alternatives. In this study, we gathered branches from the promising plant, Magnolia grandiflora L. (MGL), along with branches from five other tree species that are potential food for termites. These branches were used as food to observe the population growth of Odontotermes formosanus. Additionally, a mix of branches from all six species was used to feed the control group (MIX). The study results showed that MGL nutrition significantly inhibited worker development, resulting in a significantly lower worker-to-soldier ratio (WSR). Furthermore, LC‒MS/MS analysis revealed that the level of prostaglandin A3 (PGA3) in workers significantly increased when they were under MGL nutrition. Additionally, ICP-MS analysis indicated a significant increase in calcium concentrations in the branches of MGL and combs under MGL nutrition. Moreover, there was a significant increase in peroxidase (POD) activity in workers under MGL nutrition. These findings suggest that the inhibitory effect of MGL nutrition on worker development may be due to excessive PGA3 synthesis, as Ca2+ and POD are involved in the synthesis process of PGs in insects. Subsequent verification experiments strongly support this hypothesis, as the WSR of colonies fed PGA3-added MIX was significantly lower than that of the MIX alone. This study introduces a new concept for developing environmentally friendly biological control methods for O. formosanus and sheds light on the potential role of PGs in termite development. Supplementary Information The online version contains supplementary material available at 10.1007/s44297-024-00030-3.
Collapse
Affiliation(s)
- Qihuan Zhou
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Ting Yu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Wuhan Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Raghda Nasser
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
- Department of Zoology and Entomology, Faculty of Science, Minia University, El-Minia, 61519 Egypt
| | - Nooney Chidwala
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Jianchu Mo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
4
|
Effiong ME, Umeokwochi CP, Afolabi IS, Chinedu SN. Assessing the nutritional quality of Pleurotus ostreatus (oyster mushroom). Front Nutr 2024; 10:1279208. [PMID: 38292699 PMCID: PMC10824988 DOI: 10.3389/fnut.2023.1279208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
There is a huge gap between food production and the exploding population demands in various parts of the world, especially developing countries. This increases the chances of malnutrition, leading to increased disease incidence and the need for functional foods to reduce mortality. Pleurotus ostreatus are edible mushrooms that are cheaply sourced and rich in nutrient with the potential to be harnessed toward addressing the present and future food crisis while serving as functional foods for disease prevention and treatment. This study evaluated the nutritional, proximate, vitamins and amino acids contents of Pleurotus ostreatus. The proximate composition of Pleurotus ostreatus in this study revealed that it contains 43.42% carbohydrate, 23.63% crude fiber, 17.06% crude protein, 8.22% ash, 1.21% lipid and a moisture content of 91.01 and 6.46% for fresh and dry samples of Pleurotus ostreatus, respectively. The monosaccharide and disaccharide profile of Pleurotus ostreatus revealed the presence of glucose (55.08 g/100 g), xylose (7.19 g/100 g), fructose (19.70 g/100 g), galactose (17.47 g/100 g), trehalose (7.37 g/100 g), chitobiose (11.79 g/100 g), maltose (29.21 g/100 g), sucrose (51.60 g/100 g) and lower amounts of cellobiose (0.01 g/100 g), erythrose (0.48 g/100 g) and other unidentified sugars. Potassium, Iron and Magnesium were the highest minerals present with 12.25 mg, 9.66 mg and 7.00 mg amounts, respectively. The vitamin profile revealed the presence of vitamin A (2.93 IU/100 g), C (16.46 mg/100 g), E (21.50 mg/100 g) and B vitamins with vitamin B2 having the highest concentration of 92.97 mg/kg. The amino acid scores showed that Pleurotus ostreatus had more non-essential amino acids (564.17 mg/100 g) than essential amino acids (67.83 mg/100 g) with a ratio of 0.11. Lysine (23.18 mg/100 g) was the highest essential amino acid while aspartic acid (492.12 mg/kg) was the highest non-essential amino acid present in Pleurotus ostreatus. It had a higher concentration of acidic amino acids, 492.12 mg/100 g (77.87%), followed by neutral amino acids, 106.66 mg/100 g (16.88%) and least were the basic amino acids, 23.18 mg/100 g (3.67%). Based on the nutritional assessment of the Pleurotus ostreatus analyzed in this study, it can be concluded that it can serve as an important functional food source that can be exploited to meet the increasing food demands and reduce micronutrient deficiencies in many parts of the world, especially developing countries.
Collapse
Affiliation(s)
- Magdalene Eno Effiong
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun, Nigeria
| | | | - Israel Sunmola Afolabi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, Ota, Nigeria
| | - Shalom Nwodo Chinedu
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, Ota, Nigeria
| |
Collapse
|
5
|
Zhang E, Ji X, Ouyang F, Lei Y, Deng S, Rong H, Deng X, Shen H. A minireview of the medicinal and edible insects from the traditional Chinese medicine (TCM). Front Pharmacol 2023; 14:1125600. [PMID: 37007003 PMCID: PMC10060509 DOI: 10.3389/fphar.2023.1125600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Entomoceuticals define a subset of pharmaceuticals derived from insects. The therapeutic effect of insect-derived drugs has been empirically validated by the direct use of various folk medicines originating from three sources in particular: the glandular secretions of insects (e.g., silk, honey, venom), the body parts of the insect or the whole used live or by various processing (e.g., cooked, toasted, ground), and active ingredients extracted from insects or insect-microbe symbiosis. Insects have been widely exploited in traditional Chinese medicine (TCM) relative to other ethnomedicines, especially in the prospect of insect species for medicinal uses. It is noticeable that most of these entomoceuticals are also exploited as health food for improving immune function. In addition, some edible insects are rich in animal protein and have high nutritional value, which are used in the food field, such as insect wine, health supplements and so on. In this review, we focused on 12 insect species that have been widely used in traditional Chinese herbal formulae but have remained less investigated for their biological properties in previous studies. We also combined the entomoceutical knowledge with recent advances in insect omics. This review specifies the underexplored medicinal insects from ethnomedicine and shows their specific medicinal and nutritional roles in traditional medicine.
Collapse
Affiliation(s)
- Enming Zhang
- School of Sports Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Xin Ji
- School of Sports Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Fang Ouyang
- Institute of Zoology, Chinese Academy of Science, Beijing, China
| | - Yang Lei
- College of Arts and Sciences, Boston University, Boston, MA, United States
| | - Shun Deng
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
- *Correspondence: Shun Deng, ; Haibo Rong,
| | - Haibo Rong
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
- *Correspondence: Shun Deng, ; Haibo Rong,
| | - Xuangen Deng
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Hai Shen
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| |
Collapse
|
6
|
Paloi S, Kumla J, Paloi BP, Srinuanpan S, Hoijang S, Karunarathna SC, Acharya K, Suwannarach N, Lumyong S. Termite Mushrooms ( Termitomyces), a Potential Source of Nutrients and Bioactive Compounds Exhibiting Human Health Benefits: A Review. J Fungi (Basel) 2023; 9:112. [PMID: 36675933 PMCID: PMC9863917 DOI: 10.3390/jof9010112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Termite mushrooms have been classified to the genus Termitomyces, family Lyophyllaceae, order Agaricales. These mushrooms form a mutualistic association with termites in the subfamily Macrotermitinae. In fact, all Termitomyces species are edible and have unique food value attributed to their texture, flavour, nutrient content, and beneficial mediational properties. Additionally, Termitomyces have been recognized for their ethno-medicinal importance in various indigenous communities throughout Asia and Africa. Recent studies on Termitomyces have indicated that their bioactive compounds have the potential to fight against certain human diseases such as cancer, hyperlipidaemia, gastroduodenal diseases, and Alzheimer's. Furthermore, they possess various beneficial antioxidant and antimicrobial properties. Moreover, different enzymes produced from Termitomyces have the potential to be used in a range of industrial applications. Herein, we present a brief review of the current findings through an overview of recently published literature involving taxonomic updates, diversity, distribution, ethno-medicinal uses, nutritional value, medicinal importance, and industrial implementations of Termitomyces, as well as its socioeconomic importance.
Collapse
Affiliation(s)
- Soumitra Paloi
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Barsha Pratiher Paloi
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supawitch Hoijang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Yunnan 655011, China
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019, India
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
7
|
Tharavecharak S, D’Alessandro-Gabazza CN, Toda M, Yasuma T, Tsuyama T, Kamei I, Gabazza EC. Culture Conditions for Mycelial Growth and Anti-Cancer Properties of Termitomyces. MYCOBIOLOGY 2023; 51:94-108. [PMID: 37122680 PMCID: PMC10142329 DOI: 10.1080/12298093.2023.2187614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Termitomyces sp. that grow in symbiosis with fungus-farming Termites have medicinal properties. However, they are rare in nature, and their artificial culture is challenging. The expression of AXL receptor tyrosine kinase and immune checkpoint molecules favor the growth of cancer cells. The study evaluated the optimal conditions for the artificial culture of Termitomyces and their inhibitory activity on AXL and immune checkpoint molecules in lung adenocarcinoma and melanoma cell lines. The culture of 45 strains of Termitomyces was compared. Five strains with marked growth rates were selected. Four of the selected strains form a single cluster by sequence analysis. The mycelium of 4 selected strains produces more fungal mass in potato dextrose broth than in a mixed media. The bark was the most appropriate solid substrate for Termitomyces mycelia culture. The mycelium of all five selected strains showed a higher growth rate under normal CO2 conditions. The culture broth, methanol, and ethyl acetate of one selected strain (T-120) inhibited the mRNA relative expression of AXL receptor tyrosine kinase and immune checkpoint molecules in cancer cell lines. Overall, these results suggest the potential usefulness of Termitomyces extracts as a co-adjuvant therapy in malignant diseases.
Collapse
Affiliation(s)
- Suphachai Tharavecharak
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, Mie University, Tsu, Japan
| | | | - Masaaki Toda
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Taro Yasuma
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Taku Tsuyama
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ichiro Kamei
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, Mie University, Tsu, Japan
- CONTACT Esteban C. Gabazza
| |
Collapse
|
8
|
Liu Y, Li L, Wei Y, Zhang H, Xiang S, Shang Y. A specific gene, TSA, used as endogenous reference gene for qualitative and real-time quantitative PCR detection of Termitomyces albuminosus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Liu J, Wang Y, Wu J, Georgiev MI, Xu B, Wong KH, Bai W, Tian L. Isolation, Structural Properties, and Bioactivities of Polysaccharides from Mushrooms Termitomyces: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:21-33. [PMID: 34936332 DOI: 10.1021/acs.jafc.1c06443] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Termitomyces are well-known wild edible and medicinal basidiomycete mushrooms. The frequent consumption of Termitomyces stimulated studies on their health-promoting properties. Numerous health benefits of Termitomyces are associated with the main categories of components in Termitomyces, polysaccharides. Although the homopolysaccharides β-glucans are believed to be the major bioactive polysaccharides of Termitomyces, other heteropolysaccharides also possess biological activities. In this review, the extraction methods, chemical structures, and biological activities of polysaccharides from Termitomyces were thoroughly reviewed. The polysaccharides from different species of Termitomyces differ in molecular weight, monosaccharide composition, and linkages of constituent sugars. The health-promoting effects, including antioxidation, ulcer-healing and analgesic properties, immunomodulation, hypolipidemic and hepatoprotective effects, and antidiabetic properties of Termitomyces polysaccharides were summarized and discussed. Further studies were needed for a better understanding of the relationship between the fine chemical structure and health-promoting properties. This review provides a theoretical overview for future studies and utilization of Termitomyces polysaccharides.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yuxin Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Jianzhong Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong 519087, People's Republic of China
| | - Ka-Hing Wong
- Research Institute for Future Food, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Weibin Bai
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Lingmin Tian
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
10
|
Zhang MX, Li J, Zhang XN, Li HH, Xu XF. Comparative transcriptome profiling of Termitomyces sp. between monocultures in vitro and link-stipe of fungus-combs in situ. Lett Appl Microbiol 2021; 74:429-443. [PMID: 34890484 DOI: 10.1111/lam.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
The edible mushroom Termitomyces is an agaric-type basidiomycete fungus that has a symbiotic relationship with fungus-growing termites. An understanding of the detailed development mechanisms underlying the adaptive responses of Termitomyces sp. to their growing environment is lacking. Here, we compared the transcriptome sequences of different Termitomyces sp. samples and link-stipe grown on fungus combs in situ and monocultured in vitro. The assembled reads generated 8052 unigenes. The expression profiles were highly different for 2556 differentially expressed genes (DEGs) of the treated samples, where the expression of 1312 and 1244 DEGs was upregulated in the Mycelium and link-stipe groups respectively. Functional classification of the DEGs based on both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed an expected shift in fungal gene expression, where stress response genes whose expression was upregulated in link-stipe may adaptively be involved in cell wall hydrolysis and fusion, pathogenesis, oxidation-reduction, transporter efflux, transposon efflux and self/non-self-recognition. Urease has implications in the expression of genes involved in the nitrogen metabolism pathway, and its expression could be controlled by low-level nitrogen fixation of fungus combs. In addition, the expression patterns of eleven select genes on the basis of qRT-PCR were consistent with their changes in transcript abundance, as revealed by RNA sequencing. Taken together, these findings may be useful for enriching the knowledge concerning the Termitomyces adaptive response to in situ fungus combs compared with the response of monocultures in vitro.
Collapse
Affiliation(s)
- M-X Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - J Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - X-N Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - H-H Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - X-F Xu
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Ogbole OO, Noleto-Dias C, Kamdem RST, Akinleye TE, Nkumah A, Ward JL, Beale MH. γ-Glutamyl-β-phenylethylamine, a novel α-glucosidase and α-amylase inhibitory compound from Termitomyces robustus, an edible Nigerian mushroom. Nat Prod Res 2021; 36:4681-4691. [PMID: 34878952 DOI: 10.1080/14786419.2021.2012774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Termitomyces species are known edible mushrooms in Nigeria, believed to have exceptional culinary and nutraceutical properties. Methanol extract from fruiting bodies of Termitomyces robustus was evaluated for antidiabetic activity using in vitro α-amylase and α-glucosidase assays. The isolation and structural elucidation of metabolites from the T. robustus extract afforded five compounds including a new natural product γ-glutamyl-β-phenylethylamine 3 and four known phenyl derivatives: tryptophan 1, 4-hydroxyphenylacetic acid 2, 4-hydroxyphenylpropionic acid 4, and phenyllactic acid 5. Structures were elucidated from analyses of spectroscopic data (1 D and 2 D NMR, HRESIMS) and all isolated compounds were tested for α-amylase and α-glycosidase inhibitory activity. The in vitro assay established crude extract to possess α- amylase and α-glucosidase inhibition with IC50 of 78.05 µg/mL and 86.10 µg/mL, respectively. The isolated compounds compared favourably with the standard drug, acarbose with IC50 ranging from 6.18-15.08 µg/mL and 18.28-44.63 µg/mL for α-amylase and glucosidase, respectively.
Collapse
Affiliation(s)
- Omonike O Ogbole
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria.,Department of Computational and Analytical Sciences, Rothamsted Research, Hertfordshire, United Kingdom
| | - Clarice Noleto-Dias
- Department of Computational and Analytical Sciences, Rothamsted Research, Hertfordshire, United Kingdom
| | - Ramsay S T Kamdem
- Department of Organic Chemistry, Higher Teachers Training College, The University of Yaounde I, Yaounde, Cameroon.,Institute of Organic and Analytical Chemistry, Bremen-University, Bremen, Germany
| | - Toluwanimi E Akinleye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abraham Nkumah
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Jane L Ward
- Department of Computational and Analytical Sciences, Rothamsted Research, Hertfordshire, United Kingdom
| | - Michael H Beale
- Department of Computational and Analytical Sciences, Rothamsted Research, Hertfordshire, United Kingdom
| |
Collapse
|
12
|
Rapid identification of Hebeloma crustuliniforme species using real-time fluorescence and visual loop-mediated isothermal amplification based on the internal transcribed spacer sequence. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Phytochemical Profile and Antimicrobial Activities of Edible Mushroom Termitomyces striatus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3025848. [PMID: 34712341 PMCID: PMC8548097 DOI: 10.1155/2021/3025848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/04/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022]
Abstract
The mushroom Termitomyces striatus is an edible mushroom that grows wildly and belongs to the family Lyophyllaceae. Studies in the last few decades have demonstrated that mushrooms and their active components have beneficial effects on a variety of biological systems. Some mushrooms do exhibit antibacterial properties. Qualitative phytochemical profile was done on the mushroom Termitomyces striatus to establish the presence of compounds responsible for important biological activities. This study also investigated the effect of Termitomyces striatus extracts on certain bacterial strains that included Escherichia coli and Pseudomonas aeruginosa representing the Gram-negative bacteria and Bacillus subtilis and Staphylococcus aureus representing Gram-positive bacteria. The fungi were represented by Candida albicans and Saccharomyces cerevisiae. The mushroom was collected in western Kenya, air-dried, and crushed into powder, followed by extraction using water, methanol, and dichloromethane (DCM) solvents. Antibacterial and antifungal activities were evaluated using the disc-diffusion method. Qualitative phytochemical screening of the aqueous extract revealed the presence of alkaloids, flavonoids, steroids, sterols, saponins, phenols, carbohydrates, and proteins. The three extracts exhibited antibacterial against tested bacterial strains. The DCM extract revealed higher effects among the bacterial strains tested. The three extracts showed antifungal effects against C. albicans. However, both methanol and aqueous extracts did not inhibit growth of S. cerevisiae. In conclusion, T. striatus extracts are a promising source of novel antimicrobial and antifungal agents.
Collapse
|
14
|
Isolation, identification, cultivation and determination of antimicrobial β-glucan from a wild-termite mushroom Termitomyces heimii RFES 230662. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Kang MJ, Choi W, Yoo SH, Nam SW, Shin PG, Kim KK, Kim GD. Modulation of Inflammatory Pathways and Adipogenesis by the Action of Gentisic Acid in RAW 264.7 and 3T3-L1 Cell Lines. J Microbiol Biotechnol 2021; 31:1079-1087. [PMID: 34226400 PMCID: PMC9705943 DOI: 10.4014/jmb.2105.05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Gentisic acid (GA), a benzoic acid derivative present in various food ingredients, has been shown to have diverse pharmaceutical activities such as anti-carcinogenic, antioxidant, and hepatoprotective effects. In this study, we used a co-culture system to investigate the mechanisms of the anti-inflammatory and anti-adipogenic effects of GA on macrophages and adipocytes, respectively, as well as its effect on obesity-related chronic inflammation. We found that GA effectively suppressed lipopolysaccharide-stimulated inflammatory responses by controlling the production of nitric oxide and pro-inflammatory cytokines and modulating inflammation-related protein pathways. GA treatment also inhibited lipid accumulation in adipocytes by modulating the expression of major adipogenic transcription factors and their upstream protein pathways. Furthermore, in the macrophage-adipocyte co-culture system, GA decreased the production of obesity-related cytokines. These results indicate that GA possesses effective anti-inflammatory and anti-adipogenic activities and may be used in developing treatments for the management of obesity-related chronic inflammatory diseases.
Collapse
Affiliation(s)
- Min-jae Kang
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Woosuk Choi
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Seung Hyun Yoo
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Soo-Wan Nam
- Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Pyung-Gyun Shin
- Himchan Agriculture Co., Ltd., Eumseong 27629, Republic of Korea
| | - Keun Ki Kim
- Department of Life Sciences and Environmental Biochemistry, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea,Corresponding author Phone: +82-51-629-5618 Fax: +82-51-629-5619 E-mail:
| |
Collapse
|
16
|
N'guessan BB, Amponsah SK, Iheagwara IB, Seidu MA, Frimpong-Manso S, Ofori-Attah E, Bekoe EO, Sarkodie JA, Appiah-Opong R, Asiedu-Gyekye IJ. Toxicity, mutagenicity and trace metal constituent of Termitomyces schimperi (Pat.) R. Heim (Lyophyllaceae) and kaolin, a recipe used traditionally in cancer management in Cote d'Ivoire. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114147. [PMID: 33930492 DOI: 10.1016/j.jep.2021.114147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Some local communities in Cote d'Ivoire use the mushroom Termitomyces schimperi combined with kaolin (TSK) to manage various cancers in patients. However, there is a paucity of data on toxicity, mutagenicity and trace metal constituent of TSK. AIM OF THE STUDY We sought to investigate the acute and sub-chronic toxicities, mutagenic potential, and trace metal constituents of TSK. MATERIALS AND METHODS To assess acute toxicity, single doses (1000, 3000 and 5000 mg/kg) of aqueous extract of TSK were administrated per os to Sprague Dawley (SD) rats on Day 1. The rats were then monitored for 13 consecutive days. Sub-chronic toxicity was evaluated by daily administration of 200 and 500 mg/kg of the extract per os for 90 consecutive days. SD rats used as control received distilled water. Signs of toxicity, changes in body weight and mortality were monitored. After the aforementioned monitoring processes, rats were sacrificed and blood collected for full blood count and biochemistry analysis. Animal organs were also collected for histopathological examination. The mutagenic potential of the aqueous extract of TSK (10000 μg/mL) on TA98 Salmonella typhimurium was estimated. Additionally, energy-dispersive X-ray fluorescence (ED-XRF) method was employed to determine trace metal constituents of TSK. RESULTS Single-dose administration of 5000 mg/kg of TSK did not cause any death in the SD rats; thus, LD50 was above 5000 mg/kg. Administration of 1000 and 3000 mg/kg of the aqueous extract of TSK did not cause any significant change in behaviour and body weight of SD rats during the 14-day monitoring period. However, the mean corpuscular volume and the mean corpuscular haemoglobin concentration increased significantly (p < 0.01) among rats administered 1000 and 3000 mg/kg of TSK. There was a significant increase (p < 0.0001) in alanine transaminase levels in rats administered 1000 and 3000 mg/kg of TSK extract compared with control. Conversely, there was a significant decrease (p=0.0122) in serum creatine level among rats administered 1000 and 3000 mg/kg of TSK extract compared with control. After 14 days, there were minimal changes with isolated organs of TSK-treated and control rats. Furthermore, 90-day treatment with extract of TSK caused no significant change in parameters assessed. TSK induced frameshift gene mutation in S. typhimurium before (p < 0.05) and after metabolic activation (p < 0.001). Elemental analysis of TSK revealed the presence of toxic (aluminium) or potentially toxic (silver, rabidium, titanium and zirconium) elements. CONCLUSIONS The aqueous extract of TSK showed no toxicity (acute and sub-chronic) at doses tested. These findings are consistent with the absence of heavy metals (i.e., cadmium) and potentially toxic elements (i.e., uranium) in TSK samples analysed. TSK showed some level of mutagenic potential. Further mutagenic and chronic toxicity studies on TSK are required.
Collapse
Affiliation(s)
- Benoit Banga N'guessan
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, PO Box LG 43 Legon, Accra, Ghana.
| | - Seth Kwabena Amponsah
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, PO Box LG 43 Legon, Accra, Ghana.
| | - Ifeanyichukwu Benedict Iheagwara
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, PO Box LG 43 Legon, Accra, Ghana.
| | - Mahmood Abdulai Seidu
- Department of Medical Laboratory Sciences (Pathology), School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana.
| | - Samuel Frimpong-Manso
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Sciences, University of Ghana, PO Box LG 43 Legon, Accra, Ghana.
| | - Ebenezer Ofori-Attah
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences, University of Ghana, Accra, Ghana.
| | - Emelia Oppong Bekoe
- Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, College of Health Sciences, University of Ghana, PO Box LG 43 Legon, Accra, Ghana.
| | - Joseph Adusei Sarkodie
- Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, College of Health Sciences, University of Ghana, PO Box LG 43 Legon, Accra, Ghana.
| | - Regina Appiah-Opong
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences, University of Ghana, Accra, Ghana.
| | - Isaac Julius Asiedu-Gyekye
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, PO Box LG 43 Legon, Accra, Ghana.
| |
Collapse
|
17
|
Nagam V, Aluru R, Shoaib M, Dong GR, Li Z, Pallaval VB, Ni JF. Diversity of fungal isolates from fungus-growing termite Macrotermes barneyi and characterization of bioactive compound from Xylaria escharoidea. INSECT SCIENCE 2021; 28:392-402. [PMID: 32394613 DOI: 10.1111/1744-7917.12799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/05/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Owing to their potential applications, as well as their structural diversity, the discovery of novel secondary metabolites from insect-associated fungi has been of interest to researchers in recent years. The aim of this study was therefore to estimate the diversity of fungi associated with fungus-growing termites and bioprospecting these for potential secondary metabolites. In total, 18 fungal species were isolated and described from the gut and comb of Macrotermes barneyi based on 18S ribosomal DNA gene sequence analysis. Antimicrobial activity assays were carried out on all the known fungi, and nine isolates were recorded as active against pathogenic fungi. Xylaria escharoidea, the best performing isolate, was grown at laboratory scale and 4,8-dihydroxy-3,4-dihydronaphthalen-1(2H) was isolated and characterized. The minimum inhibitory concentration of this isolated compound against tested pathogenic organisms was found to be 6.25 μg. In addition, molecular docking studies have revealed that 4,8-dihydroxy-3,4-dihydronaphthalen-1(2H) is a prominent antibacterial agent with a marked interaction with key residues on protein A (agrAC ) that regulates the accessory gene. The findings of this study support the drug discovery of antimicrobial properties in insect-associated fungi, which may lead to novel secondary metabolites.
Collapse
Affiliation(s)
- Venkateswarulu Nagam
- State Key Laboratory of Microbial Technology, Microbial technology institute, Shandong University, 72 Binhai Road, Qingdao, Shandong, China
| | - Rammohan Aluru
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira, Yekaterinburg, Russian Federation
| | - Muhammad Shoaib
- State Key Laboratory of Microbial Technology, Microbial technology institute, Shandong University, 72 Binhai Road, Qingdao, Shandong, China
| | - Guang-Rui Dong
- State Key Laboratory of Microbial Technology, Microbial technology institute, Shandong University, 72 Binhai Road, Qingdao, Shandong, China
| | - Zhi Li
- State Key Laboratory of Microbial Technology, Microbial technology institute, Shandong University, 72 Binhai Road, Qingdao, Shandong, China
| | | | - Jin-Feng Ni
- State Key Laboratory of Microbial Technology, Microbial technology institute, Shandong University, 72 Binhai Road, Qingdao, Shandong, China
| |
Collapse
|
18
|
Yang G, Ahmad F, Zhou Q, Guo M, Liang S, Gaal HA, Mo J. Investigation of Physicochemical Indices and Microbial Communities in Termite Fungus-Combs. Front Microbiol 2021; 11:581219. [PMID: 33519727 PMCID: PMC7843810 DOI: 10.3389/fmicb.2020.581219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/14/2020] [Indexed: 01/15/2023] Open
Abstract
Termitomyces species are wild edible mushrooms that possess high nutritional value and a wide range of medicinal properties. However, the cultivation of these mushrooms is very difficult because of their symbiotic association with termites. In this study, we aimed to examine the differences in physicochemical indices and microbial communities between combs with Termitomyces basidiomes (CF) and combs without Termitomyces basidiomes (CNF). High-performance liquid chromatography (HPLC), inductively coupled plasma optical emission spectrometry (ICP-OES), gas chromatography equipped with a flame ionization detector (GC-FID), some commercial kits, high-throughput sequencing of the 16s RNA, and internal transcribed spacer (ITS) were used. Humidity, pH, and elements, i.e., Al, Ba, Fe, Mn, Ni, S, Ca, and Mg were higher while amino acids particularly alanine, tyrosine, and isoleucine were lower in CF as compared to CNF. The average contents of fatty acids were not significantly different between the two comb categories. The bacterial genera Alistipes, Burkholderia, Sediminibacterium, and Thermus were dominant in all combs. Brevibacterium, Brevundimonas, and Sediminibacterium were significantly more abundant in CF. Basidiomycota and Ascomycota were also identified in combs. Termitomyces clypeatus, Termitomyces sp. Group3, and Termitomyces sp. were the most dominant species in combs. However, any single Termitomyces species was abundantly present in an individual comb.
Collapse
Affiliation(s)
- Guiying Yang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Farhan Ahmad
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Entomology Section, Central Cotton Research Institute, Sakrand, Pakistan
| | - Qihuan Zhou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Meixia Guo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shiyou Liang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hassan Ahmed Gaal
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Department of Entomology, Faculty of Veterinary and Animal Husbandry, Somali National University, Mogadishu, Somalia
| | - Jianchu Mo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Termitomyces heimii Associated with Fungus-Growing Termite Produces Volatile Organic Compounds (VOCs) and Lignocellulose-Degrading Enzymes. Appl Biochem Biotechnol 2020; 192:1270-1283. [PMID: 32720080 DOI: 10.1007/s12010-020-03376-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Termitomyces fungi associated with fungus-growing termites are the edible mushrooms and can produce useful chemicals, enzymes, and volatile organic compounds (VOCs) that have both fuel and biological potentials. To this purpose, we examined the Termitomyces mycelial growth performance on various substrates, clarified lignocellulose-degrading enzyme activity, and also identified the VOCs produced by Termitomyces. Our results indicated that the optimal nutrition and condition requirements for mycelial growth are D-sorbitol, D-(+)-glucose, and D-(-)-fructose as carbon sources; peptone as well as yeast extract and ammonium tartrate as nitrogen sources; and Mn2+, Na+, and Mg2+ as metal ions with pH range from 7.0 to 8.0. Besides, the orthogonal matrix method results revealed that the ideal composition for mycelial growth is 20 g/L D-(-)-fructose, 5 g/L yeast extract, 0.5 g/L Mg2+, and pH = 7. We also screened various substrates composition for the activity of lignocellulose-degrading enzymes, i.e., lignin peroxidase, manganese peroxidase, β-glucosidase, a-L-arabinofuranosidase, and laccase. Furthermore, we identified 37 VOCs using GC-MS, and the most striking aspect was the presence of a big series of alcohols and acids, collectively constituted about 49% of the total VOCs. Ergosta-5, 8, 22-trien-3-ol, (3.beta.,22E) was the most plenteous compound constituted 30.369%. This study hopes to establish a better understanding for researchers regarding Termitomyces heimii cultivation on a large scale for the production of lignocellulosic enzymes and some fungal medicine.
Collapse
|
20
|
Thu ZM, Myo KK, Aung HT, Clericuzio M, Armijos C, Vidari G. Bioactive Phytochemical Constituents of Wild Edible Mushrooms from Southeast Asia. Molecules 2020; 25:E1972. [PMID: 32340227 PMCID: PMC7221775 DOI: 10.3390/molecules25081972] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Mushrooms have a long history of uses for their medicinal and nutritional properties. They have been consumed by people for thousands of years. Edible mushrooms are collected in the wild or cultivated worldwide. Recently, mushroom extracts and their secondary metabolites have acquired considerable attention due to their biological effects, which include antioxidant, antimicrobial, anti-cancer, anti-inflammatory, anti-obesity, and immunomodulatory activities. Thus, in addition to phytochemists, nutritionists and consumers are now deeply interested in the phytochemical constituents of mushrooms, which provide beneficial effects to humans in terms of health promotion and reduction of disease-related risks. In recent years, scientific reports on the nutritional, phytochemical and pharmacological properties of mushroom have been overwhelming. However, the bioactive compounds and biological properties of wild edible mushrooms growing in Southeast Asian countries have been rarely described. In this review, the bioactive compounds isolated from 25 selected wild edible mushrooms growing in Southeast Asia have been reviewed, together with their biological activities. Phytoconstituents with antioxidant and antimicrobial activities have been highlighted. Several evidences indicate that mushrooms are good sources for natural antioxidants and antimicrobial agents.
Collapse
Affiliation(s)
- Zaw Min Thu
- Center of Ningxia Organic Synthesis and Engineering Technology, Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China;
- Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar
| | - Ko Ko Myo
- Center of Ningxia Organic Synthesis and Engineering Technology, Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China;
- Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar
| | - Hnin Thanda Aung
- Department of Chemistry, University of Mandalay, Mandalay 100103, Myanmar;
| | - Marco Clericuzio
- DISIT, Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy;
| | - Chabaco Armijos
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
| | - Giovanni Vidari
- Medical Analysis Department, Faculty of Science, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| |
Collapse
|
21
|
Sathiya Seelan JS, Shu Yee C, She Fui F, Dawood M, Tan YS, Kim MJ, Park MS, Lim YW. New Species of Termitomyces (Lyophyllaceae, Basidiomycota) from Sabah (Northern Borneo), Malaysia. MYCOBIOLOGY 2020; 48:95-103. [PMID: 32363037 PMCID: PMC7178835 DOI: 10.1080/12298093.2020.1738743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/01/2020] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
The genus Termitomyces (Lyophyllaceae, Basidiomycota) is often associated with fungus-feeding termites (Macrotermitinae) due to their strong symbiotic relationships. The genus is widely found exclusively in certain regions of Africa and Asia. They are recognized as edible mushroom within Southeast Asia as well. But it is often misidentified based on morphology by the local communities especially in Malaysia for Chlorophyllum molybdites which is a highly poisonous mushroom. Thus, it is necessary to study the genus for Malaysia with the synergy of using both morphological and molecular identification. In this study, we aim to describe another new species as an addition to the genus Termitomyces found within Sabah, Malaysia. We generated two new sequences (nrLSU and mtSSU) for the new species and a total of 28 nrLSU and mtSSU sequences were retrieved from GenBank for the phylogenetic analysis using maximum likelihood and Bayesian inferences. We identified that the new collection from Sabah province is a new species and named as Termitomyces gilvus based on the termites found in the mound. A phylogeny tree made from the concatenated genes of LSU and mtSSU suggests that T. gilvus is closely related to T. bulborhizus from China. According to our results, the combination of molecular and morphology proved to be a robust approach to re-evaluate the taxonomic status of Termitomyces species in Malaysia. Additional surveys are needed to verify the species diversity and clarify their geographic distribution.
Collapse
Affiliation(s)
- Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
- Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Chong Shu Yee
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Foo She Fui
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Mahadimenakbar Dawood
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Yee Shin Tan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Min-Ji Kim
- Wood Utilization Division, Forest Products Department, National Institute of Forest Science, Seoul, Korea
| | - Myung Soo Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Young Woon Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| |
Collapse
|
22
|
Govorushko S, Rezaee R, Dumanov J, Tsatsakis A. Poisoning associated with the use of mushrooms: A review of the global pattern and main characteristics. Food Chem Toxicol 2019; 128:267-279. [DOI: 10.1016/j.fct.2019.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
|