1
|
Abd-Elgawad MMM. Upgrading Strategies for Managing Nematode Pests on Profitable Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:1558. [PMID: 38891366 PMCID: PMC11174438 DOI: 10.3390/plants13111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Plant-parasitic nematodes (PPNs) reduce the high profitability of many crops and degrade their quantitative and qualitative yields globally. Traditional nematicides and other nematode control methods are being used against PPNs. However, stakeholders are searching for more sustainable and effective alternatives with limited side effects on the environment and mankind to face increased food demand, unfavorable climate change, and using unhealthy nematicides. This review focuses on upgrading the pre-procedures of PPN control as well as novel measures for their effective and durable management strategies on economically important crops. Sound and effective sampling, extraction, identification, and counting methods of PPNs and their related microorganisms, in addition to perfecting designation of nematode-host susceptibility/resistance, form the bases for these strategies. Therefore, their related frontiers should be expanded to synthesize innovative integrated solutions for these strategies. The latter involve supplanting unsafe nematicides with a new generation of safe and reliable chemical nematicidal and bionematicidal alternatives. For better efficacy, nematicidal materials and techniques should be further developed via computer-aided nematicide design. Bioinformatics devices can reinforce the potential of safe and effective biocontrol agents (BCAs) and their active components. They can delineate the interactions of bionematicides with their targeted PPN species and tackle complex diseases. Also, the functional plan of nematicides based on a blueprint of the intended goals should be further explored. Such goals can currently engage succinate dehydrogenase, acetylcholinesterase, and chitin deacetylase. Nonetheless, other biochemical compounds as novel targets for nematicides should be earnestly sought. Commonly used nematicides should be further tested for synergistic or additive function and be optimized via novel sequential, dual-purpose, and co-application of agricultural inputs, especially in integrated pest management schemes. Future directions and research priorities should address this novelty. Meanwhile, emerging bioactivated nematicides that offer reliability and nematode selectivity should be advanced for their favorable large-scale synthesis. Recent technological means should intervene to prevail over nematicide-related limitations. Nanoencapsulation can challenge production costs, effectiveness, and manufacturing defects of some nematicides. Recent progress in studying molecular plant-nematode interaction mechanisms can be further exploited for novel PPN control given related topics such as interfering RNA techniques, RNA-Seq in BCA development, and targeted genome editing. A few recent materials/techniques for control of PPNs in durable agroecosystems via decision support tools and decision support systems are addressed. The capability and effectiveness of nematicide operation harmony should be optimized via employing proper cooperative mechanisms among all partners.
Collapse
Affiliation(s)
- Mahfouz M M Abd-Elgawad
- Plant Pathology Department, Agricultural and Biological Research Institute, National Research Centre, El-Behooth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
2
|
Ueki A, Tonouchi A, Kaku N, Honma S, Ueki K. Clostridium omnivorum sp. nov., isolated from anoxic soil under the treatment of reductive soil disinfestation. Int J Syst Evol Microbiol 2024; 74. [PMID: 38861306 DOI: 10.1099/ijsem.0.006412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
Reductive soil disinfestation (RSD), also known as biological soil disinfestation, is a bioremediation method used to suppress soil-borne plant pathogens by stimulating the activity of indigenous anaerobic bacteria in the soil. An anaerobic bacterial strain (E14T) was isolated from an anoxic soil sample subjected to RSD treatment and then comprehensively characterized. Cells of the strain were Gram-stain-positive, curved to sigmoid, and spore-forming rods. Cells were motile with a polar flagellum. Strain E14T grew in peptone-yeast extract broth, indicating that it utilized proteinous compounds. Strain E14T was also saccharolytic and produced acetate, isobutyrate, butyrate, isovalerate and gases (H2 and CO2) as fermentation products. The strain did not decompose any of examined polysaccharides except for starch. The major cellular fatty acids of strain E14T were iso-C15:0 and iso-C15:0 DMA. The closest relative to strain E14T, based on 16S rRNA gene sequences, was Clostridium thermarum SYSU GA15002T (96.2 %) in the Clostridiaceae. Whole-genome analysis of strain E14T showed that its genome was 4.66 Mb long with a genomic DNA G+C content of 32.5 mol%. The average nucleotide identity (ANIb) between strain E14T and C. thermarum SYSU GA15002T was 69.0 %. The presence of the genes encoding glycolysis and butyrate production via the acetyl-CoA pathway was confirmed through genome analysis. Based on the obtained phylogenetic, genomic and phenotypic data, we propose that strain E14T should be assigned to the genus Clostridium in the family Clostridiaceae as Clostridium omnivorum sp. nov. The type strain is E14T (=NBRC 115133T=DSM 114974T).
Collapse
Affiliation(s)
- Atsuko Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Akio Tonouchi
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Nobuo Kaku
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Sachi Honma
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Katsuji Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| |
Collapse
|
3
|
Zhu W, Lu X, Hong C, Hong L, Ding J, Zhou W, Zhu F, Yao Y. Pathogen resistance in soils associated with bacteriome network reconstruction through reductive soil disinfestation. Appl Microbiol Biotechnol 2023; 107:5829-5842. [PMID: 37450017 DOI: 10.1007/s00253-023-12676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Reductive soil disinfestation (RSD) is an effective bioremediation technique to restructure the soil microbial community and eliminate soilborne phytopathogens. Yet we still lack a comprehensive understanding of the keystone taxa involved and their roles in ecosystem functioning in degraded soils treated by RSD. In this study, the bacteriome network structure in RSD-treated soil and the subsequent cultivation process were explored. As a result, bacterial communities in RSD-treated soil developed more complex topologies and stable co-occurrence patterns. The richness and diversity of keystone taxa were higher in the RSD group (module hub: 0.57%; connector: 23.98%) than in the Control group (module hub: 0.16%; connector: 19.34%). The restoration of keystone taxa in RSD-treated soil was significantly (P < 0.01) correlated with soil pH, total organic carbon, and total nitrogen. Moreover, a strong negative correlation (r = -0.712; P < 0.01) was found between keystone taxa richness and Fusarium abundance. Our results suggest that keystone taxa involved in the RSD network structure are capable of maintaining a flexible generalist mode of metabolism, namely with respect to nitrogen fixation, methylotrophy, and methanotrophy. Furthermore, distinct network modules composed by numerous anti-pathogen agents were formed in RSD-treated soil; i.e., the genera Hydrogenispora, Azotobacter, Sphingomonas, and Clostridium_8 under the soil treatment stage, and the genera Anaerolinea and Pseudarthrobacter under the plant cultivation stage. The study provides novel insights into the association between fungistasis and keystone or sensitive taxa in RSD-treated soil, with significant implications for comprehending the mechanisms of RSD. KEY POINTS: • RSD enhanced bacteriome network stability and restored keystone taxa. • Keystone taxa richness was negatively correlated with Fusarium abundance. • Distinct sensitive OTUs and modules were formed in RSD soil.
Collapse
Affiliation(s)
- Weijing Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaolin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chunlai Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Leidong Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jian Ding
- Zhejiang Agricultural Technical Extension Center, Hangzhou, 310020, China
| | - Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fengxiang Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yanlai Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
4
|
Abd-el-kareem F, Saied NM, Elshahawy IE, Abd-elgawad M. Soil bio-solarization and Trichoderma asperellum suppress black root rot disease and increase strawberry yield.. [DOI: 10.21203/rs.3.rs-3096529/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Trichoderma asperellum applied as pellets, disks, or spore suspension against the causal agents of strawberry-black root rot disease represented by three fungal species was tested. The pellets/disks could significantly reduce the growth area of the pathogenic fungi Rhizoctonia solani, Fusarium solani, and Macrophomina phaseolina in vitro. Solarization via mulching soil with transparent polyethylene sheets could affect these pathogens. It reduced the counts of the fungi buried in cloth bags at 1–10 cm of soil surface by 70, 65, and 65% for R. solani, F. solani, and M. phaseolina, respectively relative to unmulched soil. Yet, the more depths of bags in soil, the less the mulching affects the three pathogens. In two field experiments, the disease incidence and severity were more reduced when T. asperellum pellets/suspension was integrated with bio-solarization (mulching soon after bio-fumigation with Al-Abour Compost®)) than any single treatment. The highest reductions obtained by T. asperellum pellets combined with bio-solarization averaged 75 and 73.8%, respectively. Bio-solarization with Actamyl affected the disease incidence/severity to a lesser extent. All tested treatments significantly boosted yield of strawberry plants. Strawberry yield and activities of the pathogenesis-related proteins peroxidase and chitinase showed favorable responses almost parallel to the extent of reduction in the disease incidence and severity caused by all treatments. The highest yield increase achieved via combining T. asperellum pellets with bio-solarization was 160.8%. Our results support hypothetical biocontrol potential that T. asperellum and bio-solarization together with adequate phytosanitary measures can reliably control strawberry-black root rot disease and enhance strawberry yield.
Collapse
|
5
|
Jung SH, Riu M, Lee S, Kim JS, Jeon JS, Ryu CM. An anaerobic rhizobacterium primes rice immunity. THE NEW PHYTOLOGIST 2023; 238:1755-1761. [PMID: 36823752 DOI: 10.1111/nph.18834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/10/2023] [Indexed: 05/04/2023]
Affiliation(s)
- Sung-Hee Jung
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, 34141, South Korea
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Myoungjoo Riu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Jun-Seob Kim
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Je-Seung Jeon
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Choong-Min Ryu
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, 34141, South Korea
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| |
Collapse
|
6
|
Xu M, Selvaraj GK, Lu H. Environmental sporobiota: Occurrence, dissemination, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161809. [PMID: 36702282 DOI: 10.1016/j.scitotenv.2023.161809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Spore-forming bacteria known as sporobiota are widespread in diverse environments from terrestrial and aquatic habitats to industrial and healthcare systems. Studies on sporobiota have been mainly focused on food processing and clinical fields, while a large amount of sporobiota exist in natural environments. Due to their persistence and capabilities of transmitting virulence factors and antibiotic resistant genes, environmental sporobiota could pose significant health risks to humans. These risks could increase as global warming and environmental pollution has altered the life cycle of sporobiota. This review summarizes the current knowledge of environmental sporobiota, including their occurrence, characteristics, and functions. An interaction network among clinical-, food-related, and environment-related sporobiota is constructed. Recent and effective methods for detecting and disinfecting environmental sporobiota are also discussed. Key problems and future research needs for better understanding and reducing the risks of environmental sporobiota and sporobiome are proposed.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ganesh-Kumar Selvaraj
- Department of Microbiology, St. Peter's Institute of Higher Education and Research, Chennai 600054, Tamil Nadu, India.
| | - Huijie Lu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety, Zhejiang, China.
| |
Collapse
|
7
|
Ueki A, Tonouchi A, Kaku N, Ueki K. Anaeromicropila herbilytica gen. nov., sp. nov., a plant polysaccharide-decomposing anaerobic bacterium isolated from anoxic soil subjected to reductive soil disinfestation, and reclassification of Clostridium populeti as Anaeromicropila populeti comb. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 36748612 DOI: 10.1099/ijsem.0.005695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An obligately anaerobic bacterial strain (TB5T) was isolated from a soil sample subjected to reductive or biological soil disinfestation. Cells of the strain were Gram-stain-positive, spore-forming and motile rods. The strain grew at 15–40 °C (optimum, 37 °C) and pH 5.4–7.5 (optimum, pH 7.3). Strain TB5Tutilized a wide variety of carbohydrates including polysaccharides (cellulose, xylan, starch, inulin, glucomannan and laminarin) and organic acids. Acetate, ethanol, H2 and CO2 were products from the substrates utilized. The major components of the cellular fatty acids were C16 : 1
ω7c DMA, C16 : 0 DMA and C18 : 1
ω7c DMA. The diagnostic amino acid of the cell-wall peptidoglycan was meso-diaminopimelic acid. The closest related species to strain TB5T based on 16S rRNA gene sequences was
Clostridium populeti
743AT (95.4 % sequence similarity). The genome size of strain TB5T was 5.09 Mb and the genomic DNA G+C content was 32.7 mol%. Strain TB5T had genes encoding polysaccharide-decomposing enzymes such as cellulase, xylanase, β-glucosidase and β-mannosidase in the genome. Based on the phylogenetic, genomic and phenotypic data, a novel species of a novel genus in the family
Lachnospiraceae
, Anaeromicropila herbilytica gen. nov., sp. nov., is proposed to accommodate the strain. The type species is Anaeromicropila herbilytica with strain TB5T (=NBRC 112093T=DSM 110037T) as the type strain. For the closest related species
C. populeti
, Anaeromicropila populeti comb. nov. is proposed with an emended description of the species.
Collapse
Affiliation(s)
- Atsuko Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Akio Tonouchi
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Nobuo Kaku
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Katsuji Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| |
Collapse
|
8
|
Yan Y, Xie Y, Zhang J, Li R, Ali A, Cai Z, Huang X, Liu L. Effects of Reductive Soil Disinfestation Combined with Liquid-Readily Decomposable Compounds and Solid Plant Residues on the Bacterial Community and Functional Composition. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02139-w. [PMID: 36374338 DOI: 10.1007/s00248-022-02139-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Reductive soil disinfestation (RSD) incorporated with sole plant residues or liquid-readily decomposable compounds is an effective management strategy to improve soil health. However, the synthetic effects of RSD incorporated with liquid-readily decomposable compounds and solid plant residues on soil ecosystem services remain unclear. Field experiments were carried out to investigate the effects of untreated soil (CK), RSD incorporated with sawdust (SA), molasses (MO), and their combinations (SA + MO) on the bacterial community and functional composition. The results showed that RSD treatments significantly altered soil bacterial community structure compared to CK treatment. The bacterial community structure and composition in MO and SA + MO treatments were clustered compared to SA treatment. This was mainly attributed to the readily decomposable carbon sources in molasses having a stronger driving force to reshape the soil microbial community during the RSD process. Furthermore, the functional compositions, such as the disinfestation efficiency of F. oxysporum (96.4 - 99.1%), abundances of nitrogen functional genes, soil metabolic activity, and functional diversity, were significantly increased in all of the RSD treatments. The highest disinfestation efficiency and abundances of denitrification (nirS and nrfA) and nitrogen fixation (nifH) genes were observed in SA + MO treatment. Specifically, SA + MO treatment enriched more abundant beneficial genera, e.g., Oxobacter, Paenibacillus, Cohnella, Rummeliibacillus, and Streptomyces, which were significantly and positively linked to disinfestation efficiency, soil metabolic activity, and denitrification processes. Our results indicated that combining RSD practices with liquid-readily decomposable compounds and solid plant residues could effectively improve soil microbial community and functional composition.
Collapse
Affiliation(s)
- Yuanyuan Yan
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Yi Xie
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Jingqing Zhang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Ruimin Li
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Ahmad Ali
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing Normal University, Nanjing, 210023, China
| | - Xinqi Huang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing Normal University, Nanjing, 210023, China
| | - Liangliang Liu
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China.
- School of Geography, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
9
|
Microbiota Modulation in Blueberry Rhizosphere by Biocontrol Bacteria. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microbial interactions in agricultural soils can play important roles in the control of soil-borne phytopathogenic diseases. Yields from blueberry plantations from southern Spain have been impacted by the pathogenic fungus, Macrophomina phaseolina. The use of chemical fungicides has been the common method for preventing fungal infections, but due to their high environmental impact, legislation is increasingly restricting its use. Biocontrol alternatives based on the use of microorganisms is becoming increasingly important. Using the metabarcoding technique, fungi and bacteria were characterized (via 16S and ITS regions, respectively) from rhizosphere soils of healthy and dead blueberry plants infected by M. phaseolina, and which had undergone three different treatments: two biocontrol strategies—one of them a mix of Pseudomonas aeruginosa and Bacillus velezensis and the other one with Bacillus amyloliquefaciens—and a third treatment consisting of the application of a nutrient solution. The treatments produced changes in the bacterial microbiota and, to a lesser extent, in the fungi. The abundance of Fusarium was correlated with dead plants, likely favoring the infection by M. phaseolina. The presence of other microorganisms in the soil, such as the fungi Archaeorhizomyces or the bacteria Actinospica, were correlated with healthy plants and could promote their survival. The different genera detected between dead and healthy plants opens the possibility of studying new targets that can act against infection and identify potential microorganisms that can be used in biocontrol strategies.
Collapse
|
10
|
Hammam MMA, Abd-El-Khair H, El-Nagdi WMA, Abd-Elgawad MMM. Can Agricultural Practices in Strawberry Fields Induce Plant-Nematode Interaction towards Meloidogyne-Suppressive Soils? Life (Basel) 2022; 12:life12101572. [PMID: 36295007 PMCID: PMC9605673 DOI: 10.3390/life12101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 02/17/2023] Open
Abstract
The importance of benign approaches to manage the root-knot nematodes (RKNs, Meloidogyne spp.) in strawberry farms has become more evident with increasing strawberry production and export in Egypt. Therefore, data accumulated on biosolarization and soil amendments to favor beneficial microorganisms and maximize their impact on RKN management are built on a robust historical research foundation and should be exploited. We examined RKN population levels/parameters in three strawberry export governorates, six farms per governorate, to characterize the exact production practices that are responsible for RKN-suppressive soils. All selected farms enjoyed soil biodisinfestation resulting from incorporating organic amendments followed by a plastic cover to suppress soil pathogens. Various safe and inexpensive agricultural practices in the El-Ismailia and El-Beheira governorates were compared to the toxic and expensive fumigants that could eliminate RKNs in the Al-Qalyubia governorate. Two farms at El-Ismailia were of special interest as they ultimately showed almost zero counts of RKNs. The two farms were characterized by incorporating cow manure [containing 0.65% total nitrogen, 21.2 carbon to nitrogen (C/N) ratio] and poultry manure (0.72% total nitrogen, 20.1 C/N ratio) followed by soil solarization via transparent, 80-µm thick plastic covers for 60−65 summer days as pre-strawberry cultivation practices, and similar covers were used after transplanting. Typically, the longer the pre-plant soil solarization period with thicker transparent plastic covers, the better it could suppress the RKN population densities in the tested farms. Their soils were characterized by relatively high pH and low electrical conductivity. The significant development in biocontrol genera/species abundance and frequency could explain the lower (p < 0.0001) RKN population levels inhabiting the farms of El-Ismailia than the El-Beheira governorate. These factors could provide the first approximation of key practices and factors that could collectively contribute to distinguishing and exploiting soil suppressiveness against RKNs. We discussed edaphic properties and production practices that could modulate populations of natural RKN antagonists for sustainable strawberry cultivation.
Collapse
|
11
|
Chen S, Hirano T, Hayashi Y, Tamura H. Biological soil disinfestation compatible with renewable energy production for sustainable agriculture. JOURNAL OF PESTICIDE SCIENCE 2022; 47:111-117. [PMID: 36479453 PMCID: PMC9706286 DOI: 10.1584/jpestics.d22-010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 06/17/2023]
Abstract
Biological soil disinfestation (BSD) is biotechnology to control soil-borne plant pathogens based on the anaerobic-reducing environment in soil and the functions of indigenous microbes. A new sustainable agricultural technology, the GET system, which produces and recovers methane as renewable energy from paddy fields, has a structure and principles similar to those of BSD technology. To confirm the potential of the GET system as BSD technology, the microbial community structures in the GET system were analyzed using next-generation sequencing. Thirty-four phyla were detected: 31 bacterial and 3 archaeal. Firmicutes dominated during the experimental period, which plays an important role in BSD functions such as organic decomposition, nitrate removal, and soil-borne pathogen elimination. The ability of the GET system to control soil-borne pathogens as well as produce renewable energy was demonstrated.
Collapse
Affiliation(s)
- Shaohua Chen
- Graduate School of Agriculture, Meijo University
| | | | | | | |
Collapse
|
12
|
Gao K, Qin Y, Wang L, Li X, Liu S, Xing R, Yu H, Chen X, Li P. Design, Synthesis, and Antifungal Activities of Hymexazol Glycosides Based on a Biomimetic Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9520-9535. [PMID: 35877994 DOI: 10.1021/acs.jafc.2c02507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hymexazol (HYM) is irreplaceable for treating soil-borne diseases due to its high efficiency and low cost, as a broad-spectrum fungicide. However, when HYM is absorbed by plants, it is rapidly converted into two glycoside metabolites, and the antifungal activities of these glycosides are inferior to that of HYM. Therefore, in this study, to maintain strong antifungal activity in vitro and in vivo, HYM was glycosylated with amino sugars that have diverse biological activities to simulate plant glycosylation. The antifungal experiment proved that glycoside 15 has the highest antifungal activity, and N-acetyl glucosamine and HYM had obvious synergistic effects. According to the structure-activity relationship studies, glycoside 15 had greater numbers of active electron-rich regions and front-line orbital electrons due to the introduction of N-acetyl glucosamine. Moreover, glycoside 15 can significantly promote plant growth and induce an increase in plant defense enzyme activity. Additionally, compared to HYM, the results of electron microscopy and proteomics revealed that glycoside 15 has a unique antifungal mechanism. The promising antifungal activity and interactions with plants mean that glycoside 15 is a potential green fungicide candidate. Furthermore, this research conducted an interesting exploration of the agricultural applications of amino sugars.
Collapse
Affiliation(s)
- Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Linsong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - HuaHua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Xiaolin Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
13
|
Insights into Pyrroloquinoline Quinone (PQQ) Effects on Soil Nutrients and Pathogens from Pepper Monocropping Soil under Anaerobic and Aerobic Conditions. Microbiol Spectr 2022; 10:e0093322. [PMID: 35852313 PMCID: PMC9430733 DOI: 10.1128/spectrum.00933-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Imbalances of soil available nutrients and soilborne diseases have seriously restricted the productivity of crops and jeopardized food security worldwide. Pyrroloquinoline quinone (PQQ), a redox cofactor in some bacteria involved in glucose metabolism and phosphorus mineralization, could be anticipated to alter soil ecosystems to a certain extent. However, there is limited information on PQQ defending soilborne pathogens and regulating soil main nutrients. Here, a pot experiment based on mono-cropping soils of pepper was conducted to examine the effects of PQQ amendment on reconstructing soil microbial communities and soil nutrients under aerobic/anaerobic conditions comprising three treatments, namely, control, PQQ (aerobic), and FL-PQQ (anaerobic). The results revealed that soil microbial community composition and soil nutrients were distinctly altered by PQQ regimes. Compared to control, PQQ treatment significantly increased the content of soil available phosphorus (AP), while FL_PQQ treatment strongly improved the content of soil available nitrogen (AN). In terms of pathogens, relative to control, both PQQ treatments suppressed the abundances of pathogens, of which FL_PQQ treatment significantly decreased the abundance of the pathotrophic fungal by 64% and the abundance of Fusarium oxysporum by 57%, largely attributed to the increase of organic acid generators (Oxobacter, Hydrogenispora) and potential antagonists (Bacillus, Talaromyces). Structural equation modeling (SEM) showed that PQQ regimes suppressed pathogens by indirectly regulating soil physicochemical properties and microbial communities. Overall, we proposed that PQQ application both in aerobic/anaerobic conditions could improve soil available nutrients and suppress soil pathogens in pepper monocropping soils. IMPORTANCE The attention to PQQ (pyrroloquinoline quinone) effect on soil nutrients and pathogens was less paid in monocropping soils. However, the underlying microbial interacting mechanism remains unclear. Adopting a novel external bio-additive, the effects of PQQ on soil main nutrients and the pathotrophic fungal under aerobic and anaerobic regimes will be investigated, which would help to improve soil quality health. Our main conclusion was that PQQ would help to remediate monocropping obstacle soils in terms of soil nutrients and soil pathogens by associating with the microbial community, and anaerobic PQQ application more favored amelioration of continuous obstacle soils. These results will benefit the health and sustainable development of pepper production as well as other greenhouse vegetable production.
Collapse
|
14
|
Gullino ML, Garibaldi A, Gamliel A, Katan J. Soil Disinfestation: From Soil Treatment to Soil and Plant Health. PLANT DISEASE 2022; 106:1541-1554. [PMID: 34978872 DOI: 10.1094/pdis-09-21-2023-fe] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This feature article tracks 100 years of soil disinfestation, from the goal of eradicating soilborne pathogens and pests to much milder approaches, aimed at establishing a healthier soil, by favoring or enhancing the beneficial soil microflora and introducing biological control agents. Restrictions on the use of many chemical fumigants is favoring the adoption of nonchemical strategies, from soilless cultivation to the use of physical or biological control measures, with more focus on maintaining soil microbial diversity, thus enhancing soil and plant health. Such approaches are described and discussed, with special focus on their integrated use.
Collapse
Affiliation(s)
- M Lodovica Gullino
- AgroInnova, Center of Competence for Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, Grugliasco 10095, Italy
| | - Angelo Garibaldi
- AgroInnova, Center of Competence for Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, Grugliasco 10095, Italy
| | - Abraham Gamliel
- Institute of Agricultural Engineering, Agricultural Research Organization, Agricultural Research Organization, Volcani Institute, HaMaccabim Rd 68, Rishon LeZion 7528809, Israel
| | - Jaacov Katan
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| |
Collapse
|
15
|
Koner S, Chen JS, Hsu BM, Rathod J, Huang SW, Chien HY, Hussain B, Chan MWY. Depth-resolved microbial diversity and functional profiles of trichloroethylene-contaminated soils for Biolog EcoPlate-based biostimulation strategy. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127266. [PMID: 34600373 DOI: 10.1016/j.jhazmat.2021.127266] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
This study explores the toxic effect of TCE at different depths of sub-surface soil and underpins microbial community-level suitable carbon (C)-sources that provided directionality to the in situ biostimulation effort via augmentation strategy for effective TCE remediation in soil. The impacts on resident microbial communities and their functional profiles that govern the TCE biodegradation process were identified. Highly contaminated PW01 soil (9 m depth) had severely limited microbial diversity and was enriched in Proteobacteria and Firmicutes. The abundance of TCE degradation-associated genera was observed in all contaminated samples, and the abundance of TCE-degradation-related taxa were positively correlated with soil TCE contamination levels. Community-level metabolic activity associated with the utilization of diverse external C-sources was directly influenced by TCE concentration and soil depth. Multivariate data analysis revealed that the functional genus, TCE concentration, and selected available C substrate uptake capacity correlated in soil samples. Pearson's correlation tests revealed that C sources such as L-arginine, phenylethylamine and γ-hydroxybutyric acid utilization trait exhibited significant positive correlations with chloroalkane and chloroalkene degradation pathway abundance. Ultimately, depth and TCE contamination level-associated soil microbiota and their most preferred C-source understanding could add to facilitate effective biostimulation via external nutrient amendment for efficient in situ TCE degradation.
Collapse
Affiliation(s)
- Suprokash Koner
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan.
| | - Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Wei Huang
- Center for environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan; Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung, Taiwan
| | - Hua-Yi Chien
- Environmental Technology Development Department, Taiwan VCM Corporation, Kaohsiung, Taiwan; Department of Environmental Sciences and Engineering, Fooyin University, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
16
|
Wakamatsu T, Mizobuchi S, Mori F, Futagami T, Terada T, Morono Y. Construction of Aerobic/Anaerobic-Substrate-Induced Gene Expression Procedure for Exploration of Metagenomes From Subseafloor Sediments. Front Microbiol 2022; 12:726024. [PMID: 35095779 PMCID: PMC8793675 DOI: 10.3389/fmicb.2021.726024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Substrate-induced gene expression (SIGEX) is a high-throughput promoter-trap method. It is a function-based metagenomic screening tool that relies on transcriptional activation of a reporter gene green fluorescence protein (gfp) by a metagenomic DNA library upon induction with a substrate. However, its use is limited because of the relatively small size of metagenomic DNA libraries and incompatibility with screening metagenomes from anaerobic environments. In this study, these limitations of SIGEX were addressed by fine-tuning metagenome DNA library construction protocol and by using Evoglow, a green fluorescent protein that forms a chromophore even under anaerobic conditions. Two metagenomic libraries were constructed for subseafloor sediments offshore Shimokita Peninsula (Pacific Ocean) and offshore Joetsu (Japan Sea). The library construction protocol was improved by (a) eliminating short DNA fragments, (b) applying topoisomerase-based high-efficiency ligation, (c) optimizing insert DNA concentration, and (d) column-based DNA enrichment. This led to a successful construction of metagenome DNA libraries of approximately 6 Gbp for both samples. SIGEX screening using five aromatic compounds (benzoate, 3-chlorobenzoate, 3-hydroxybenzoate, phenol, and 2,4-dichlorophenol) under aerobic and anaerobic conditions revealed significant differences in the inducible clone ratios under these conditions. 3-Chlorobenzoate and 2,4-dichlorophenol led to a higher induction ratio than that for the other non-chlorinated aromatic compounds under both aerobic and anaerobic conditions. After the further screening of induced clones, a clone induced by 3-chlorobenzoate only under anaerobic conditions was isolated and characterized. The clone harbors a DNA insert that encodes putative open reading frames of unknown function. Previous aerobic SIGEX attempts succeeded in the isolation of gene fragments from anaerobes. This study demonstrated that some gene fragments require a strict in vivo reducing environment to function and may be potentially missed when screened by aerobic induction. The newly developed anaerobic SIGEX scheme will facilitate functional exploration of metagenomes from the anaerobic biosphere.
Collapse
Affiliation(s)
- Taisuke Wakamatsu
- Agricultural Sciences, Graduate School of Integrated Arts and Sciences, Kochi University, Kōchi, Japan
| | - Saki Mizobuchi
- Agricultural Sciences, Graduate School of Integrated Arts and Sciences, Kochi University, Kōchi, Japan
| | - Fumiaki Mori
- Geomicrobiology Group, Kochi Institute for Core Smaple Research, Japan Agency for Marine-Earth Science and Technology, Kōchi, Japan
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | | | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Smaple Research, Japan Agency for Marine-Earth Science and Technology, Kōchi, Japan
- *Correspondence: Yuki Morono,
| |
Collapse
|
17
|
Patidar P, Prakash T. Decoding the roles of extremophilic microbes in the anaerobic environments: Past, Present, and Future. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100146. [PMID: 35909618 PMCID: PMC9325894 DOI: 10.1016/j.crmicr.2022.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
The inaccessible extreme environments harbor a large majority of anaerobic microbes which remain unknown. Anaerobic microbes are used in a variety of industrial applications. In the future, metagenomic-assisted techniques can be used to identify novel anaerobic microbes from the unexplored extreme environments. Genetic engineering can be used to enhance the efficiency of anaerobic microbes for various processes.
The genome of an organism is directly or indirectly correlated with its environment. Consequently, different microbes have evolved to survive and sustain themselves in a variety of environments, including unusual anaerobic environments. It is believed that their genetic material could have played an important role in the early evolution of their existence in the past. Presently, out of the uncountable number of microbes found in different ecosystems we have been able to discover only one percent of the total communities. A large majority of the microbial populations exists in the most unusual and extreme environments. For instance, many anaerobic bacteria are found in the gastrointestinal tract of humans, soil, and hydrothermal vents. The recent advancements in Metagenomics and Next Generation Sequencing technologies have improved the understanding of their roles in these environments. Presently, anaerobic bacteria are used in various industries associated with biofuels, fermentation, production of enzymes, vaccines, vitamins, and dairy products. This broad applicability brings focus to the significant contribution of their genomes in these functions. Although the anaerobic microbes have become an irreplaceable component of our lives, a major and important section of such anaerobic microbes still remain unexplored. Therefore, it can be said that unlocking the role of the microbial genomes of the anaerobes can be a noteworthy discovery not just for mankind but for the entire biosystem as well.
Collapse
Affiliation(s)
- Pratyusha Patidar
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, HP, India
| | - Tulika Prakash
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, HP, India
- Corresponding author.
| |
Collapse
|
18
|
Stavridou E, Giannakis I, Karamichali I, Kamou NN, Lagiotis G, Madesis P, Emmanouil C, Kungolos A, Nianiou-Obeidat I, Lagopodi AL. Biosolid-Amended Soil Enhances Defense Responses in Tomato Based on Metagenomic Profile and Expression of Pathogenesis-Related Genes. PLANTS (BASEL, SWITZERLAND) 2021; 10:2789. [PMID: 34961260 PMCID: PMC8709368 DOI: 10.3390/plants10122789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 05/28/2023]
Abstract
Biosolid application is an effective strategy, alternative to synthetic chemicals, for enhancing plant growth and performance and improving soil properties. In previous research, biosolid application has shown promising results with respect to tomato resistance against Fusarium oxysporum f. sp. radicis-lycopersici (Forl). Herein, we aimed at elucidating the effect of biosolid application on the plant-microbiome response mechanisms for tomato resistance against Forl at a molecular level. More specifically, plant-microbiome interactions in the presence of biosolid application and the biocontrol mechanism against Forl in tomato were investigated. We examined whether biosolids application in vitro could act as an inhibitor of growth and sporulation of Forl. The effect of biosolid application on the biocontrol of Forl was investigated based on the enhanced plant resistance, measured as expression of pathogen-response genes, and pathogen suppression in the context of soil microbiome diversity, abundance, and predicted functions. The expression of the pathogen-response genes was variably induced in tomato plants in different time points between 12 and 72 h post inoculation in the biosolid-enriched treatments, in the presence or absence of pathogens, indicating activation of defense responses in the plant. This further suggests that biosolid application resulted in a successful priming of tomato plants inducing resistance mechanisms against Forl. Our results have also demonstrated that biosolid application alters microbial diversity and the predicted soil functioning, along with the relative abundance of specific phyla and classes, as a proxy for disease suppression. Overall, the use of biosolid as a sustainable soil amendment had positive effects not only on plant health and protection, but also on growth of non-pathogenic antagonistic microorganisms against Forl in the tomato rhizosphere and thus, on plant-soil microbiome interactions, toward biocontrol of Forl.
Collapse
Affiliation(s)
- Evangelia Stavridou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (E.S.); (I.K.); (G.L.); (P.M.)
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Giannakis
- School of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.G.); (A.K.)
| | - Ioanna Karamichali
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (E.S.); (I.K.); (G.L.); (P.M.)
| | - Nathalie N. Kamou
- Laboratory of Plant Pathology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George Lagiotis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (E.S.); (I.K.); (G.L.); (P.M.)
| | - Panagiotis Madesis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (E.S.); (I.K.); (G.L.); (P.M.)
- Laboratory of Molecular Biology of Plants, School of Agricultural Sciences, University of Thessaly, 38221 Volos, Greece
| | - Christina Emmanouil
- School of Spatial Planning and Development, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Kungolos
- School of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.G.); (A.K.)
| | - Irini Nianiou-Obeidat
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia L. Lagopodi
- Laboratory of Plant Pathology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
19
|
Zhan Y, Yan N, Miao X, Li Q, Chen C. Different Responses of Soil Environmental Factors, Soil Bacterial Community, and Root Performance to Reductive Soil Disinfestation and Soil Fumigant Chloropicrin. Front Microbiol 2021; 12:796191. [PMID: 34975820 PMCID: PMC8714892 DOI: 10.3389/fmicb.2021.796191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Reductive soil disinfestation (RSD) and soil fumigant chloropicrin (SFC) are two common agricultural strategies for the elimination of soil-borne pathogens. However, the differences in soil environmental factors, soil bacterial microbiome, and root performance between SFC and RSD are poorly understood. In this study, three soil treatments, untreated control (CK), SFC with 0.5 t⋅ha–1 chloropicrin, and RSD with 15 t⋅ha–1 animal feces, were compared. We evaluated their effects on soil environmental factors, bacterial community structure, and root activity using chemical analysis and high-throughput sequencing. RSD treatment improved soil composition structure, bacterial diversity, and root performance to a greater extent. Carbon source utilization preference and bacterial community structure were strikingly altered by SFC and RSD practices. Bacterial richness, diversity, and evenness were notably lowered in the SFC- and RSD-treated soil compared with the CK-treated soil. However, RSD-treated soil harbored distinct unique and core microbiomes that were composed of more abundant and diverse potentially disease-suppressive and organic-decomposable agents. Also, soil bacterial diversity and composition were closely related to soil physicochemical properties and enzyme activity, of which pH, available Na (ANa), available Mg (AMg), available Mn (AMn), total Na (TNa), total Ca (TCa), total Cu (TCu), total Sr (TSr), urease (S-UE), acid phosphatase (S-ACP), and sucrase (S-SC) were the main drivers. Moreover, RSD treatment also significantly increased ginseng root activity. Collectively, these results suggest that RSD practices could considerably restore soil nutrient structure and bacterial diversity and improve root performance, which can be applied as a potential agricultural practice for the development of disease-suppressive soil.
Collapse
|
20
|
Ueki A, Tonouchi A, Kaku N, Ueki K. Anaerocolumna chitinilytica sp. nov., a chitin-decomposing anaerobic bacterium isolated from anoxic soil subjected to biological soil disinfestation. Int J Syst Evol Microbiol 2021; 71. [PMID: 34515629 DOI: 10.1099/ijsem.0.004999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An obligately anaerobic bacterial strain (CTTWT) belonging to the family Lachnospiraceae within the class Clostridia was isolated from an anoxic soil sample subjected to biological or reductive soil disinfestation. Cells of the strain were Gram-stain-positive, short rods with peritrichous flagella. The strain was saccharolytic and decomposed polysaccharides, chitin, xylan and β-1,3-glucan. Strain CTTWT decomposed cell biomass and cell-wall preparations of an ascomycete plant pathogen, Fusarium oxysporum f. sp. spinaciae. The strain produced acetate, ethanol, H2 and CO2 as fermentation products from the utilized substrates. The major cellular fatty acids of the strain were C16 : 1 ω7c dimethylacetal (DMA), C16 : 0 DMA and C18 : 1 ω7c DMA. The closely related species of strain CTTWT based on the 16S rRNA gene sequences were species in the genus Anaerocolumna with sequence similarities of 95.2-97.6 %. Results of genome analyses of strain CTTWT indicated that the genome size of the strain was 5.62 Mb and the genomic DNA G+C content was 38.3 mol%. Six 16S rRNA genes with five different sequences from each other were found in the genome. Strain CTTWT had genes encoding chitinase, xylanase, cellulase, β-glucosidase and nitrogenase as characteristic genes in the genome. Homologous genes encoding these proteins were found in the genomes of the related Anaerocolumna species, but the genomic and phenotypic properties of strain CTTWT were distinct from them. Based on the phylogenetic, genomic and phenotypic analyses, the name Anaerocolumna chitinilytica sp. nov., in the family Lachnospiraceae is proposed for strain CTTWT (=NBRC 112102T=DSM 110036T).
Collapse
Affiliation(s)
- Atsuko Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Akio Tonouchi
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Nobuo Kaku
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Katsuji Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| |
Collapse
|
21
|
Saadouli I, Mosbah A, Ferjani R, Stathopoulou P, Galiatsatos I, Asimakis E, Marasco R, Daffonchio D, Tsiamis G, Ouzari HI. The Impact of the Inoculation of Phosphate-Solubilizing Bacteria Pantoea agglomerans on Phosphorus Availability and Bacterial Community Dynamics of a Semi-Arid Soil. Microorganisms 2021; 9:1661. [PMID: 34442740 PMCID: PMC8400695 DOI: 10.3390/microorganisms9081661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/29/2022] Open
Abstract
The bacterial genus Pantoea has been widely evaluated as promising bacteria to increase phosphorus (P) availability in soil. The aim of this study was to characterize the phosphate solubilizing (PS) activity of a Pantoea agglomerans strain and to evaluate the impact of its application in a semi-arid soil on phosphate availability and structure of the bacterial communities as a whole. An incubation experiment under close-to-natural soil environmental conditions was conducted for 15 days at 30 °C. High-throughput sequencing of the bacterial 16S rRNA gene was used to characterize and to compare the bacterial community structure of P. agglomerans-inoculated soil with non-inoculated control. Furthermore, a qPCR-based method was developed for detection and quantification of the functional genes related to the expression of mineral phosphate solubilization (MPS) phenotype in P. agglomerans. The results showed that in vitro solubilization of Ca3(PO4)2 by P. agglomerans strain was very efficient (980 mg/L), and it was associated with a drop in pH due to the secretion of gluconic acid; these changes were concomitant with the detection of gdh and pqqC genes. Moreover, P. agglomerans inoculum application significantly increased the content of available P in semi-arid soil by 69%. Metagenomic analyses showed that P. agglomerans treatment modified the overall edaphic bacterial community, significantly impacting its structure and composition. In particular, during P. agglomerans inoculation the relative abundance of bacteria belonging to Firmicutes (mainly Bacilli class) significantly increased, whereas the abundance of Actinobacteria together with Acidobacteria and Chloroflexi phyla decreased. Furthermore, genera known for their phosphate solubilizing activity, such as Aneurinibacillus, Lysinibacillus, Enterococcus, and Pontibacter, were exclusively detected in P. agglomerans-treated soil. Pearson's correlation analysis revealed that changes in soil bacterial community composition were closely affected by soil characteristics, such as pH and available P. This study explores the effect of the inoculation of P. agglomerans on the bacterial community structure of a semi-arid soil. The effectiveness in improving the phosphate availability and modification in soil bacterial community suggested that P. agglomerans represent a promising environmental-friendly biofertilizer in arid and semi-arid ecosystems.
Collapse
Affiliation(s)
- Ilhem Saadouli
- Laboratoire de Microorganismes et Biomolécules Actives (LR03ES03), Facultédes Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia; (I.S.); (R.F.)
| | - Amor Mosbah
- Higher Institute for Biotechnology (ISBST), LR Biotechnology and Bio-Geo Resources Valorization, University of Manouba, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia;
| | - Raoudha Ferjani
- Laboratoire de Microorganismes et Biomolécules Actives (LR03ES03), Facultédes Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia; (I.S.); (R.F.)
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (P.S.); (I.G.); (E.A.)
| | - Ioannis Galiatsatos
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (P.S.); (I.G.); (E.A.)
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (P.S.); (I.G.); (E.A.)
| | - Ramona Marasco
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (R.M.); (D.D.)
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (R.M.); (D.D.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (P.S.); (I.G.); (E.A.)
| | - Hadda-Imene Ouzari
- Laboratoire de Microorganismes et Biomolécules Actives (LR03ES03), Facultédes Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia; (I.S.); (R.F.)
| |
Collapse
|
22
|
Li X, Li X, Li Y, Dai X, Zhang Q, Zhang M, Zhang Z, Tao Y, Chen W, Zhang M, Zhou X, Yang S, Ma Y, Zhran M, Zou X. Improved immobilization of soil cadmium by regulating soil characteristics and microbial community through reductive soil disinfestation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146222. [PMID: 33714838 DOI: 10.1016/j.scitotenv.2021.146222] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) contamination arising from industrialization has attracted increasing attention in recent years. Reductive soil disinfestation (RSD) as an effective agricultural practice has been widely applied for soil sterilization. However, there is little research regarding RSD affecting Cd immobilization. Here, five treatments, namely untreated soil (CK), flooding-treated soil (FL), RSD with 2% ethyl alcohol (EA), 2% sugarcane bagasse (SB), and 2% bean dregs (BD) were designed to detect their performance for Cd immobilization in contaminated soils, and the change of soil properties and microbial communities were monitored. The results revealed that pH significantly increased in FL and RSD-treated soils, but was negatively correlated with the exchangeable fraction of Cd (EX-Cd), while Oxidation-Reduction Potential (Eh) significantly decreased in FL and RSD-treated soils, and was positively correlated with EX-Cd. BD treatment might contribute to the increase of CaCO3 as shown by X-Ray Diffractomer analysis and strongly decreased the EX-Cd in the soil, but increased the relative abundances of Firmicutes, Planctomycetes, Acidobacteria, and Gemmatimonadetes, which may promote Fe (III) reduction or induce resistance to Cd. Bacterial communities at the phylum and genus levels were closely related to Cd fraction. The FL and RSD treatments moderately altered bacterial specific functions, including iron respiration, which may contribute to remediation of Cd-polluted soil by Fe (III) reduction. Field experiments were conducted to confirm that BD treatment resulted in a significant increase in pH whereas the content of total available Cd was reduced in soils. Compared to the control, concentration of total available Cd of red amaranth, sweet potato, towel gourd, and cowpeas were reduced by approximately 46%, 74%, 72%, and 76% in a BD-treated field, respectively. Our study highlights the potential of RSD as an effective method for Cd immobilization in contaminated soils by improving soil characteristics and altering the composition of the microbial community.
Collapse
Affiliation(s)
- Xin Li
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Xuefeng Li
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Yueyue Li
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Xiongze Dai
- Hunan Agricultural University, Changsha 410000, China
| | - Qingzhuang Zhang
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Mi Zhang
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Zhuqing Zhang
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Yu Tao
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Wenchao Chen
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Mingxing Zhang
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Xiangyu Zhou
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Sha Yang
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Yanqing Ma
- Department of Agriculture and Rural Affairs of Hunan Province, Changsha 410000, China
| | - Mostafa Zhran
- Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Abou-Zaabl 13759, Egypt
| | - Xuexiao Zou
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China; Hunan Agricultural University, Changsha 410000, China.
| |
Collapse
|
23
|
Fan Y, Yang X, Lei Z, Adachi Y, Kobayashi M, Zhang Z, Shimizu K. Novel insight into enhanced recoverability of acidic inhibition to anaerobic digestion with nano-bubble water supplementation. BIORESOURCE TECHNOLOGY 2021; 326:124782. [PMID: 33535153 DOI: 10.1016/j.biortech.2021.124782] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Nano-bubble water (NBW) has been proven to be effective in promoting organics utilization and CH4 production during anaerobic digestion (AD) process, suggesting its potential in improving the stability of the AD process and thereby alleviating acidic inhibition. In this work, the effect of NBW on digestion stability and CH4 production was investigated to evaluate the ability of NBW on AD recovery from acidic inhibition. Results showed that NBW supplementation increased the total alkalinity (TA) and partial alkalinity (PA), and reduced the ratio of VFA/TA, thus maintained the stability of the AD process. Generation/consumption of VFAs was also enhanced with NBW supplementation under acidic inhibition with pH values of 5.5, 6.0 and 6.5. The cumulative CH4 production was 246-257 mL/g-VS in NBW groups, which was 12.1-17.2% higher than the control. Moreover, with NBW supplementation, the maximum CH4 production rate was raised according to the modeling results.
Collapse
Affiliation(s)
- Yujie Fan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xiaojing Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yasuhisa Adachi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Motoyoshi Kobayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
24
|
Ueki A, Tonouchi A, Kaku N, Ueki K. Clostridium fungisolvens sp. nov., a new β-1,3-glucan-decomposing bacterium isolated from anoxic soil subjected to biological soil disinfestation. Int J Syst Evol Microbiol 2021; 71. [PMID: 33734959 DOI: 10.1099/ijsem.0.004761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biological soil disinfestation (BSD) or reductive soil disinfestation (RSD) is a bioremediation method used to suppress or eliminate soil-borne plant pathogens by stimulating activities of indigenous anaerobic bacteria of the soil. An anaerobic bacterial strain (TW1T) was isolated from an anoxic soil sample subjected to the BSD treatment and comprehensively characterized. Cells of the strain were Gram-stain-positive, slightly curved and motile rods producing terminal spores. The strain was aerotolerant. Strain TW1T was saccharolytic and produced acetate, butyrate, H2 and CO2 as fermentation end products. Strain TW1T decomposed β-1,3-glucan (curdlan and laminarin) and degraded mycelial cells of an ascomycete Fusarium plant pathogen. Major cellular fatty acids of strain TW1T were C14 : 0, C14 : 0 dimethylacetal (DMA), C16 : 0 aldehyde and C16 : 0 DMA. Strain TW1T made a group on the phylogenetic tree constructed based on 16S rRNA gene sequences with species such as Clostridium fallax (96.3 %) and Clostridium polyendosporum (96.0 %). Whole genome analysis of strain TW1T showed that the total length of the genome was 5.28 Mb with the DNA G+C content of 31.3 mol%. The average nucleotide identity (ANIb) between strain TW1T and C. fallax was 71.2 %. Presence of the genes encoding laminarinase or GH16 β-glucosidase was confirmed from the genome analysis of strain TW1T. Based on the genomic, phylogenetic and phenotypic properties obtained, we propose strain TW1T should be assigned in the genus Clostridium in the family Clostridiaceae as Clostridium fungisolvens sp. nov. The type strain TW1T (=NBRC 112097T=DSM 110791T).
Collapse
Affiliation(s)
- Atsuko Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Akio Tonouchi
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Nobuo Kaku
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Katsuji Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| |
Collapse
|
25
|
Can Anaerobic Soil Disinfestation (ASD) be a Game Changer in Tropical Agriculture? Pathogens 2021; 10:pathogens10020133. [PMID: 33525615 PMCID: PMC7911048 DOI: 10.3390/pathogens10020133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
Anaerobic soil disinfection (ASD) has been identified as an alternative soil-borne pathogen control strategy to chemical fumigation. ASD involves the application of an easily liable carbon source followed by irrigation to field capacity and maintenance of an anaerobic condition for a certain period. A literature search undertaken on ASD found that more than 50 comprehensive research projects have been conducted since its first discovery in 2000. Most of these studies were conducted in the USA and in the Netherlands. Though the exact mechanism of ASD in pathogen control is unknown, promising results have been reported against a wide range of pathogens such as fungi, nematodes, protists, and oomycetes. However, it is interesting to note that, except for a few studies, ASD research in the developing world and in the tropical countries has lagged behind. Nevertheless, with soil quality depletion, reduction in arable lands, and exponential population growth, a drastic change to the current agricultural practices should be adapted since yield gain has reached a plateau for major staple crops. Under such circumstances, we identified the gaps and the potentials of ASD in tropical agricultural systems and proposed promising biodegradable materials.
Collapse
|
26
|
Ma X, Thakar SB, Zhang H, Yu Z, Meng L, Yue J. Bioinformatics Analysis of The Rhizosphere Microbiota of Dangshan Su Pear in Different Soil Types. Curr Bioinform 2020. [DOI: 10.2174/1574893615666200129104523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background:
The rhizosphere microbiota are of vital importance for plant growth and
health in terrestrial ecosystems. There have been extensive studies aiming to identify the microbial
communities as well as their relationship with host plants in different soil types.
Objective:
In the present study, we have employed the high-throughput sequencing technology to
investigate the composition and structure of rhizosphere microbiota prosperous at the root of
Dangshan Su pear growing in sandy soil and clay soil.
Methods:
A high-throughput amplicon sequencing survey of the bacterial 16S rRNA genes and
fungal ITS regions from rhizosphere microbiota was firstly performed. Subsequently, several
common bacterial and fungal communities were found to be essential to Dangshan Su pear by using
a series of bioinformatics and statistics tools. Finally, the soil-preferred microbiota were identified
through variance analysis and further characterized in the genus level.
Result:
Dangshan Su pears host rich and diverse microbial communities in thin layer of soil
adhering to their roots. The composition of dominant microbial phyla is similar across different soil
types, but the quantity of each microbial community varies significantly. Specially, the relative
abundance of Firmicutes increases from 9.69% to 61.66% as the soil ecosystem changes from clay
to sandy, which can be not only conducive to the degradation of complex plant materials, but also
responsible for the disinfestation of pathogens.
Conclusion:
Our results have a symbolic significance for the potential efforts of rhizosphere
microbiota on the soil bioavailability and plant health. Through selecting soil types and altering
microbial structures, the improvement of fruit quality of Dangshan Su pear is expected to be
achieved.
Collapse
Affiliation(s)
- Xiaojing Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | | | - Huimin Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zequan Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li Meng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junyang Yue
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
27
|
Composted Chicken Manure for Anaerobic Soil Disinfestation Increased the Strawberry Yield and Shifted the Soil Microbial Communities. SUSTAINABILITY 2020. [DOI: 10.3390/su12166313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anaerobic soil disinfestation (ASD), as a bio-fumigation technology, has been developed to control soil-borne pests. There is increasing evidence showing that carbon sources and cover tarps play an important role in the ASD suppression of soil-borne pests, but little is known about the effect of composted chicken manure (CCM) and totally impermeable films (TIF) against soil-borne pests in the strawberry production system. In experiments, the colonies of Fusarium spp. and Phytophthora spp., which are recognized to cause strawberry soil-borne diseases, decreased significantly after ASD. The soil promoted a significant increase in ammonium nitrogen, nitrate-nitrogen and organic matter, but a decrease in oxidation-reduction potential after ASD. Besides, the strawberry plant height, stem thickness and yield were significantly higher than in the non-amended soil. Compared to the untreated control, ASD, both at 6 and 12 ton/ha of CCM, significantly (p = 0.05) increased strawberry marketable yield and income. The economic benefit could be due to the suppression of soil-borne diseases and the improvement of soil nutrition. The soil bacterial and fungal diversity and richness increased after soil fumigation. The increased presence of biological control agents led to the suppression of soil-borne pathogens. In summary, ASD with CCM amendments could be applied in pre-plant fumigation to control strawberry soil-borne pests, strengthen soil fertility, improve crop yield and increase growers’ income.
Collapse
|
28
|
Reductive soil disinfestation incorporated with organic residue combination significantly improves soil microbial activity and functional diversity than sole residue incorporation. Appl Microbiol Biotechnol 2020; 104:7573-7588. [PMID: 32656616 DOI: 10.1007/s00253-020-10778-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/28/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022]
Abstract
Reductive soil disinfestation (RSD) is an effective agricultural practice to eliminate soil-borne pathogens that heavily relies on the organic substrate used. However, the influences of combined application of organic residues on disinfestation efficiency, soil microbiomes, and their associated functional characteristics are still not well-characterized. In this work, four treatments, i.e., untreated soil (CK), RSD with 15 t ha-1 sugarcane bagasse (SB), bean dregs (BD), and their combinations (1:1, SB+BD), were conducted to investigate their influence on disinfestation efficiency, microbial functional diversity, community diversity, and composition using Biolog analysis, real-time PCR, and high-throughput sequencing. The SB+BD treatment had synergetic effects on soil microbial activity, metabolic activity, and functional diversity with similar efficacy in pathogen elimination and soil salinization alleviation, as compared to the SB and BD treatments. Moreover, the SB+BD treatment distinctly altered the structure and composition of bacterial and fungal communities, especially enriched the core microbiomes associated with soil general functions such as organic decomposition and nitrate removal. The SB+BD treatment also strengthened the soil specific functions including disease suppression through the regulation of unique microbiomes. In addition, the microbial richness, diversity, and evenness were significantly higher in the SB+BD-treated soil as compared to the SB- and BD-treated soils. Taken together, RSD incorporated with organic residue combination not only efficiently restore the degraded soils, but also considerably improve soil functions, which may benefit to the health for the future plant generations. KEY POINTS: • Organic residue combination effectively declines pathogen density. • Organic residue combination improves soil microbial activity and functional diversity. • The enriched core microbiome is responsible for soil general functions. • The induced unique microbiome is important for soil specific functions.
Collapse
|
29
|
Poret-Peterson AT, Sayed N, Glyzewski N, Forbes H, González-Orta ET, Kluepfel DA. Temporal Responses of Microbial Communities to Anaerobic Soil Disinfestation. MICROBIAL ECOLOGY 2020; 80:191-201. [PMID: 31873773 PMCID: PMC7338823 DOI: 10.1007/s00248-019-01477-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic soil disinfestation (ASD) is an organic amendment-based management tool for controlling soil-borne plant diseases and is increasingly used in a variety of crops. ASD results in a marked decrease in soil redox potential and other physicochemical changes, and a turnover in the composition of the soil microbiome. Mechanisms of ASD-mediated pathogen control are not fully understood, but appear to depend on the carbon source used to initiate the process and involve a combination of biological (i.e., release of volatile organic compounds) and abiotic (i.e., lowered pH, release of metal ions) factors. In this study, we examined how the soil microbiome changes over time in response to ASD initiated with rice bran, tomato pomace, or red grape pomace as amendments using growth chamber mesocosms that replicate ASD-induced field soil redox conditions. Within 2 days, the soil microbiome rapidly shifted from a diverse assemblage of taxa to being dominated by members of the Firmicutes for all ASD treatments, whereas control mesocosms maintained diverse and more evenly distributed communities. Rice bran and tomato pomace amendments resulted in microbial communities with similar compositions and trajectories that were different from red grape pomace communities. Quantitative PCR showed nitrogenase gene abundances were higher in ASD communities and tended to increase over time, suggesting the potential for altering soil nitrogen availability. These results highlight the need for temporal and functional studies to understand how pathogen suppressive microbial communities assemble and function in ASD-treated soils.
Collapse
Affiliation(s)
| | - Nada Sayed
- USDA-ARS Crops Pathology and Genetics Research Unit, University of California, Davis, USA
- University of California Davis Medical Center, Sacramento, CA, USA
| | - Nathaniel Glyzewski
- USDA-ARS Crops Pathology and Genetics Research Unit, University of California, Davis, USA
- Green Leaf Lab, Sacramento, CA, USA
| | - Holly Forbes
- USDA-ARS Crops Pathology and Genetics Research Unit, University of California, Davis, USA
| | - Enid T González-Orta
- Department of Biological Sciences, California State University, Sacramento, CA, USA
| | - Daniel A Kluepfel
- USDA-ARS Crops Pathology and Genetics Research Unit, University of California, Davis, USA
| |
Collapse
|
30
|
Ueki A, Takehara T, Ishioka G, Kaku N, Ueki K. β-1,3-Glucanase production as an anti-fungal enzyme by phylogenetically different strains of the genus Clostridium isolated from anoxic soil that underwent biological disinfestation. Appl Microbiol Biotechnol 2020; 104:5563-5578. [PMID: 32328681 PMCID: PMC7275012 DOI: 10.1007/s00253-020-10626-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 01/10/2023]
Abstract
Biological (or reductive) soil disinfestation (BSD or RSD) is a bioremediation process to control soil-borne plant pathogens using activities of indigenous bacteria in the soil. Three obligate anaerobic bacterial strains (TW1, TW10, and TB10), which were isolated from anoxic soil subjected to BSD treatments, were examined for their abilities to produce anti-fungal enzymes. All strains were affiliated with the different lineages of the genus Clostridium. The three strains decomposed β-1,3-glucans (curdlan and laminarin), and β-1,3-glucanase activities were detected from their culture supernatants with these glucans. The three strains also produced the enzyme with wheat bran as a growth substrate and killed the Fusarium pathogen (Fusarium oxysporum f. sp. spinaciae) in the anaerobic co-incubation conditions. Observation by fluorescence microscopy of the pathogen cells showed that the three strains had degraded the fungal cells in different manners upon co-incubation with wheat bran. When the three strains were cultivated with the dead cells or the cell wall samples prepared from the Fusarium pathogen, strain TW1 utilized these materials as easily decomposable substrates by releasing β-1,3-glucanase. When observed by fluorescence microscopy, it appeared that strain TW1 degraded the mycelial cell wall nearly thoroughly, with the septa remaining as undecomposed luminous rings. In contrast, the other two strains decomposed neither the dead cells nor the cell wall samples directly. The results indicate that the various anaerobic bacteria proliferated in the soil under the BSD treatments should play key roles as an organized bacterial community to eliminate fungal pathogens, namely by release of anti-fungal enzymes with different properties.Key points •Three clostridial strains isolated from BSD-treated soils produced β-1,3-glucanase. •All strains killed the Fusarium pathogen in the anaerobic co-incubation conditions. •One of the strains produced β-1,3-glucanase with the fungal cell wall as a substrate. •The strain degraded the cell wall almost completely, except for the mycelial septa. |
Collapse
Affiliation(s)
- Atsuko Ueki
- Faculty of Agriculture, Yamagata University, 1-23, Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan.
| | - Toshiaki Takehara
- NARO Western Region Agricultural Research Center, Hiroshima, 721-8514, Japan.,NARO Technical Support Center of Central Region, Ibaraki, 305-8517, Japan
| | - Gen Ishioka
- NARO Western Region Agricultural Research Center, Hiroshima, 721-8514, Japan
| | - Nobuo Kaku
- Faculty of Agriculture, Yamagata University, 1-23, Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Katsuji Ueki
- Faculty of Agriculture, Yamagata University, 1-23, Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| |
Collapse
|
31
|
Ueki A, Takehara T, Ishioka G, Kaku N, Ueki K. Production of β-1,3-glucanase and chitosanase from clostridial strains isolated from the soil subjected to biological disinfestation. AMB Express 2019; 9:114. [PMID: 31338622 PMCID: PMC6650511 DOI: 10.1186/s13568-019-0842-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022] Open
Abstract
Biological soil disinfestation (BSD) or anaerobic (reductive) soil disinfestation (ASD/RSD) is a bioremediation method used to eliminate soil-borne plant pathogens by exploiting the activities of anaerobic bacteria in soil. In this study, two obligate anaerobic bacterial strains isolated from BSD-treated soil and identified as Clostridium beijerinckii were examined for their abilities to suppress the spinach wilt disease pathogen (Fusarium oxysporum f. sp. spinaciae) as a representative soil-borne fungal plant pathogen. Both strains degraded β-1,3-glucan and chitosan, two major polysaccharide components of ascomycetes fungal cell wall, supplemented in the medium. β-1,3-Glucanase was detected in the supernatants of cultures supplemented with different types of glucan. Similarly, chitosanase was detected in cultures supplemented with chitosan. Both the enzyme activities were also detected in cultures containing glucose as a substrate. Live cells of F. oxysporum f. sp. spinaciae that were co-incubated with each anaerobic strain under anaerobic conditions using glucose as a substrate died during incubation. Freeze-dried dead fungal biomass of the pathogen, when added to the culture, supported good growth of both anaerobes and production of both enzymes. Severe and nearly complete degradation of both live and dead fungal cells during incubation with anaerobic bacteria was observed by fluorescence microscopy. When individual anaerobic bacterial strain was co-incubated with live pathogenic fungal cells in wheat bran, a popular material for BSD-treatment, both the strains grew well and killed the fungal pathogen promptly by producing both enzymes. These results indicate that both the bacterial strains attack the fungal cells by releasing extracellular fungal cell wall-degrading enzymes, thereby eliminating the pathogen.
Collapse
|
32
|
Jatoi GH, Lihua G, Xiufen Y, Gadhi MA, Keerio AU, Abdulle YA, Qiu D. A Novel Protein Elicitor PeBL2, from Brevibacillus laterosporus A60, Induces Systemic Resistance against Botrytis cinerea in Tobacco Plant. THE PLANT PATHOLOGY JOURNAL 2019; 35:208-218. [PMID: 31244567 PMCID: PMC6586191 DOI: 10.5423/ppj.oa.11.2018.0276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/26/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Here, we reported a novel secreted protein elicitor PeBL2 from Brevibacillus laterosporus A60, which can induce hypersensitive response in tobacco (Nicotiana benthamiana). The ion-exchange chromatography, high-performance liquid chromatography (HPLC) and mass spectrometry were performed for identification of protein elicitor. The 471 bp PeBL2 gene produces a 17.22 kDa protein with 156 amino acids containing an 84-residue signal peptide. Consistent with endogenous protein, the recombinant protein expressed in Escherichia coli induced the typical hypersensitive response (HR) and necrosis in tobacco leaves. Additionally, PeBL2 also triggered early defensive response of generation of reactive oxygen species (H2O2 and O2 -) and systemic resistance against of B. cinerea. Our findings shed new light on a novel strategy for biocontrol using B. laterosporus A60.
Collapse
Affiliation(s)
- Ghulam Hussain Jatoi
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
- Department of Plant Pathology Sindh Agriculture University Tandojam, Sindh,
Pakistan
| | - Guo Lihua
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| | - Yang Xiufen
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| | - Muswar Ali Gadhi
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| | - Azhar Uddin Keerio
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| | - Yusuf Ali Abdulle
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| | - Dewen Qiu
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| |
Collapse
|
33
|
Control of Fusarium wilt of lisianthus by reassembling the microbial community in infested soil through reductive soil disinfestation. Microbiol Res 2019; 220:1-11. [DOI: 10.1016/j.micres.2018.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/02/2018] [Accepted: 12/06/2018] [Indexed: 11/18/2022]
|
34
|
Reductive soil disinfestation effectively alleviates the replant failure of Sanqi ginseng through allelochemical degradation and pathogen suppression. Appl Microbiol Biotechnol 2019; 103:3581-3595. [PMID: 30770964 DOI: 10.1007/s00253-019-09676-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 02/04/2023]
Abstract
Replant failure has threatened the production of Sanqi ginseng (Panax notoginseng) mainly due to the accumulation of soil-borne pathogens and allelochemicals. Reductive soil disinfestation (RSD) is an effective practice used to eliminate soil-borne pathogens; however, the potential impact of RSD on the degradation of allelochemicals and the growth of replant Sanqi ginseng seedlings remain poorly understood. In this study, RSD was conducted on a Sanqi ginseng monoculture system (SGMS) and a maize-Sanqi ginseng system (MSGS), defined as SGMS_RSD and MSGS_RSD, respectively. The aim was to investigate the impact of RSD on allelochemicals, soil microbiomes, and survival rates of replant seedlings. Both short-term maize planting and RSD treatment significantly degraded the ginsenosides in Sanqi ginseng-cultivated soils, with the degradation rate being higher in the RSD treatment. The population of Fusarium oxysporum and the relative abundance of genus Fusarium were dramatically suppressed by RSD treatment. Furthermore, the RSD treatment, but not maize planting, markedly alleviated the replant failure of Sanqi ginseng, with the seedling survival rate being 52.7-70.7% 6 months after transplanting. Interestingly, RSD followed by short-term maize planting promoted microbial activity restoration, ginsenoside degradation, and ultimately alleviated the replant failure much better than RSD treatment alone (70.7% vs. 52.7%). Collectively, these results indicate that RSD treatment could considerably reduce the obstacles and might also act as a potential agriculture regime for overcoming the replant failure of Sanqi ginseng. Additional practices, such as crop rotation, beneficial microorganism inoculation, etc. may also still be needed to ensure the long-term efficacy of seedling survival.
Collapse
|