1
|
Xia K, Ma J, Liang X. Impacts of type II toxin-antitoxin systems on cell physiology and environmental behavior in acetic acid bacteria. Appl Microbiol Biotechnol 2021; 105:4357-4367. [PMID: 34021811 DOI: 10.1007/s00253-021-11357-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/08/2021] [Accepted: 05/16/2021] [Indexed: 12/19/2022]
Abstract
Acetic acid bacteria (AAB) are a group of Gram-negative and strictly aerobic microorganisms widely used in vinegar industry, especially the species belonging to the genera Acetobacter and Komagataeibacter. The environments inhabited by AAB during the vinegar fermentation, in particular those natural traditional bioprocesses, are complex and dynamically changed, usually accompanied by diverse microorganisms, bacteriophages, and the increasing acetic acid concentration. For this reason, how AAB survive to such harsh niches has always been an interesting research field. Previous omic analyses (e.g., genomics, proteomics, and transcriptomics) have provided abundant clues for the metabolic pathways and bioprocesses indispensable for the acid stress adaptation of AAB. Nevertheless, it is far from fully understanding what factors regulate these modular mechanisms overtly and covertly upon shifting environments. Bacterial toxin-antitoxin systems (TAS), usually consisting of a pair of genes encoding a stable toxin and an unstable antitoxin that is capable of counteracting the toxin, have been uncovered to have a variety of biological functions. Recent studies focusing on the role of TAS in Acetobacter pasteurianus suggest that TAS contribute substantially to the acid stress resistance. In this mini review, we discuss the biological functions of type II TAS in the context of AAB with regard to the acid stress resistance, persister formation and resuscitation, genome stability, and phage immunity. KEY POINTS: • Type II TAS act as regulators in the acid stress resistance of AAB. • Type II TAS are implicated in the formation of acid-tolerant persister cells in AAB. • Type II TAS are potential factors responsible for phage immunity and genome stability.
Collapse
Affiliation(s)
- Kai Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jiawen Ma
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.,Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China. .,Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Ichikawa S, Tsuge Y, Karita S. Metabolome Analysis of Constituents in Membrane Vesicles for Clostridium thermocellum Growth Stimulation. Microorganisms 2021; 9:microorganisms9030593. [PMID: 33805707 PMCID: PMC8002186 DOI: 10.3390/microorganisms9030593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
The cultivation of the cellulolytic bacterium, Clostridium thermocellum, can have cost-effective cellulosic biomass utilizations, such as consolidated bioprocessing, simultaneous biological enzyme production and saccharification. However, these processes require a longer cultivation term of approximately 1 week. We demonstrate that constituents of the C. thermocellum membrane vesicle fraction significantly promoted the growth rate of C. thermocellum. Similarly, cell-free Bacillus subtilis broth was able to increase C. thermocellum growth rate, while several B. subtilis single-gene deletion mutants, e.g., yxeJ, yxeH, ahpC, yxdK, iolF, decreased the growth stimulation ability. Metabolome analysis revealed signal compounds for cell–cell communication in the C. thermocellum membrane vesicle fraction (ethyl 2-decenoate, ethyl 4-decenoate, and 2-dodecenoic acid) and B. subtilis broth (nicotinamide, indole-3-carboxaldehyde, urocanic acid, nopaline, and 6-paradol). These findings suggest that the constituents in membrane vesicles from C. thermocellum and B. subtilis could promote C. thermocellum growth, leading to improved efficiency of cellulosic biomass utilization.
Collapse
Affiliation(s)
- Shunsuke Ichikawa
- Graduate School of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
- Correspondence: ; Tel.: +89-59-231-9254; Fax: +89-59-231-9352
| | - Yoichiro Tsuge
- Faculty of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan;
| | - Shuichi Karita
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan;
| |
Collapse
|
3
|
Jin X, Zhou J, Richey G, Wang M, Hong SMC, Hong SH. Undecanoic Acid, Lauric Acid, and N-Tridecanoic Acid Inhibit Escherichia coli Persistence and Biofilm Formation. J Microbiol Biotechnol 2021; 31:130-136. [PMID: 33046677 PMCID: PMC8513074 DOI: 10.4014/jmb.2008.08027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/09/2023]
Abstract
Persister cell formation and biofilms of pathogens are extensively involved in the development of chronic infectious diseases. Eradicating persister cells is challenging, owing to their tolerance to conventional antibiotics, which cannot kill cells in a metabolically dormant state. A high frequency of persisters in biofilms makes inactivating biofilm cells more difficult, because the biofilm matrix inhibits antibiotic penetration. Fatty acids may be promising candidates as antipersister or antibiofilm agents, because some fatty acids exhibit antimicrobial effects. We previously reported that fatty acid ethyl esters effectively inhibit Escherichia coli persister formation by regulating an antitoxin. In this study, we screened a fatty acid library consisting of 65 different fatty acid molecules for altered persister formation. We found that undecanoic acid, lauric acid, and N-tridecanoic acid inhibited E. coli BW25113 persister cell formation by 25-, 58-, and 44-fold, respectively. Similarly, these fatty acids repressed persisters of enterohemorrhagic E. coli EDL933. These fatty acids were all medium-chain saturated forms. Furthermore, the fatty acids repressed Enterohemorrhagic E. coli (EHEC) biofilm formation (for example, by 8-fold for lauric acid) without having antimicrobial activity. This study demonstrates that medium-chain saturated fatty acids can serve as antipersister and antibiofilm agents that may be applied to treat bacterial infections.
Collapse
Affiliation(s)
- Xing Jin
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jiacheng Zhou
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Gabriella Richey
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Mengya Wang
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Sung Min Choi Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
4
|
Investigating the effects of nisin and free fatty acid combined treatment on Listeria monocytogenes inactivation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Chen H, Green A, Martz K, Wu X, Alzahrani A, Warriner K. The progress of type II persisters of Escherichia coli O157:H7 to a non-culturable state during prolonged exposure to antibiotic stress with revival being aided through acid-shock treatment and provision of methyl pyruvate. Can J Microbiol 2020; 67:518-528. [PMID: 33125853 DOI: 10.1139/cjm-2020-0339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Persisters are a form of dormancy in bacteria that provide temporary resistance to antibiotics. The following reports on the formation of Escherichia coli O157:H7 E318 type II persisters from a protracted (8 days) challenge with ampicillin. Escherichia coli O157:H7 followed a multiphasic die-off pattern with an initial rapid decline (Phase I) of susceptible cells that transitioned to a slower rate representing tolerant cells (Phase II). After 24 h post-antibiotic challenge, the E. coli O157:H7 levels remained relatively constant at 2 log CFU/mL (Phase III), but became non-culturable within 8-days (Phase IV). The revival of persisters in Phase III could be achieved by the removal of antibiotic stress, although those in Phase IV required an extended incubation period or application of acid-shock. The carbon utilization profile of persister cells was less diverse compared with non-persisters, with only methyl pyruvate being utilized from the range tested. Inclusion of methyl pyruvate in tryptic soy agar revived non-cultural persisters, presumably by stimulating metabolism. The results suggest that persisters could be subdivided into culturable or non-culturable cells, with the former representing a transition state to the latter. The study provided insights into how to revive cells from dormancy to aid enumeration and control.
Collapse
Affiliation(s)
- Heather Chen
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Andrew Green
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Kailey Martz
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Xueyang Wu
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Abdulhakeem Alzahrani
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Keith Warriner
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Khan F, Pham DTN, Tabassum N, Oloketuyi SF, Kim YM. Treatment strategies targeting persister cell formation in bacterial pathogens. Crit Rev Microbiol 2020; 46:665-688. [DOI: 10.1080/1040841x.2020.1822278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, Korea
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, Korea
| | | | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Korea
| |
Collapse
|
7
|
Salcedo-Sora JE, Kell DB. A Quantitative Survey of Bacterial Persistence in the Presence of Antibiotics: Towards Antipersister Antimicrobial Discovery. Antibiotics (Basel) 2020; 9:E508. [PMID: 32823501 PMCID: PMC7460088 DOI: 10.3390/antibiotics9080508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Bacterial persistence to antibiotics relates to the phenotypic ability to survive lethal concentrations of otherwise bactericidal antibiotics. The quantitative nature of the time-kill assay, which is the sector's standard for the study of antibiotic bacterial persistence, is an invaluable asset for global, unbiased, and cross-species analyses. Methods: We compiled the results of antibiotic persistence from antibiotic-sensitive bacteria during planktonic growth. The data were extracted from a sample of 187 publications over the last 50 years. The antibiotics used in this compilation were also compared in terms of structural similarity to fluorescent molecules known to accumulate in Escherichia coli. Results: We reviewed in detail data from 54 antibiotics and 36 bacterial species. Persistence varies widely as a function of the type of antibiotic (membrane-active antibiotics admit the fewest), the nature of the growth phase and medium (persistence is less common in exponential phase and rich media), and the Gram staining of the target organism (persistence is more common in Gram positives). Some antibiotics bear strong structural similarity to fluorophores known to be taken up by E. coli, potentially allowing competitive assays. Some antibiotics also, paradoxically, seem to allow more persisters at higher antibiotic concentrations. Conclusions: We consolidated an actionable knowledge base to support a rational development of antipersister antimicrobials. Persistence is seen as a step on the pathway to antimicrobial resistance, and we found no organisms that failed to exhibit it. Novel antibiotics need to have antipersister activity. Discovery strategies should include persister-specific approaches that could find antibiotics that preferably target the membrane structure and permeability of slow-growing cells.
Collapse
Affiliation(s)
- Jesus Enrique Salcedo-Sora
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|