1
|
Ncube E, Mohale K, Nogemane N. Metabolomics as a Prospective Tool for Soybean ( Glycine max) Crop Improvement. Curr Issues Mol Biol 2022; 44:4181-4196. [PMID: 36135199 PMCID: PMC9497771 DOI: 10.3390/cimb44090287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Global demand for soybean and its products has stimulated research into the production of novel genotypes with higher yields, greater drought and disease tolerance, and shorter growth times. Genetic research may be the most effective way to continue developing high-performing cultivars with desirable agronomic features and improved nutritional content and seed performance. Metabolomics, which predicts the metabolic marker for plant performance under stressful conditions, is rapidly gaining interest in plant breeding and has emerged as a powerful tool for driving crop improvement. The development of increasingly sensitive, automated, and high-throughput analytical technologies, paired with improved bioinformatics and other omics techniques, has paved the way for wide characterization of genetic characteristics for crop improvement. The combination of chromatography (liquid and gas-based) with mass spectrometry has also proven to be an indisputable efficient platform for metabolomic studies, notably plant metabolic fingerprinting investigations. Nevertheless, there has been significant progress in the use of nuclear magnetic resonance (NMR), capillary electrophoresis, and Fourier-transform infrared spectroscopy (FTIR), each with its own set of benefits and drawbacks. Furthermore, utilizing multivariate analysis, principal components analysis (PCA), discriminant analysis, and projection to latent structures (PLS), it is possible to identify and differentiate various groups. The researched soybean varieties may be correctly classified by using the PCA and PLS multivariate analyses. As metabolomics is an effective method for evaluating and selecting wild specimens with desirable features for the breeding of improved new cultivars, plant breeders can benefit from the identification of metabolite biomarkers and key metabolic pathways to develop new genotypes with value-added features.
Collapse
Affiliation(s)
- Efficient Ncube
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Private Bag x 6, Florida, Johannesburg 1710, South Africa
| | | | | |
Collapse
|
2
|
Effects of Hypoxia Stress on Growth, Root Respiration, and Metabolism of Phyllostachys praecox. Life (Basel) 2022; 12:life12060808. [PMID: 35743839 PMCID: PMC9224615 DOI: 10.3390/life12060808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Hypoxia affects plant growth, hormone content, various enzyme activities, cell structure, peroxide production, and metabolic level, therefore reducing crop yield. This study assessed the physiological, biochemical, and metabolic characteristics of Phyllostachys praecox. Results revealed that hypoxia stress treatment significantly inhibited plant growth. Leaf chlorophyll contents was initially improved and then reduced with plant growth time. Under hypoxia stress, the root activity significantly was reduced, leading to the decrease in the nutrient absorption and transport. Yet, with low oxygen concentration, the contents of ethanol, acetaldehyde, and lactic acid were improved. With hypoxia stress, phospholipids and amino acids were the main metabolites of Phyllostachys praecox. Glycosphospholipid metabolism is the key pathway in responding to hypoxia stress significantly (p < 0.05), and lysophosphatidlycholine (lysoPC) and phosphatidylcholines (PC) in the metabolites of this metabolic pathway were significantly enhanced. Our study reveals the mechanism of Phyllostachys praecox cell membrane responding to hypoxia stress based on molecular level. This is conducive to finding targeted solutions to improve the productivity of Phyllostachys praecox to better optimize a mulching approach in the bamboo forest.
Collapse
|
3
|
Zhou W, Wang Y, Zhang J, Zhao M, Tang M, Zhou W, Gong Z. A metabolic model of Lipomyces starkeyi for predicting lipogenesis potential from diverse low-cost substrates. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:148. [PMID: 34210354 PMCID: PMC8247262 DOI: 10.1186/s13068-021-01997-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/17/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Lipomyces starkeyi has been widely regarded as a promising oleaginous yeast with broad industrial application prospects because of its wide substrate spectrum, good adaption to fermentation inhibitors, excellent fatty acid composition for high-quality biodiesel, and negligible lipid remobilization. However, the currently low experimental lipid yield of L. starkeyi prohibits its commercial success. Metabolic model is extremely valuable to comprehend the complex biochemical processes and provide great guidance for strain modification to facilitate the lipid biosynthesis. RESULTS A small-scale metabolic model of L. starkeyi NRRL Y-11557 was constructed based on the genome annotation information. The theoretical lipid yields of glucose, cellobiose, xylose, glycerol, and acetic acid were calculated according to the flux balance analysis (FBA). The optimal flux distribution of the lipid synthesis showed that pentose phosphate pathway (PPP) independently met the necessity of NADPH for lipid synthesis, resulting in the relatively low lipid yields. Several targets (NADP-dependent oxidoreductases) beneficial for oleaginicity of L. starkeyi with significantly higher theoretical lipid yields were compared and elucidated. The combined utilization of acetic acid and other carbon sources and a hypothetical reverse β-oxidation (RBO) pathway showed outstanding potential for improving the theoretical lipid yield. CONCLUSIONS The lipid biosynthesis potential of L. starkeyi can be significantly improved through appropriate modification of metabolic network, as well as combined utilization of carbon sources according to the metabolic model. The prediction and analysis provide valuable guidance to improve lipid production from various low-cost substrates.
Collapse
Affiliation(s)
- Wei Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Yanan Wang
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Junlu Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Man Zhao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Mou Tang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081 People’s Republic of China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081 People’s Republic of China
| |
Collapse
|
4
|
Yuzawa T, Shirai T, Orishimo R, Kawai K, Kondo A, Hirasawa T. 13C-metabolic flux analysis in glycerol-assimilating strains of Saccharomyces cerevisiae. J GEN APPL MICROBIOL 2021; 67:142-149. [PMID: 33967166 DOI: 10.2323/jgam.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Glycerol is an attractive raw material for the production of useful chemicals using microbial cells. We previously identified metabolic engineering targets for the improvement of glycerol assimilation ability in Saccharomyces cerevisiae based on adaptive laboratory evolution (ALE) and transcriptome analysis of the evolved cells. We also successfully improved glycerol assimilation ability by the disruption of the RIM15 gene encoding a Greatwall protein kinase together with overexpression of the STL1 gene encoding the glycerol/H+ symporter. To understand glycerol assimilation metabolism in the evolved glycerol-assimilating strains and STL1-overexpressing RIM15 disruptant, we performed metabolic flux analysis using 13C-labeled glycerol. Significant differences in metabolic flux distributions between the strains obtained from the culture after 35 and 85 generations in ALE were not found, indicating that metabolic flux changes might occur in the early phase of ALE (i.e., before 35 generations at least). Similarly, metabolic flux distribution was not significantly changed by RIM15 gene disruption. However, fluxes for the lower part of glycolysis and the TCA cycle were larger and, as a result, flux for the pentose phosphate pathway was smaller in the STL1-overexpressing RIM15 disruptant than in the strain obtained from the culture after 85 generations in ALE. It could be effective to increase flux for the pentose phosphate pathway to improve the glycerol assimilation ability in S. cerevisiae.
Collapse
Affiliation(s)
- Taiji Yuzawa
- School of Life Science and Technology, Tokyo Institute of Technology
| | | | | | - Kazuki Kawai
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN.,Graduate School of Science, Technology and Innovation, Kobe University
| | - Takashi Hirasawa
- School of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
5
|
Aburatani S, Ishiya K, Itoh T, Hayashi T, Taniguchi T, Takaku H. Inference of Regulatory System for TAG Biosynthesis in Lipomyces starkeyi. Bioengineering (Basel) 2020; 7:bioengineering7040148. [PMID: 33227954 PMCID: PMC7711605 DOI: 10.3390/bioengineering7040148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022] Open
Abstract
Improving the bioproduction ability of efficient host microorganisms is a central aim in bioengineering. To control biosynthesis in living cells, the regulatory system of the whole biosynthetic pathway should be clearly understood. In this study, we applied our network modeling method to infer the regulatory system for triacylglyceride (TAG) biosynthesis in Lipomyces starkeyi, using factor analyses and structural equation modeling to construct a regulatory network model. By factor analysis, we classified 89 TAG biosynthesis-related genes into nine groups, which were considered different regulatory sub-systems. We constructed two different types of regulatory models. One is the regulatory model for oil productivity, and the other is the whole regulatory model for TAG biosynthesis. From the inferred oil productivity regulatory model, the well characterized genes DGA1 and ACL1 were detected as regulatory factors. Furthermore, we also found unknown feedback controls in oil productivity regulation. These regulation models suggest that the regulatory factor induction targets should be selected carefully. Within the whole regulatory model of TAG biosynthesis, some genes were detected as not related to TAG biosynthesis regulation. Using network modeling, we reveal that the regulatory system is helpful for the new era of bioengineering.
Collapse
Affiliation(s)
- Sachiyo Aburatani
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 305-8568, Japan
- Correspondence: (S.A.); (H.T.); Tel.: +81-3-3599-8712 (S.A.); +81-250-25-5119 (H.T.)
| | - Koji Ishiya
- BPRI, National Institute of Advance Industrial Science and Technology (AIST), Sapporo 062-8517, Japan;
| | - Toshikazu Itoh
- Mitsubishi Research Institute, Inc., Chiyoda District, Tokyo 100-8141, Japan; (T.I.); (T.H.); (T.T.)
| | - Toshihiro Hayashi
- Mitsubishi Research Institute, Inc., Chiyoda District, Tokyo 100-8141, Japan; (T.I.); (T.H.); (T.T.)
| | - Takeaki Taniguchi
- Mitsubishi Research Institute, Inc., Chiyoda District, Tokyo 100-8141, Japan; (T.I.); (T.H.); (T.T.)
| | - Hiroaki Takaku
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
- Correspondence: (S.A.); (H.T.); Tel.: +81-3-3599-8712 (S.A.); +81-250-25-5119 (H.T.)
| |
Collapse
|
6
|
Sailwal M, Das AJ, Gazara RK, Dasgupta D, Bhaskar T, Hazra S, Ghosh D. Connecting the dots: Advances in modern metabolomics and its application in yeast system. Biotechnol Adv 2020; 44:107616. [DOI: 10.1016/j.biotechadv.2020.107616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
|
7
|
Poddar N, Elahee Doomun SN, Callahan DL, Kowalski GM, Martin GJO. The assimilation of glycerol into lipid acyl chains and associated carbon backbones of Nannochloropsis salina varies under nitrogen replete and deplete conditions. Biotechnol Bioeng 2020; 117:3299-3309. [PMID: 32662891 DOI: 10.1002/bit.27498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 11/07/2022]
Abstract
Mixotrophic cultivation can increase microalgae productivity, yet the associated lipid metabolism remains mostly unknown. Stable isotope labeling was used to track assimilation of glycerol into the triacylglyceride (TAG) and membrane lipids of Nannochloropsis salina. In N-replete media, glycerol uptake and 13 C incorporation into acyl chains were, respectively, 6-fold and 12-fold higher than in N-deplete conditions. In N-replete cultures, 42% of the carbon in the consumed glycerol was assimilated into lipid acyl chains, mostly in membrane lipids rather than TAG. In N-deplete cultures, only 11% of the limited amount of consumed glycerol was fixed into lipid acyl chains. Labeled lipid-associated glycerol backbones were predominantly 13 C3 labeled, suggesting that intact glycerol molecules were directly esterified with fatty acids/polar head groups. However, the presence of singly and doubly labeled lipid-bound glycerol species suggested that some glycerol also went through the central carbon metabolism before forming glycerol-3-phosphate destined for lipid esterification. 13 C incorporation was higher in the saturated and monounsaturated than the polyunsaturated acyl chains of TAG, indicating the flux of carbon from glycerol went first to de novo fatty acid synthesis before acyl editing reactions. The results demonstrate that nitrogen availability influences both glycerol consumption and utilization for lipid synthesis in Nannochloropsis, providing novel insights for developing mixotrophic cultivation strategies.
Collapse
Affiliation(s)
- Nature Poddar
- Department of Chemical Engineering, Algal Processing Group, The University of Melbourne, Parkville, Victoria, Australia
| | - Sheik N Elahee Doomun
- School of Life and Environmental Science, Deakin University, Burwood, Victoria, Australia
| | - Damien L Callahan
- School of Life and Environmental Science, Deakin University, Burwood, Victoria, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise Sciences, Deakin, Geelong, Australia
| | - Gregory J O Martin
- Department of Chemical Engineering, Algal Processing Group, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Lipid metabolism of the oleaginous yeast Lipomyces starkeyi. Appl Microbiol Biotechnol 2020; 104:6141-6148. [DOI: 10.1007/s00253-020-10695-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
|