1
|
Chappell TC, Maiello KG, Tierney AJ, Yanagi K, Lee JA, Lee K, Mace CR, Bennett CS, Nair NU. Rapid spectrophotometric detection for optimized production of landomycins and characterization of their therapeutic potential. Biotechnol Bioeng 2024; 121:2648-2661. [PMID: 38686918 PMCID: PMC11324409 DOI: 10.1002/bit.28725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Microbial-derived natural products remain a major source of structurally diverse bioactive compounds and chemical scaffolds that have the potential as new therapeutics to target drug-resistant pathogens and cancers. In particular, genome mining has revealed the vast number of cryptic or low-yield biosynthetic gene clusters in the genus Streptomyces. However, low natural product yields-improvements to which have been hindered by the lack of high throughput methods-have slowed the discovery and development of many potential therapeutics. Here, we describe our efforts to improve yields of landomycins-angucycline family polyketides under investigation as cancer therapeutics-by a genetically modified Streptomyces cyanogenus 136. After simplifying the extraction process from S. cyanogenus cultures, we identified a wavelength at which the major landomycin products are absorbed in culture extracts, which we used to systematically explore culture medium compositions to improve total landomycin titers. Through correlational analysis, we simplified the culture optimization process by identifying an alternative wavelength at which culture supernatants absorb yet is representative of total landomycin titers. Using the subsequently improved sample throughput, we explored landomycin production during the culturing process to further increase landomycin yield and reduce culture time. Testing the antimicrobial activity of the isolated landomycins, we report broad inhibition of Gram-positive bacteria, inhibition of fungi by landomycinone, and broad landomycin resistance by Gram-negative bacteria that is likely mediated by the exclusion of landomycins by the bacterial membrane. Finally, the anticancer activity of the isolated landomycins against A549 lung carcinoma cells agrees with previous reports on other cell lines that glycan chain length correlates with activity. Given the prevalence of natural products produced by Streptomyces, as well as the light-absorbing moieties common to bioactive natural products and their metabolic precursors, our method is relevant to improving the yields of other natural products of interest.
Collapse
Affiliation(s)
- Todd C Chappell
- Department of Chemical & Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | | | - Allison J Tierney
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Karin Yanagi
- Department of Chemical & Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Jessica A Lee
- Department of Chemical & Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Kyongbum Lee
- Department of Chemical & Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Charles R Mace
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Clay S Bennett
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Nikhil U Nair
- Department of Chemical & Biological Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
2
|
Pei X, Lei Y, Zhang H. Transcriptional regulators of secondary metabolite biosynthesis in Streptomyces. World J Microbiol Biotechnol 2024; 40:156. [PMID: 38587708 DOI: 10.1007/s11274-024-03968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
In the post-genome era, great progress has been made in metabolic engineering using recombinant DNA technology to enhance the production of high-value products by Streptomyces. With the development of microbial genome sequencing techniques and bioinformatic tools, a growing number of secondary metabolite (SM) biosynthetic gene clusters in Streptomyces and their biosynthetic logics have been uncovered and elucidated. In order to increase our knowledge about transcriptional regulators in SM of Streptomyces, this review firstly makes a comprehensive summary of the characterized factors involved in enhancing SM production and awakening SM biosynthesis. Future perspectives on transcriptional regulator engineering for new SM biosynthesis by Streptomyces are also provided.
Collapse
Affiliation(s)
- Xinwei Pei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yunyun Lei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
3
|
Chappell TC, Maiello KG, Tierney AJ, Yanagi K, Lee JA, Lee K, Mace CR, Bennett CS, Nair NU. Rapid spectrophotometric detection for optimized production of landomycins and characterization of their therapeutic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566088. [PMID: 37986805 PMCID: PMC10659386 DOI: 10.1101/2023.11.07.566088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Microbial derived natural products remain a major source of structurally diverse bioactive compounds and chemical scaffolds that have potential as new therapeutics to target drug resistant pathogens and cancers. In particular, genome mining has revealed the vast number of cryptic or low yield biosynthetic gene clusters in the genus Streptomyces . Here, we describe our efforts to improve yields of landomycins - angucycline family polyketides under investigation as cancer therapeutics - by a genetically modified Streptomyces cyanogenus 136. After simplifying the extraction process from S. cyanogenus cultures, we identified a wavelength at which the major landomycin products absorb in culture extracts, which we used to systematically explore culture medium compositions to improve total landomycin titers. Through correlational analysis, we simplified the culture optimization process by identifying an alternative wavelength at which culture supernatants absorb yet is representative of total landomycin titers. Using the subsequently improved sample throughput, we explored landomycin production during the culturing process to further increase landomycin yield and reduce culture time. Testing the antimicrobial activity of the isolated landomycins, we report broad inhibition of Gram-positive bacteria, inhibition of fungi by landomycinone, and broad landomycin resistance by Gram-negative bacteria that is likely mediated by exclusion of landomycins by the bacterial membrane. Finally, the anticancer activity of the isolated landomycins against A549 lung carcinoma cells agrees with previous reports on other cell lines that glycan chain length correlates with activity. Given the prevalence of natural products produced by Streptomyces , as well as the light-absorbing moieties common to bioactive natural products and their metabolic precursors, our method is relevant to improving the yields of other natural products of interest.
Collapse
|
4
|
Deneka M, Ostash I, Yalamanchili S, Bennett CS, Ostash B. Insights into the Biological Properties of Ligands and Identity of Operator Site for LanK Protein Involved in Landomycin Production. Curr Microbiol 2023; 81:5. [PMID: 37950074 DOI: 10.1007/s00284-023-03528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
LanK is a TetR type regulatory protein that coordinates the late steps of the biosynthesis of the landomycin family of antitumor angucyclic polyketides and their export from the cells of Streptomyces cyanogenus S136. We recently described the structure of LanK and showed that it is the carbohydrate portion of the landomycins that is responsible for abrogating the repressing effect of LanK on landomycin production and export. The effect has been established in a series of in vitro tests using synthetic analogs of the landomycin carbohydrate chains. Whether such synthetic compounds would function as effector molecules for LanK under in vivo conditions remained unknown. Furthermore, the location and identity of LanK operator sites within the lanK-lanJ intergenic region (lanKJp) was unknown. Here we report that methoxyphenyl analogs of tri- and hexasaccharide chains of landomycins cannot function as LanK ligands when applied externally to the reporter strain. The lability of these compounds to cellular media and/or their poor penetration into the cells could explain our observations. The LanK operator site has been mapped to a 14-bp region of lanKJp that includes a plausible -35 site upstream of the lanK start codon in a series of electrophoretic DNA mobility shift assays. This opens the door to studies of the DNA-LanK interaction at a single nucleotide resolution level.
Collapse
Affiliation(s)
- Maksym Deneka
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St, Lviv, 79005, Ukraine
| | - Iryna Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St, Lviv, 79005, Ukraine
| | | | - Clay S Bennett
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA, 02155, USA
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St, Lviv, 79005, Ukraine.
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St.,Rm 102, Lviv, 79005, Ukraine.
| |
Collapse
|
5
|
Lu T, Wang Q, Cao Q, Xia Y, Xun L, Liu H. The Pleiotropic Regulator AdpA Regulates the Removal of Excessive Sulfane Sulfur in Streptomyces coelicolor. Antioxidants (Basel) 2023; 12:antiox12020312. [PMID: 36829871 PMCID: PMC9952706 DOI: 10.3390/antiox12020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Reactive sulfane sulfur (RSS), including persulfide, polysulfide, and elemental sulfur (S8), has important physiological functions, such as resisting antibiotics in Pseudomonas aeruginosa and Escherichia coli and regulating secondary metabolites production in Streptomyces spp. However, at excessive levels it is toxic. Streptomyces cells may use known enzymes to remove extra sulfane sulfur, and an unknown regulator is involved in the regulation of these enzymes. AdpA is a multi-functional transcriptional regulator universally present in Streptomyces spp. Herein, we report that AdpA was essential for Streptomyces coelicolor survival when facing external RSS stress. AdpA deletion also resulted in intracellular RSS accumulation. Thioredoxins and thioredoxin reductases were responsible for anti-RSS stress via reducing RSS to gaseous hydrogen sulfide (H2S). AdpA directly activated the expression of these enzymes at the presence of excess RSS. Since AdpA and thioredoxin systems are widely present in Streptomyces, this finding unveiled a new mechanism of anti-RSS stress by these bacteria.
Collapse
Affiliation(s)
- Ting Lu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Qingda Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Qun Cao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- School of Molecular Biosciences, Washington State University, Pullman, WA 991647520, USA
- Correspondence: (L.X.); (H.L.)
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Correspondence: (L.X.); (H.L.)
| |
Collapse
|
6
|
Guo S, Leng T, Sun X, Zheng J, Li R, Chen J, Hu F, Liu F, Hua Q. Global Regulator AdpA_1075 Regulates Morphological Differentiation and Ansamitocin Production in Actinosynnema pretiosum subsp. auranticum. Bioengineering (Basel) 2022; 9:719. [PMID: 36421120 PMCID: PMC9687425 DOI: 10.3390/bioengineering9110719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 09/08/2024] Open
Abstract
Actinosynnema pretiosum is a well-known producer of maytansinoid antibiotic ansamitocin P-3 (AP-3). Growth of A. pretiosum in submerged culture was characterized by the formation of complex mycelial particles strongly affecting AP-3 production. However, the genetic determinants involved in mycelial morphology are poorly understood in this genus. Herein a continuum of morphological types of a morphologically stable variant was observed during submerged cultures. Expression analysis revealed that the ssgA_6663 and ftsZ_5883 genes are involved in mycelial aggregation and entanglement. Combing morphology observation and morphology engineering, ssgA_6663 was identified to be responsible for the mycelial intertwining during liquid culture. However, down-regulation of ssgA_6663 transcription was caused by inactivation of adpA_1075, gene coding for an AdpA-like protein. Additionally, the overexpression of adpA_1075 led to an 85% increase in AP-3 production. Electrophoretic mobility shift assays (EMSA) revealed that AdpA_1075 may bind the promoter regions of asm28 gene in asm gene cluster as well as the promoter regions of ssgA_6663. These results confirm that adpA_1075 plays a positive role in AP-3 biosynthesis and morphological differentiation.
Collapse
Affiliation(s)
- Siyu Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tingting Leng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xueyuan Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiawei Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ruihua Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fengxian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
7
|
Sulfane Sulfur Posttranslationally Modifies the Global Regulator AdpA to Influence Actinorhodin Production and Morphological Differentiation of Streptomyces coelicolor. mBio 2022; 13:e0386221. [PMID: 35467418 PMCID: PMC9239190 DOI: 10.1128/mbio.03862-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor AdpA is a key regulator controlling both secondary metabolism and morphological differentiation in Streptomyces. Due to its critical functions, its expression undergoes multilevel regulations at transcriptional, posttranscriptional, and translational levels, yet no posttranslational regulation has been reported. Sulfane sulfur, such as hydro polysulfide (HSnH, n ≥ 2) and organic polysulfide (RSnH, n ≥ 2), is common inside microorganisms, but its physiological functions are largely unclear. Here, we discovered that sulfane sulfur posttranslationally modifies AdpA in Streptomyces coelicolor via specifically reacting with Cys62 of AdpA to form a persulfide (Cys62-SSH). This modification decreases the affinity of AdpA to its self-promoter PadpA, allowing increased expression of adpA, further promoting the expression of its target genes actII-4 and wblA. ActII-4 activates actinorhodin biosynthesis, and WblA regulates morphological development. Bioinformatics analyses indicated that AdpA-Cys62 is highly conserved in Streptomyces, suggesting the prevalence of such modification in this genus. Thus, our study unveils a new type of regulation on the AdpA activity and sheds a light on how sulfane sulfur stimulates the production of antibiotics in Streptomyces.
Collapse
|
8
|
Tsugita A, Uehara S, Matsui T, Yokoyama T, Ostash I, Deneka M, Yalamanchili S, Bennett CS, Tanaka Y, Ostash B. The carbohydrate tail of landomycin A is responsible for its interaction with the repressor protein LanK. FEBS J 2022; 289:6038-6057. [DOI: 10.1111/febs.16460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Atsushi Tsugita
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Shiro Uehara
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Takashi Matsui
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Takeshi Yokoyama
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Iryna Ostash
- Department of Genetics and Biotechnology Ivan Franko National University of Lviv Ukraine
| | - Maksym Deneka
- Department of Genetics and Biotechnology Ivan Franko National University of Lviv Ukraine
| | | | | | - Yoshikazu Tanaka
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Bohdan Ostash
- Department of Genetics and Biotechnology Ivan Franko National University of Lviv Ukraine
| |
Collapse
|
9
|
Huang R, Liu H, Zhao W, Wang S, Wang S, Cai J, Yang C. AdpA, a developmental regulator, promotes ε-poly-l-lysine biosynthesis in Streptomyces albulus. Microb Cell Fact 2022; 21:60. [PMID: 35397580 PMCID: PMC8994273 DOI: 10.1186/s12934-022-01785-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Background AdpA is a global regulator of morphological differentiation and secondary metabolism in Streptomyces, but the regulatory roles of the Streptomyces AdpA family on the biosynthesis of the natural product ε-poly-l-lysine (ε-PL) remain unidentified, and few studies have focused on increasing the production of ε-PL by manipulating transcription factors in Streptomyces. Results In this study, we revealed the regulatory roles of different AdpA homologs in ε-PL biosynthesis and morphological differentiation and effectively promoted ε-PL production and sporulation in Streptomycesalbulus NK660 by heterologously expressing adpA from S.neyagawaensis NRRLB-3092 (adpASn). First, we identified a novel AdpA homolog named AdpASa in S.albulus NK660 and characterized its function as an activator of ε-PL biosynthesis and morphological differentiation. Subsequently, four heterologous AdpA homologs were selected to investigate their phylogenetic relationships and regulatory roles in S.albulus, and AdpASn was demonstrated to have the strongest ability to promote both ε-PL production and sporulation among these five AdpA proteins. The ε-PL yield of S.albulus heterologously expressing adpASn was approximately 3.6-fold higher than that of the control strain. Finally, we clarified the mechanism of AdpASn in enhancing ε-PL biosynthesis and its effect on ε-PL polymerization degree using real-time quantitative PCR, microscale thermophoresis and MALDI-TOF–MS. AdpASn was purified, and its seven direct targets, zwf, tal, pyk2, pta, ack, pepc and a transketolase gene (DC74_2409), were identified, suggesting that AdpASn may cause the redistribution of metabolic flux in central metabolism pathways, which subsequently provides more carbon skeletons and ATP for ε-PL biosynthesis in S.albulus. Conclusions Here, we characterized the positive regulatory roles of Streptomyces AdpA homologs in ε-PL biosynthesis and their effects on morphological differentiation and reported for the first time that AdpASn promotes ε-PL biosynthesis by affecting the transcription of its target genes in central metabolism pathways. These findings supply valuable insights into the regulatory roles of the Streptomyces AdpA family on ε-PL biosynthesis and morphological differentiation and suggest that AdpASn may be an effective global regulator for enhanced production of ε-PL and other valuable secondary metabolites in Streptomyces. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01785-6.
Collapse
|
10
|
Melnyk S, Stepanyshyn A, Yushchuk O, Mandler M, Ostash I, Koshla O, Fedorenko V, Kahne D, Ostash B. Genetic approaches to improve clorobiocin production in Streptomyces roseochromogenes NRRL 3504. Appl Microbiol Biotechnol 2022; 106:1543-1556. [PMID: 35147743 PMCID: PMC9528727 DOI: 10.1007/s00253-022-11814-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 01/15/2023]
Abstract
Streptomyces roseochromogenes NRRL 3504 is best known as a producer of clorobiocin, a DNA replication inhibitor from the aminocoumarin family of antibiotics. This natural product currently draws attention as a promising adjuvant for co-application with other antibiotics against Gram-negative multidrug-resistant pathogens. Herein, we expand the genetic toolkit for NRRL 3504 by showing that a set of integrative and replicative vectors, not tested previously for this strain, could be conjugally transferred at high frequency from Escherichia coli to NRRL 3504. Using this approach, we leverage a cumate-inducible expression of cluster-situated regulatory gene novG to increase clorobiocin titers by 30-fold (up to approximately 200 mg/L). To our best knowledge, this is the highest level of clorobiocin production reported so far. Our findings set a working ground for further improvement of clorobiocin production as well as for the application of genetic methods to illuminate the cryptic secondary metabolome of NRRL 3504. Key Points • Efficient system for conjugative transfer of plasmids into NRRL 3504 was developed. • Expression of regulatory genes in NRRL 3504 led to increase in clorobiocin titer. • Secondary metabolome of NRRL 3504 becomes an accessible target for genetic manipulations using the expanded vector set and improved intergeneric conjugation protocol.
Collapse
Affiliation(s)
- Sofia Melnyk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Anastasia Stepanyshyn
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Michael Mandler
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Iryna Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Oksana Koshla
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine.
| |
Collapse
|
11
|
Hrab P,
Rückert
C, Busche T, Ostash I, Kalinowski J, Fedorenko V, Yushchuk O, Ostash B. Complete genome sequence of Streptomyces cyanogenus S136, producer of anticancer angucycline landomycin A. 3 Biotech 2021; 11:282. [PMID: 34094801 PMCID: PMC8137763 DOI: 10.1007/s13205-021-02834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022] Open
Abstract
Streptomyces cyanogenus S136 is the only known producer of landomycin A (LaA), one of the founding members of angucycline family of aromatic polyketides. LaA displays potent anticancer activities which has made this natural product a target of numerous chemical and cell biological studies. Little is known about the potential of S136 strain to produce other secondary metabolites. Here we report complete genome sequence of LaA producer and how we used this sequence to evaluate for this species its phylogenetic position and diversity of gene clusters for natural product biosynthesis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02834-4.
Collapse
Affiliation(s)
- Pavlo Hrab
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Rm 102, Lviv, 79005 Ukraine
| | - Christian
Rückert
- Technology Platform Genomics, CeBiTec, Bielefeld University,
Sequenz 1
, 33615 Bielefeld, Germany
| | - Tobias Busche
- Technology Platform Genomics, CeBiTec, Bielefeld University,
Sequenz 1
, 33615 Bielefeld, Germany
| | - Iryna Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Rm 102, Lviv, 79005 Ukraine
| | -
Jörn
Kalinowski
- Technology Platform Genomics, CeBiTec, Bielefeld University,
Sequenz 1
, 33615 Bielefeld, Germany
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Rm 102, Lviv, 79005 Ukraine
| | - Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Rm 102, Lviv, 79005 Ukraine
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Rm 102, Lviv, 79005 Ukraine
| |
Collapse
|
12
|
Koshla O, Lopatniuk M, Borys O, Misaki Y, Kravets V, Ostash I, Shemediuk A, Ochi K, Luzhetskyy A, Fedorenko V, Ostash B. Genetically engineered rpsL merodiploidy impacts secondary metabolism and antibiotic resistance in Streptomyces. World J Microbiol Biotechnol 2021; 37:62. [PMID: 33730177 DOI: 10.1007/s11274-021-03030-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/08/2021] [Indexed: 11/28/2022]
Abstract
Certain point mutations within gene for ribosomal protein S12, rpsL, are known to dramatically change physiological traits of bacteria, most prominently antibiotic resistance and production of various metabolites. The rpsL mutants are usually searched among spontaneous mutants resistant to aminoglycoside antibiotics, such as streptomycin or paromomycin. The shortcomings of traditional selection are as follows: random rpsL mutants may carry undesired genome alterations; many rpsL mutations cannot be isolated because they are either not associated with increased antibiotic resistance or non-viable in the absence of intact rpsLWT gene. Introduction of mutant rpsL alleles in the rpsLWT background can be used to circumvent these obstacles. Here we take the latter approach and report the generation and properties of a set of stable rpsL merodiploids for Streptomyces albus J1074. We identified several rpsL alleles that enhance endogenous and heterologous antibiotic production by this strain and show that rpsLWTrpsLK88E merodiploid displays increased streptomycin resistance. We further tested several promising rpsL alleles in two more strains, Streptomyces cyanogenus S136 and Streptomyces ghanaensis ATCC14672. In S136, plasmid-borne rpsLK88E+P91S and rpsLK88R led to elevated landomycin production; no changes were detected for ATCC14672 merodiploids. Our data outline the prospects for and limitations to rpsL merodiploids as a tool for rapid enhancement of secondary metabolism in Streptomyces.
Collapse
Affiliation(s)
- Oksana Koshla
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv, 79005, Ukraine
| | - Maria Lopatniuk
- Helmholtz Institute for Pharmaceutical Research, Saarland Campus, Building C2.3, 66123, Saarbrucken, Germany
| | - Oksana Borys
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv, 79005, Ukraine
| | - Yuya Misaki
- Department of Life Sciences, Hiroshima Institute of Technology, Saeki-ku, Hiroshima, 731-5193, Japan
| | - Volodymyr Kravets
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv, 79005, Ukraine
| | - Iryna Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv, 79005, Ukraine
| | - Anastasiia Shemediuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv, 79005, Ukraine
| | - Kozo Ochi
- Department of Life Sciences, Hiroshima Institute of Technology, Saeki-ku, Hiroshima, 731-5193, Japan
| | - Andriy Luzhetskyy
- Helmholtz Institute for Pharmaceutical Research, Saarland Campus, Building C2.3, 66123, Saarbrucken, Germany
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv, 79005, Ukraine
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv, 79005, Ukraine.
| |
Collapse
|
13
|
Yushchuk O, Ostash I, Mösker E, Vlasiuk I, Deneka M, Rückert C, Busche T, Fedorenko V, Kalinowski J, Süssmuth RD, Ostash B. Eliciting the silent lucensomycin biosynthetic pathway in Streptomyces cyanogenus S136 via manipulation of the global regulatory gene adpA. Sci Rep 2021; 11:3507. [PMID: 33568768 PMCID: PMC7875965 DOI: 10.1038/s41598-021-82934-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Actinobacteria are among the most prolific sources of medically and agriculturally important compounds, derived from their biosynthetic gene clusters (BGCs) for specialized (secondary) pathways of metabolism. Genomics witnesses that the majority of actinobacterial BGCs are silent, most likely due to their low or zero transcription. Much effort is put into the search for approaches towards activation of silent BGCs, as this is believed to revitalize the discovery of novel natural products. We hypothesized that the global transcriptional factor AdpA, due to its highly degenerate operator sequence, could be used to upregulate the expression of silent BGCs. Using Streptomyces cyanogenus S136 as a test case, we showed that plasmids expressing either full-length adpA or its DNA-binding domain led to significant changes in the metabolome. These were evident as changes in the accumulation of colored compounds, bioactivity, as well as the emergence of a new pattern of secondary metabolites as revealed by HPLC-ESI-mass spectrometry. We further focused on the most abundant secondary metabolite and identified it as the polyene antibiotic lucensomycin. Finally, we uncovered the entire gene cluster for lucensomycin biosynthesis (lcm), that remained elusive for five decades until now, and outlined an evidence-based scenario for its adpA-mediated activation.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Rm. 102, Lviv, 79005, Ukraine
| | - Iryna Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Rm. 102, Lviv, 79005, Ukraine
| | - Eva Mösker
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Iryna Vlasiuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Rm. 102, Lviv, 79005, Ukraine
| | - Maksym Deneka
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Rm. 102, Lviv, 79005, Ukraine
| | - Christian Rückert
- Technology Platform Genomics, CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Tobias Busche
- Technology Platform Genomics, CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Rm. 102, Lviv, 79005, Ukraine
| | - Jörn Kalinowski
- Technology Platform Genomics, CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany.
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Rm. 102, Lviv, 79005, Ukraine.
| |
Collapse
|
14
|
Li ZY, Bu QT, Wang J, Liu Y, Chen XA, Mao XM, Li YQ. Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB. J Zhejiang Univ Sci B 2020; 20:983-994. [PMID: 31749345 DOI: 10.1631/jzus.b1900344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genome sequencing projects revealed massive cryptic gene clusters encoding the undiscovered secondary metabolites in Streptomyces. To investigate the metabolic products of silent gene clusters in Streptomyces chattanoogensis L10 (CGMCC 2644), we used site-directed mutagenesis to generate ten mutants with point mutations in the highly conserved region of rpsL (encoding the ribosomal protein S12) or rpoB (encoding the RNA polymerase β-subunit). Among them, L10/RpoB (H437Y) accumulated a dark pigment on a yeast extract-malt extract-glucose (YMG) plate. This was absent in the wild type. After further investigation, a novel angucycline antibiotic named anthrachamycin was isolated and determined using nuclear magnetic resonance (NMR) spectroscopic techniques. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and electrophoretic mobility shift assay (EMSA) were performed to investigate the mechanism underlying the activation effect on the anthrachamycin biosynthetic gene cluster. This work indicated that the rpoB-specific missense H437Y mutation had activated anthrachamycin biosynthesis in S. chattanoogensis L10. This may be helpful in the investigation of the pleiotropic regulation system in Streptomyces.
Collapse
Affiliation(s)
- Zi-Yue Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qing-Ting Bu
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Jue Wang
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-Ai Chen
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| |
Collapse
|
15
|
Teicoplanin biosynthesis: unraveling the interplay of structural, regulatory, and resistance genes. Appl Microbiol Biotechnol 2020; 104:3279-3291. [PMID: 32076781 DOI: 10.1007/s00253-020-10436-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 01/10/2023]
Abstract
Teicoplanin (Tcp) is a clinically relevant glycopeptide antibiotic (GPA) that is produced by the actinobacterium Actinoplanes teichomyceticus. Tcp is a front-line therapy for treating severe infections caused by multidrug-resistant Gram-positive pathogens in adults and infants. In this review, we provide a detailed overview of how Tcp is produced by A. teichomyceticus by describing Tcp biosynthesis, regulation, and resistance. We summarize the knowledge gained from in vivo and in vitro studies to provide an integrated model of teicoplanin biosynthesis. Then, we discuss genetic and nutritional factors that contribute to the regulation of teicoplanin biosynthesis, focusing on those that have been successfully applied for improving teicoplanin production. A current view on teicoplanin self-resistance mechanisms in A. teichomyceticus is given, and we compare the Tcp biosynthetic gene cluster with other glycopeptide gene clusters from actinoplanetes and from unidentified isolates/metagenomics samples. Finally, we provide an outlook for further directions in studying Tcp biosynthesis and regulation.
Collapse
|
16
|
Li ZY, Bu QT, Wang J, Liu Y, Chen XA, Mao XM, Li YQ. Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB. J Zhejiang Univ Sci B 2019. [PMID: 31749345 PMCID: PMC6885405 DOI: 10.1631/jzus.b191900344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Genome sequencing projects revealed massive cryptic gene clusters encoding the undiscovered secondary metabolites in Streptomyces. To investigate the metabolic products of silent gene clusters in Streptomyces chattanoogensis L10 (CGMCC 2644), we used site-directed mutagenesis to generate ten mutants with point mutations in the highly conserved region of rpsL (encoding the ribosomal protein S12) or rpoB (encoding the RNA polymerase β-subunit). Among them, L10/RpoB (H437Y) accumulated a dark pigment on a yeast extract-malt extract-glucose (YMG) plate. This was absent in the wild type. After further investigation, a novel angucycline antibiotic named anthrachamycin was isolated and determined using nuclear magnetic resonance (NMR) spectroscopic techniques. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and electrophoretic mobility shift assay (EMSA) were performed to investigate the mechanism underlying the activation effect on the anthrachamycin biosynthetic gene cluster. This work indicated that the rpoB-specific missense H437Y mutation had activated anthrachamycin biosynthesis in S. chattanoogensis L10. This may be helpful in the investigation of the pleiotropic regulation system in Streptomyces.
Collapse
Affiliation(s)
- Zi-yue Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qing-ting Bu
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Jue Wang
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-ai Chen
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Xu-ming Mao
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China,†E-mail:
| |
Collapse
|
17
|
Li YP, Yu P, Li JF, Tang YL, Bu QT, Mao XM, Li YQ. FadR1, a pathway-specific activator of fidaxomicin biosynthesis in Actinoplanes deccanensis Yp-1. Appl Microbiol Biotechnol 2019; 103:7583-7596. [DOI: 10.1007/s00253-019-09949-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022]
|
18
|
Koshla O, Yushchuk O, Ostash I, Dacyuk Y, Myronovskyi M, Jäger G, Süssmuth RD, Luzhetskyy A, Byström A, Kirsebom LA, Ostash B. Gene miaA for post-transcriptional modification of tRNA XXA is important for morphological and metabolic differentiation in Streptomyces. Mol Microbiol 2019; 112:249-265. [PMID: 31017319 DOI: 10.1111/mmi.14266] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2019] [Indexed: 12/14/2022]
Abstract
Members of actinobacterial genus Streptomyces possess a sophisticated life cycle and are the deepest source of bioactive secondary metabolites. Although morphogenesis and secondary metabolism are subject to transcriptional co-regulation, streptomycetes employ an additional mechanism to initiate the aforementioned processes. This mechanism is based on delayed translation of rare leucyl codon UUA by the only cognate tRNALeu UAA (encoded by bldA). The bldA-based genetic switch is an extensively documented example of translational regulation in Streptomyces. Yet, after five decades since the discovery of bldA, factors that shape its function and peculiar conditionality remained elusive. Here we address the hypothesis that post-transcriptional tRNA modifications play a role in tRNA-based mechanisms of translational control in Streptomyces. Particularly, we studied two Streptomyces albus J1074 genes, XNR_1074 (miaA) and XNR_1078 (miaB), encoding tRNA (adenosine(37)-N6)-dimethylallyltransferase and tRNA (N6-isopentenyl adenosine(37)-C2)-methylthiotransferase respectively. These enzymes produce, in a sequential manner, a hypermodified ms2 i6 A37 residue in most of the A36-A37-containing tRNAs. We show that miaB and especially miaA null mutant of S. albus possess altered morphogenesis and secondary metabolism. We provide genetic evidence that miaA deficiency impacts translational level of gene expression, most likely through impaired decoding of codons UXX and UUA in particular.
Collapse
Affiliation(s)
- Oksana Koshla
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Lviv, 79005, Ukraine
| | - Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Lviv, 79005, Ukraine
| | - Iryna Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Lviv, 79005, Ukraine
| | - Yuriy Dacyuk
- Department of Physics of Earth, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Lviv, 79005, Ukraine
| | - Maksym Myronovskyi
- Helmholtz Institute for Pharmaceutical Research, Saarland Campus, Building C2.3, Saarbrucken, 66123, Germany
| | - Gunilla Jäger
- Department of Molecular Biology, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 90197, Sweden
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Straβe des 17 Juni 124/TC2, Berlin, 10623, Germany
| | - Andriy Luzhetskyy
- Helmholtz Institute for Pharmaceutical Research, Saarland Campus, Building C2.3, Saarbrucken, 66123, Germany
| | - Anders Byström
- Department of Molecular Biology, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 90197, Sweden
| | - Leif A Kirsebom
- Uppsala Biomedicinska Centrum BMC, Uppsala University, Husargatan 3, Box 596, Uppsala, 75124, Sweden
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Lviv, 79005, Ukraine
| |
Collapse
|
19
|
Genome-Wide Mutagenesis Links Multiple Metabolic Pathways with Actinorhodin Production in Streptomyces coelicolor. Appl Environ Microbiol 2019; 85:AEM.03005-18. [PMID: 30709825 PMCID: PMC6585502 DOI: 10.1128/aem.03005-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/25/2019] [Indexed: 12/22/2022] Open
Abstract
Streptomyces species are important antibiotic-producing organisms that tightly regulate their antibiotic production. Actinorhodin is a typical antibiotic produced by the model actinomycete Streptomyces coelicolor To discover the regulators of actinorhodin production, we constructed a library of 50,000 independent mutants with hyperactive Tn5 transposase-based transposition systems. Five hundred fifty-one genes were found to influence actinorhodin production in 988 individual mutants. Genetic complementation suggested that most of the insertions (76%) were responsible for the changes in antibiotic production. Genes involved in diverse cellular processes such as amino acid biosynthesis, carbohydrate metabolism, cell wall homeostasis, and DNA metabolism affected actinorhodin production. Genome-wide mutagenesis can identify novel genes and pathways that impact antibiotic levels, potentially aiding in engineering strains to optimize the production of antibiotics in Streptomyces IMPORTANCE Previous studies have shown that various genes can influence antibiotic production in Streptomyces and that intercommunication between regulators can complicate antibiotic production. Therefore, to gain a better understanding of antibiotic regulation, a genome-wide perspective on genes that influence antibiotic production was needed. We searched for genes that affected production of the antibiotic actinorhodin using a genome-wide gene disruption system. We identified 551 genes that altered actinorhodin levels, and more than half of these genes were newly identified effectors. Some of these genes may be candidates for engineering Streptomyces strains to improve antibiotic production levels.
Collapse
|
20
|
Yushchuk O, Kharel M, Ostash I, Ostash B. Landomycin biosynthesis and its regulation in Streptomyces. Appl Microbiol Biotechnol 2019; 103:1659-1665. [PMID: 30635689 DOI: 10.1007/s00253-018-09601-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022]
Abstract
This mini-review is centered on genetic aspects of biosynthesis of landomycins (La), a family of angucycline polyketides. From the very discovery in the 1990s, La were noted for unusual structure and potent anticancer properties. La are produced by a few actinobacteria that belong to genus Streptomyces. Biochemical logic behind the production of La aglycon and glycoside halves and effects of La on mammalian cells have been thoroughly reviewed in 2009-2012. Yet, the genetic diversity of La biosynthetic gene clusters (BGCs) and regulation of their production were not properly reviewed since discovery of La. Here, we aim to fill this gap by focusing on three interrelated topics. First, organization of known La BGCs is compared. Second, up-to-date scheme of biosynthetic pathway to landomycin A (LaA), the biggest (by molar weight) member of La family, is succinctly outlined. Third, we describe genetic and nutritional factors that influence La production and export. A summary of the practical utility of the gained knowledge and future directions to study La biosynthesis conclude this mini-review.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho St. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Madan Kharel
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Somerset Hall 214, Princess Anne, MD, 21853, USA
| | - Iryna Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho St. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho St. 4, Rm. 102, Lviv, 79005, Ukraine.
| |
Collapse
|