1
|
da Silva CEH, Gosmann G, Roesler R, Lopes MS, de Andrade SF. Beyond the classical chiral resolution: Modern enantioselective synthetic strategies used in the preparation of new chiral kinase inhibitors including drugs for autoimmune diseases and antitumoral drugs. Eur J Med Chem 2025; 293:117730. [PMID: 40347791 DOI: 10.1016/j.ejmech.2025.117730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Kinase inhibitors is one of the most approved class by FDA in this century. These proteins are versatile targets that have a huge impact in several pharmacotherapy including against cancer, autoimunne and rare diseases. Thus, the number of patents that aim these targets are increasing and is becoming harder to be innovative in this field. Furthermore, the design of ATP-competitive inhibitors is the major strategy used to develop new kinase inhibitors and there are few regions in the ATP cleft or around it, which are generally explored by the commercially available inhibitor drugs. In this way in this review, we focused in the use of modern enantioselective strategies that were carried out in the last years to prepare new chiral kinase inhibitors as an emerging field that resulted in several new potent innovative approved drugs. Also we suggested new trends in this modern relevant topic and analyzed kinase-drug complexes highlighting the interactions that support the importance of the stereochemistry.
Collapse
Affiliation(s)
- Cesar Emiliano Hoffmann da Silva
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Grace Gosmann
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Marcela Silva Lopes
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Saulo Fernandes de Andrade
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Rémondin C, Mignani S, Rochais C, Dallemagne P. Synthesis and interest in medicinal chemistry of β-phenylalanine derivatives (β-PAD): an update (2010-2022). Future Med Chem 2024; 16:1147-1162. [PMID: 38722231 PMCID: PMC11221601 DOI: 10.1080/17568919.2024.2347063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/19/2024] [Indexed: 06/26/2024] Open
Abstract
β-Phenylalanine derivatives (β-PAD) represent a structural family of therapeutic interest, either as components of drugs or as starting materials for access to key compounds. As scaffolds for medicinal chemistry work, β-PAD offer the advantage of great diversity and modularity, a chiral pseudopeptidic character that opens up the capacity to be recognized by natural systems, and greater stability than natural α-amino acids. Nevertheless, their synthesis remains a challenge in drug discovery and numerous methods have been devoted to their preparation. This review is an update of the access routes to β-PAD and their various therapeutic applications.
Collapse
Affiliation(s)
| | - Serge Mignani
- Normandie Univ.,
UNICAEN, CERMN,
14000, Caen, France
- UMR 860, Laboratoire de Chimie et de Biochimie
Pharmacologiques et Toxicologique, Université Paris
Descartes, PRES Sorbonne Paris Cité,
CNRS, 45 rue des Saints Pères,
75006, Paris, France
- CQM – Centro de Química da
Madeira, MMRG, Universidad da
Madeira, Campus da Penteada,
9020-105, Funchal,
Portugal
| | | | | |
Collapse
|
3
|
Zhou SP, Xue YP, Zheng YG. Maximizing the potential of nitrilase: Unveiling their diversity, catalytic proficiency, and versatile applications. Biotechnol Adv 2024; 72:108352. [PMID: 38574900 DOI: 10.1016/j.biotechadv.2024.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/10/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Nitrilases represent a distinct class of enzymes that play a pivotal role in catalyzing the hydrolysis of nitrile compounds, leading to the formation of corresponding carboxylic acids. These enzymatic entities have garnered significant attention across a spectrum of industries, encompassing pharmaceuticals, agrochemicals, and fine chemicals. Moreover, their significance has been accentuated by mounting environmental pressures, propelling them into the forefront of biodegradation and bioremediation endeavors. Nevertheless, the natural nitrilases exhibit intrinsic limitations such as low thermal stability, narrow substrate selectivity, and inadaptability to varying environmental conditions. In the past decade, substantial efforts have been made in elucidating the structural underpinnings and catalytic mechanisms of nitrilase, providing basis for engineering of nitrilases. Significant breakthroughs have been made in the regulation of nitrilases with ideal catalytic properties and application of the enzymes for industrial productions. This review endeavors to provide a comprehensive discourse and summary of recent research advancements related to nitrilases, with a particular emphasis on the elucidation of the structural attributes, catalytic mechanisms, catalytic characteristics, and strategies for improving catalytic performance of nitrilases. Moreover, the exploration extends to the domain of process engineering and the multifarious applications of nitrilases. Furthermore, the future development trend of nitrilases is prospected, providing important guidance for research and application in the related fields.
Collapse
Affiliation(s)
- Shi-Peng Zhou
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Jeon H, Pagar AD, Kang H, Giri P, Nadarajan SP, Sarak S, Khobragade TP, Lim S, Patil MD, Lee SG, Yun H. Creation of a ( R)-β-Transaminase by Directed Evolution of d-Amino Acid Aminotransferase. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hyunwoo Jeon
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Amol D. Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Hyeona Kang
- Department of Chemical and Biomolecular Engineering, Pusan National University, 63 Busan Daehak-ro, Beon-gil, Busan 46241, Korea
| | - Pritam Giri
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Saravanan P. Nadarajan
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Sharad Sarak
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Taresh P. Khobragade
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Seonga Lim
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D. Patil
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, PO Manauli, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sun-Gu Lee
- Department of Chemical and Biomolecular Engineering, Pusan National University, 63 Busan Daehak-ro, Beon-gil, Busan 46241, Korea
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
5
|
Finnigan W, Hepworth LJ, Flitsch SL, Turner NJ. RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nat Catal 2021; 4:98-104. [PMID: 33604511 PMCID: PMC7116764 DOI: 10.1038/s41929-020-00556-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As the enzyme toolbox for biocatalysis has expanded, so has the potential for the construction of powerful enzymatic cascades for efficient and selective synthesis of target molecules. Additionally, recent advances in computer-aided synthesis planning are revolutionising synthesis design in both synthetic biology and organic chemistry. However, the potential for biocatalysis is not well captured by tools currently available in either field. Here we present RetroBioCat, an intuitive and accessible tool for computer-aided design of biocatalytic cascades, freely available at retrobiocat.com. Our approach uses a set of expertly encoded reaction rules encompassing the enzyme toolbox for biocatalysis, and a system for identifying literature precedent for enzymes with the correct substrate specificity where this is available. Applying these rules for automated biocatalytic retrosynthesis, we show our tool to be capable of identifying promising biocatalytic pathways to target molecules, validated using a test-set of recent cascades described in the literature.
Collapse
Affiliation(s)
- William Finnigan
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UK
| | - Lorna J Hepworth
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UK
| | - Sabine L Flitsch
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UK
| | - Nicholas J Turner
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UK
| |
Collapse
|
6
|
Du P, Yan S, Qian XL, Pan J, Zhang ZJ, Yu HL, Xu JH. Engineering Bacillus subtilis Isoleucine Dioxygenase for Efficient Synthesis of (2 S,3 R,4 S)-4-Hydroxyisoleucine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14555-14563. [PMID: 33249835 DOI: 10.1021/acs.jafc.0c06544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Isoleucine dioxygenase (IDO)-catalyzed hydroxylation of isoleucine is a promising method for the synthesis of the diabetic drug (2S,3R,4S)-4-hydroxyisoleucine [(2S,3R,4S)-4-HIL]. However, the low activity of IDO significantly limits its practical application. In this work, a high-throughput screening method was developed and directed evolution was performed on the IDO from Bacillus subtilis, resulting in a double mutant with improvements in specific activity, protein expression level, and fermentation titer of 3.2-, 2.8-, and 9.4-fold, respectively. l-Isoleucine (228 mM) was completely converted to (2S,3R,4S)-4-HIL by the best variant with a space-time yield of up to 80.8 g L-1 d-1, which is the highest record reported so far. With a further increase of the substrate loading to 1 M, a high conversion of 91% could also be achieved. At last, enzymatic synthesis of (2S,3R,4S)-4-HIL was successfully carried out on a 3 L scale, indicating tremendous potential of the IDO variant I162T/T182N for green and efficient production of (2S,3R,4S)-4-HIL.
Collapse
Affiliation(s)
- Ping Du
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Yan
- Department of Endocrinology and Metabolism, Shanghai General Hospital Shanghai Jiao Tong University, Shanghai 200080, China
| | - Xiao-Long Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Shen JD, Cai X, Liu ZQ, Zheng YG. Nitrilase: a promising biocatalyst in industrial applications for green chemistry. Crit Rev Biotechnol 2020; 41:72-93. [PMID: 33045860 DOI: 10.1080/07388551.2020.1827367] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nitrilases are widely distributed in nature and are able to hydrolyze nitriles into their corresponding carboxylic acids and ammonia. In industry, nitrilases have been used as green biocatalysts for the production of high value-added products. To date, biocatalysts are considered to be important alternatives to chemical catalysts due to increasing environmental problems and resource scarcity. This review provides an overview of recent advances of nitrilases in aspects of distribution, enzyme screening, molecular structure and catalytic mechanism, protein engineering, and their potential applications in industry.
Collapse
Affiliation(s)
- Ji-Dong Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Xue Cai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| |
Collapse
|
8
|
Liao XL, Li Q, Yang D, Ma CL, Jiang ZB, He YC. An Effective Hybrid Strategy for Conversion of Biomass into Furfurylamine by Tandem Pretreatment and Biotransamination. Appl Biochem Biotechnol 2020; 192:794-811. [PMID: 32588207 DOI: 10.1007/s12010-020-03334-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
In this work, an effective hybrid strategy was developed for tandem conversion of biomass to furfurylamine with tin-based solid acid Sn-Maifanitum stone and recombinant Escherichia coli whole cells harboring ω-transaminase. 90.3 mM furfural was obtained from corncob (75 g/L) at 170 °C for 0.5 h over Sn-Maifanitum stone catalyst (3.5 wt%) in the aqueous media (pH 1.0), which could be further bioconverted into furfurylamine at 74.0% yield (based on biomass-derived furfural) within 20.5 h. Finally, an efficient recycling and reuse of Sn-Maifanitum stone catalyst and immobilized Escherichia coli AT2018 whole-cell biocatalyst was developed for the synthesis of furfurylamine from biomass in the one-pot reaction system.
Collapse
Affiliation(s)
- Xiao-Long Liao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Qing Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Dong Yang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Cui-Luan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Zheng-Bing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Yu-Cai He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China. .,Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China.
| |
Collapse
|
9
|
Zhang Q, Wu ZM, Liu S, Tang XL, Zheng RC, Zheng YG. Efficient Chemoenzymatic Synthesis of Optically Active Pregabalin from Racemic Isobutylsuccinonitrile. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Kim G, Jeon H, Khobragade TP, Patil MD, Sung S, Yoon S, Won Y, Sarak S, Yun H. Glutamate as an Efficient Amine Donor for the Synthesis of Chiral β‐ and γ‐Amino Acids Using Transaminase. ChemCatChem 2019. [DOI: 10.1002/cctc.201802048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Geon‐Hee Kim
- Department of Systems BiotechnologyKonkuk University 120 Neungdong-ro Gwangjin-gu, Seoul 05029 Korea
| | - Hyunwoo Jeon
- Department of Systems BiotechnologyKonkuk University 120 Neungdong-ro Gwangjin-gu, Seoul 05029 Korea
| | - Taresh P. Khobragade
- Department of Systems BiotechnologyKonkuk University 120 Neungdong-ro Gwangjin-gu, Seoul 05029 Korea
| | - Mahesh D. Patil
- Department of Systems BiotechnologyKonkuk University 120 Neungdong-ro Gwangjin-gu, Seoul 05029 Korea
| | - Sihyong Sung
- Department of Systems BiotechnologyKonkuk University 120 Neungdong-ro Gwangjin-gu, Seoul 05029 Korea
| | - Sanghan Yoon
- Department of Systems BiotechnologyKonkuk University 120 Neungdong-ro Gwangjin-gu, Seoul 05029 Korea
| | - Yumi Won
- Department of Systems BiotechnologyKonkuk University 120 Neungdong-ro Gwangjin-gu, Seoul 05029 Korea
| | - Sharad Sarak
- Department of Systems BiotechnologyKonkuk University 120 Neungdong-ro Gwangjin-gu, Seoul 05029 Korea
| | - Hyungdon Yun
- Department of Systems BiotechnologyKonkuk University 120 Neungdong-ro Gwangjin-gu, Seoul 05029 Korea
| |
Collapse
|
11
|
Kim GH, Jeon H, Khobragade TP, Patil MD, Sung S, Yoon S, Won Y, Choi IS, Yun H. Enzymatic synthesis of sitagliptin intermediate using a novel ω-transaminase. Enzyme Microb Technol 2019; 120:52-60. [DOI: 10.1016/j.enzmictec.2018.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/17/2018] [Accepted: 10/05/2018] [Indexed: 01/10/2023]
|