1
|
Tian Z, Liu L, Wu L, Yang Z, Zhang Y, Du L, Zhang D. Enhancement of vitamin B 6 production driven by omics analysis combined with fermentation optimization. Microb Cell Fact 2024; 23:137. [PMID: 38750497 PMCID: PMC11095007 DOI: 10.1186/s12934-024-02405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Microbial engineering aims to enhance the ability of bacteria to produce valuable products, including vitamin B6 for various applications. Numerous microorganisms naturally produce vitamin B6, yet the metabolic pathways involved are rigorously controlled. This regulation by the accumulation of vitamin B6 poses a challenge in constructing an efficient cell factory. RESULTS In this study, we conducted transcriptome and metabolome analyses to investigate the effects of the accumulation of pyridoxine, which is the major commercial form of vitamin B6, on cellular processes in Escherichia coli. Our omics analysis revealed associations between pyridoxine and amino acids, as well as the tricarboxylic acid (TCA) cycle. Based on these findings, we identified potential targets for fermentation optimization, including succinate, amino acids, and the carbon-to-nitrogen (C/N) ratio. Through targeted modifications, we achieved pyridoxine titers of approximately 514 mg/L in shake flasks and 1.95 g/L in fed-batch fermentation. CONCLUSION Our results provide insights into pyridoxine biosynthesis within the cellular metabolic network for the first time. Our comprehensive analysis revealed that the fermentation process resulted in a remarkable final yield of 1.95 g/L pyridoxine, the highest reported yield to date. This work lays a foundation for the green industrial production of vitamin B6 in the future.
Collapse
Affiliation(s)
- Zhizhong Tian
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Linxia Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Lijuan Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zixuan Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yahui Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Liping Du
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Qu Z, Zheng Y, Wu S, Bing Y, Sun Z, Zhu S, Li W, Zou X. Two Omics Methods Expose Anti-Depression Mechanism of Raw and Vinegar-Baked Bupleurum Scorzonerifolium Willd. Chem Biodivers 2024; 21:e202301733. [PMID: 38217462 DOI: 10.1002/cbdv.202301733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
Bupleurum scorzonerifolium willd. (BS) and its vinegar-baked product (VBS) has been frequently utilized for depression management in clinical Chinese medicine. This paper aims to elucidate the antidepressant mechanism of BS and VBS from the perspectives of metabonomics and gut microbiota. A rat model of depression was established by CUMS combined with feeding alone to evaluate the antidepressant effects of BS and VBS. UPLC-Q-TOF-MS/MS-based metabolomics and 16S rRNA sequencing of rat feces were applied and the correlation of differential metabolic markers and intestinal floras was analyzed. The result revealed that BS and VBS significantly improved depression-like behaviors and the levels of monoamine neurotransmitters in CUMS rats. There were 27 differential endogenous metabolites between CUMS and normal rats, which were involved in 8 metabolic pathways. Whereas, BS and VBS could regulate 18 and 20 metabolites respectively, wherein fifteen of them were shared metabolites. On the genus level, BS and VBS could regulate twenty-five kinds of intestinal floras in CUMS rats, that is, they increased the abundance of beneficial bacteria and decreased the abundance of harmful bacteria. In conclusion, both BS and VBS exert excellent antidepressant effects by regulating various metabolic pathways and ameliorating intestinal microflora dysfunction.
Collapse
Affiliation(s)
- Zhongyuan Qu
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Yan Zheng
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Shuang Wu
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Yifan Bing
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Zhiwei Sun
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Shiru Zhu
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
- Engineering Research Center on Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, Ha Er Bin Shi, 150076, China
| | - Xiang Zou
- Engineering Research Center on Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, Ha Er Bin Shi, 150076, China
- School of Life Sciences, University of Sussex, Brighton BN19RH, UK
| |
Collapse
|
3
|
Sun W, Ding D, Bai D, Lin Y, Zhu Y, Zhang C, Zhang D. Transcriptomics and metabolomics analysis of L-phenylalanine overproduction in Escherichia coli. Microb Cell Fact 2023; 22:65. [PMID: 37024921 PMCID: PMC10080781 DOI: 10.1186/s12934-023-02070-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Highly efficient production of L-phenylalanine (L-Phe) in E. coli has been achieved by multiple rounds of random mutagenesis and modification of key genes of the shikimate (SHIK) and L-Phe branch pathways. In this study, we performed transcriptomic (16, 24 and 48 h) and metabolomic analyses (8, 16, 24, 32,40, and 48 h) based on time sequences in an engineered E. coli strain producing L-Phe, aiming to reveal the overall changes of metabolic activities during the fermentation process. RESULTS The largest biomass increase rate and the highest production rate were seen at 16 h and 24 h of fermentation, respectively reaching 5.9 h-1 and 2.76 g/L/h, while the maximal L-Phe titer of 60 g/L was accumulated after 48 h of fermentation. The DEGs and metabolites involved in the EMP, PP, TCA, SHIIK and L-Phe-branch pathways showed significant differences at different stages of fermentation. Specifically, the significant upregulation of genes encoding rate-limiting enzymes (aroD and yidB) and key genes (aroF, pheA and aspC) pushed more carbon flux toward the L-Phe synthesis. The RIA changes of a number of important metabolites (DAHP, DHS, DHQ, Glu and PPN) enabled the adequate supply of precursors for high-yield L-Phe production. In addition, other genes related to Glc transport and phosphate metabolism increased the absorption of Glc and contributed to rerouting the carbon flux into the L-Phe-branch. CONCLUSIONS Transcriptomic and metabolomic analyses of an L-Phe overproducing strain of E. coli confirmed that precursor supply was not a major limiting factor in this strain, whereas the rational distribution of metabolic fluxes was achieved by redistributing the carbon flux (for example, the expression intensity of the genes tyrB, aspC, aroL and aroF/G/H or the activity of these enzymes is increased to some extent), which is the optimal strategy for enhancing L-Phe production.
Collapse
Affiliation(s)
- Wei Sun
- School of Biological Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Dongqin Ding
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danyang Bai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yang Lin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yaru Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Cuiying Zhang
- School of Biological Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Boness HVM, de Sá HC, Dos Santos EKP, Canuto GAB. Sample Preparation in Microbial Metabolomics: Advances and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:149-183. [PMID: 37843809 DOI: 10.1007/978-3-031-41741-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Microbial metabolomics has gained significant interest as it reflects the physiological state of microorganisms. Due to the great variability of biological organisms, in terms of physicochemical characteristics and variable range of concentration of metabolites, the choice of sample preparation methods is a crucial step in the metabolomics workflow and will reflect on the quality and reliability of the results generated. The procedures applied to the preparation of microbial samples will vary according to the type of microorganism studied, the metabolomics approach (untargeted or targeted), and the analytical platform of choice. This chapter aims to provide an overview of the sample preparation workflow for microbial metabolomics, highlighting the pre-analytical factors associated with cultivation, harvesting, metabolic quenching, and extraction. Discussions focus on obtaining intracellular and extracellular metabolites. Finally, we introduced advanced sample preparation methods based on automated systems.
Collapse
Affiliation(s)
- Heiter V M Boness
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Hanna C de Sá
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Emile K P Dos Santos
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Gisele A B Canuto
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
5
|
Global Cellular Metabolic Rewiring Adapts Corynebacterium glutamicum to Efficient Nonnatural Xylose Utilization. Appl Environ Microbiol 2022; 88:e0151822. [PMID: 36383019 PMCID: PMC9746319 DOI: 10.1128/aem.01518-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Xylose, the major component of lignocellulosic biomass, cannot be naturally or efficiently utilized by most microorganisms. Xylose (co)utilization is considered a cornerstone of efficient lignocellulose-based biomanufacturing. We evolved a rapidly xylose-utilizing strain, Cev2-18-5, which showed the highest reported specific growth rate (0.357 h-1) on xylose among plasmid-free Corynebacterium glutamicum strains. A genetically clear chassis strain, CGS15, was correspondingly reconstructed with an efficient glucose-xylose coutilization performance based on comparative genomic analysis and mutation reconstruction. With the introduction of a succinate-producing plasmid, the resulting strain, CGS15-SA1, can efficiently produce 97.1 g/L of succinate with an average productivity of 8.09 g/L/h by simultaneously utilizing glucose and xylose from corn stalk hydrolysate. We further revealed a novel xylose regulatory mechanism mediated by the endogenous transcription factor IpsA with global regulatory effects on C. glutamicum. A synergistic effect on carbon metabolism and energy supply, motivated by three genomic mutations (Psod(C131T)-xylAB, Ptuf(Δ21)-araE, and ipsAC331T), was found to endow C. glutamicum with the efficient xylose utilization and rapid growth phenotype. Overall, this work not only provides promising C. glutamicum chassis strains for a lignocellulosic biorefinery but also enriches the understanding of the xylose regulatory mechanism. IMPORTANCE A novel xylose regulatory mechanism mediated by the transcription factor IpsA was revealed. A synergistic effect on carbon metabolism and energy supply was found to endow C. glutamicum with the efficient xylose utilization and rapid growth phenotype. The new xylose regulatory mechanism enriches the understanding of nonnatural substrate metabolism and encourages exploration new engineering targets for rapid xylose utilization. This work also provides a paradigm to understand and engineer the metabolism of nonnatural renewable substrates for sustainable biomanufacturing.
Collapse
|
6
|
Evaluation and optimization of analytical procedure and sample preparation for polar Streptomyces albus J1074 metabolome profiling. Synth Syst Biotechnol 2022; 7:949-957. [PMID: 35664928 PMCID: PMC9157217 DOI: 10.1016/j.synbio.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolomics is an essential discipline in omics technology that promotes research on the biology of microbial systems. Streptomyces albus J1074 is a model organism used in fundamental research and industrial microbiology. Nevertheless, a comprehensive and standardized method for analyzing the metabolome of S. albus J1074 is yet to be developed. Thus, we comprehensively evaluated and optimized the analytical procedure and sample preparation for profiling polar metabolites using hydrophilic interaction liquid chromatography (HILIC) coupled with high-resolution mass spectrometry (HRMS). We systematically examined the HILIC columns, quenching solutions, sample-to-quenching ratios, and extraction methods. Then, the optimal protocol was used to investigate the dynamic intracellular polar metabolite profile of the engineered S. albus J1074 strains during spinosad (spinosyn A and spinosyn D) fermentation. A total of 3648 compounds were detected, and 83 metabolites were matched to the standards. The intracellular metabolomic profiles of engineered S. albus J1074 strains (ADE-AP and OE3) were detected; furthermore, their metabolomes in different stages were analyzed to reveal the reasons for their differences in their spinosad production, as well as the current metabolic limitation of heterologous spinosad production in S. albus J1074. The HILIC-HRMS method is a valuable tool for investigating polar metabolomes, and provides a reference methodology to study other Streptomyces metabolomes. A HILIC-HRMS method was developed for polar metabolome profiling. Sample preparation protocol for Streptomyces albus J1074 intracellular metabolites was studied for the first time. This study revealed the possible reasons for different production of spinosad of engineered S. albus J1074 strains.
Collapse
|
7
|
Comparative genomics and metabolomics analysis of Riemerella anatipestifer strain CH-1 and CH-2. Sci Rep 2021; 11:616. [PMID: 33436670 PMCID: PMC7804117 DOI: 10.1038/s41598-020-79733-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022] Open
Abstract
Riemerella anatipestifer is a major pathogenic microorganism in poultry causing serositis with significant mortality. Serotype 1 and 2 were most pathogenic, prevalent, and liable over the world. In this study, the intracellular metabolites in R. anatipestifer strains RA-CH-1 (serotype 1) and RA-CH-2 (serotype 2) were identified by gas chromatography-mass spectrometer (GC–MS). The metabolic profiles were performed using hierarchical clustering and partial least squares discriminant analysis (PLS-DA). The results of hierarchical cluster analysis showed that the amounts of the detected metabolites were more abundant in RA-CH-2. RA-CH-1 and RA-CH-2 were separated by the PLS-DA model. 24 potential biomarkers participated in nine metabolisms were contributed predominantly to the separation. Based on the complete genome sequence database and metabolite data, the first large-scale metabolic models of iJL463 (RA-CH-1) and iDZ470 (RA-CH-2) were reconstructed. In addition, we explained the change of purine metabolism combined with the transcriptome and metabolomics data. The study showed that it is possible to detect and differentiate between these two organisms based on their intracellular metabolites using GC–MS. The present research fills a gap in the metabolomics characteristics of R. anatipestifer.
Collapse
|
8
|
Eng T, Sasaki Y, Herbert RA, Lau A, Trinh J, Chen Y, Mirsiaghi M, Petzold CJ, Mukhopadhyay A. Production of tetra-methylpyrazine using engineered Corynebacterium glutamicum. Metab Eng Commun 2020; 10:e00115. [PMID: 31890587 PMCID: PMC6926172 DOI: 10.1016/j.mec.2019.e00115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 11/24/2022] Open
Abstract
Corynebacterium glutamicum ATCC 13032 is an established and industrially-relevant microbial host that has been utilized for the expression of many desirable bioproducts. Tetra-methylpyrazine (TMP) is a naturally occurring alkylpyrazine with broad applications spanning fragrances to resins. We identified an engineered strain of C. glutamicum which produces 5 g/L TMP and separately, a strain which can co-produce both TMP and the biofuel compound isopentenol. Ionic liquids also stimulate TMP production in engineered strains. Using a fed batch-mode feeding strategy, ionic liquid stimulated strains produced 2.2 g/L of tetra-methylpyrazine. We show that feedback from a specific heterologous gene pathway on host physiology leads to acetoin accumulation and the production of TMP.
Collapse
Affiliation(s)
- Thomas Eng
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yusuke Sasaki
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Sakyo-ku, Kyoto, Japan
- Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
| | - Robin A. Herbert
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew Lau
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jessica Trinh
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mona Mirsiaghi
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Advanced Biofuels Process Demonstration Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Christopher J. Petzold
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
9
|
Wang X, Li Q, Sun C, Cai Z, Zheng X, Guo X, Ni X, Zhou W, Guo Y, Zheng P, Chen N, Sun J, Li Y, Ma Y. GREACE-assisted adaptive laboratory evolution in endpoint fermentation broth enhances lysine production by Escherichia coli. Microb Cell Fact 2019; 18:106. [PMID: 31186003 PMCID: PMC6560909 DOI: 10.1186/s12934-019-1153-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/01/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Late-stage fermentation broth contains high concentrations of target chemicals. Additionally, it contains various cellular metabolites which have leaked from lysed cells, which would exert multifactorial stress to industrial hyperproducers and perturb both cellular metabolism and product formation. Although adaptive laboratory evolution (ALE) has been wildly used to improve stress tolerance of microbial cell factories, single-factor stress condition (i.e. target product or sodium chloride at a high concentration) is currently provided. In order to enhance bacterial stress tolerance to actual industrial production conditions, ALE in late-stage fermentation broth is desired. Genome replication engineering assisted continuous evolution (GREACE) employs mutants of the proofreading element of DNA polymerase complex (DnaQ) to facilitate mutagenesis. Application of GREACE coupled-with selection under stress conditions is expected to accelerate the ALE process. RESULTS In this study, GREACE was first modified by expressing a DnaQ mutant KR5-2 using an arabinose inducible promoter on a temperature-sensitive plasmid, which resulted in timed mutagenesis introduction. Using this method, tolerance of a lysine hyperproducer E. coli MU-1 was improved by enriching mutants in a lysine endpoint fermentation broth. Afterwards, the KR5-2 expressing plasmid was cured to stabilize acquired genotypes. By subsequent fermentation evaluation, a mutant RS3 with significantly improved lysine production capacity was selected. The final titer, yield and total amount of lysine produced by RS3 in a 5-L batch fermentation reached 155.0 ± 1.4 g/L, 0.59 ± 0.02 g lysine/g glucose, and 605.6 ± 23.5 g, with improvements of 14.8%, 9.3%, and 16.7%, respectively. Further metabolomics and genomics analyses, coupled with molecular biology studies revealed that mutations SpeBA302V, AtpBS165N and SecYM145V mainly contributed both to improved cell integrity under stress conditions and enhanced metabolic flux into lysine synthesis. CONCLUSIONS Our present study indicates that improving a lysine hyperproducer by GREACE-assisted ALE in its stressful living environment is efficient and effective. Accordingly, this is a promising method for improving other valuable chemical hyperproducers.
Collapse
Affiliation(s)
- Xiaowei Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Qinggang Li
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Cunmin Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Zhen Cai
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Zheng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Xuan Guo
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Wenjuan Zhou
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Yanmei Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| |
Collapse
|
10
|
Lu H, Chen H, Tang X, Yang Q, Zhang H, Chen YQ, Chen W. Evaluation of metabolome sample preparation and extraction methodologies for oleaginous filamentous fungi Mortierella alpina. Metabolomics 2019; 15:50. [PMID: 30900034 DOI: 10.1007/s11306-019-1506-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Metabolomics has been successfully applied to guide the rational engineering of industrial strains and improve the performance of bioprocesses. Mortierella alpina has traditionally been one of the most popular industrial strains for the production of polyunsaturated fatty acids. However, a systematic comparison and optimisation of the metabolomic analysis methods of M. alpina has not yet been reported. OBJECTIVE We sought to identify potential weaknesses that are important for accurate metabolomic analysis. We also aimed to determine an efficient sample preparation protocol for metabolomics studies in the oleaginous filamentous fungus M. alpina. METHODS In this study, using GC-MS, we evaluated three sample preparation protocols and five solvent mixtures by assessment of the metabolite profile differences, the sum of peak intensities and the reproducibility of metabolite quantification. RESULTS The freeze-dried biomass had better reproducibility and recovery than fresh biomass for metabolite extraction and data normalisation that is part of a metabolomics analysis of filamentous fungi M. alpina. Methanol:water (1:1) was superior for the profiling of metabolites in oleaginous fungi M. alpina. The unbiased metabolite profiling difference between the growth phase and lipids synthesis phase revealed that the degradation of amino acids were critical nodes for the efficient synthesis of lipids in M. alpina. CONCLUSION The use of freeze-dried biomass for metabolite extraction and data normalisation was more efficient at measuring the active state of the intracellular metabolites in M. alpina. We recommend extracting the intracellular metabolites with methanol:water (1:1). An important role of amino acid oxidation in the nitrogen limitation-mediated lipid accumulation was found.
Collapse
Affiliation(s)
- Hengqian Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| |
Collapse
|
11
|
Zheng X, Yu J, Cairns TC, Zhang L, Zhang Z, Zhang Q, Zheng P, Sun J, Ma Y. Comprehensive Improvement of Sample Preparation Methodologies Facilitates Dynamic Metabolomics of Aspergillus niger. Biotechnol J 2018; 14:e1800315. [PMID: 30144348 DOI: 10.1002/biot.201800315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/27/2018] [Indexed: 12/23/2022]
Abstract
Metabolomics is an essential discipline in industrial biotechnology. Sample preparation approaches dramatically influence data quality and, ultimately, interpretation and conclusions from metabolomic experiments. However, standardized protocols for highly reproducible metabolic datasets are limited, especially for the fungal cell factory Aspergillus niger. Here, an improved liquid chromatography-tandem mass spectrometry-based pipeline for A. niger metabolomics is developed. It is found that fast filtration with liquid nitrogen is more suitable for cell quenching, causing minimal disruption to cell integrity, and improved intracellular metabolite recovery when compared to cold methanol quenching approaches. Seven solutions are evaluated for intracellular metabolite extraction, and found acetonitrile/water (1:1, v/v) at -20 °C, combined with boiling ethanol extraction protocols, showed unbiased metabolite profiling. This improved methodology is applied to unveil the dynamic metabolite profile of one citrate over-producing A. niger isolate under citrate fermentation. Citrate precursors, especially pyruvate, oxaloacetate, and malate, are maintained at a relatively high intracellular level, which can be necessary for high citrate synthesis flux. Glutamine shows a similar trend compared to citrate production, suggesting glutamine may be involved in intracellular pH homeostasis. Taken together, this study delivers a highly standardized and improved metabolomics methodology and paves the way for systems metabolic engineering in biotechnologically important fungi.
Collapse
Affiliation(s)
- Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jiandong Yu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Timothy C Cairns
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Lihui Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zhidan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Qiongqiong Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|