1
|
Chen S, Li W, Zhao X, Li M, Zhao T, Zheng G, Cao W, Qiao C. Application of explainable machine learning in the production of pullulan by Aureobasidium pullulans CGMCCNO.7055. Int J Biol Macromol 2025; 308:142374. [PMID: 40139616 DOI: 10.1016/j.ijbiomac.2025.142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
The application of machine learning in pullulan biofermentation has demonstrated significant potential. Explainable machine learning enhances model transparency and interpretability by revealing the relationships between variables. In this study, we compared the predictive performance of six machine learning models. The Categorical Boosting (CatBoost) model demonstrated the best fit for biomass and pullulan molecular weight, while eXtreme Gradient Boosting (XGBoost) excelled in predicting pullulan production. Additionally, feature importance and SHapley Additive exPlanations (SHAP) analyses visualized the complex relationships between medium conditions and objectives. Yeast extract emerged as the most influential factor for all three targets. Meanwhile, NaCl and initial pH showed potential in regulating pullulan production and molecular weight, respectively. Finally, optimal medium conditions for maximizing biomass, pullulan production, and molecular weight were determined using the Non-dominated Sorting Genetic Algorithm III (NSGA-III) algorithm, achieving a maximum integrated optimization rate of 275.08 % (calculated as the average of improvements across the three objectives). This study effectively expands the application of the NSGA-III algorithm in multi-objective optimization for pullulan production. These findings contribute to advancing the application of explainable machine learning and advanced intelligent algorithms in the field of pullulan production.
Collapse
Affiliation(s)
- Shiwei Chen
- State Key Laboratory of Bio-based Fiber Materials, Tianjin University of Science and Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenmin Li
- State Key Laboratory of Bio-based Fiber Materials, Tianjin University of Science and Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaowen Zhao
- State Key Laboratory of Bio-based Fiber Materials, Tianjin University of Science and Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Miaoxin Li
- State Key Laboratory of Bio-based Fiber Materials, Tianjin University of Science and Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tingbin Zhao
- Tianjin Huizhi Biotrans Bioengineering Co., Ltd., Tianjin 300457, China
| | - Guobao Zheng
- Institute of Forestry Sciences Agricultural Biotechnology Research Center, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750002, China
| | - Weifeng Cao
- State Key Laboratory of Bio-based Fiber Materials, Tianjin University of Science and Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Changsheng Qiao
- State Key Laboratory of Bio-based Fiber Materials, Tianjin University of Science and Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Huizhi Biotrans Bioengineering Co., Ltd., Tianjin 300457, China.
| |
Collapse
|
2
|
Sahu N, Mahanty B, Haldar D. Response surface methodology and artificial neural network based media optimization for pullulan production in Aureobasidium pullulans. Int J Biol Macromol 2025; 284:138045. [PMID: 39586438 DOI: 10.1016/j.ijbiomac.2024.138045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
The selection and optimization of carbon and nitrogen sources are essential for enhancing pullulan production in Aureobasidium pullulans. In this study, combinations of carbon (sucrose, fructose, glucose) and nitrogen sources ((NH4)2SO4, urea, NaNO3) were screened, where sucrose and NaNO3 offered the highest pullulan yield (9.33 g L-1). Plackett-Burman design of experiment identified KH2PO4, NaCl, and sucrose as significant factors, which were further optimized using a central composite design. A hyperparameter-optimized artificial neural network (ANN) model with a 3-6-2-1 architecture demonstrated superior predictive accuracy (R2: 0.96) and generalizability (R2CV: 0.74) over a reduced quadratic model (R2: 0.82). The predicted pullulan yield (31.9 g L-1) under ANN model optimized conditions (sucrose: 79.9 g L-1, KH2PO4: 0.25 g L-1, NaCl: 4.3 g L-1) closely matched with the observed yield (30.17 g L-1), while quadratic model showed a significant deviation (39.7 g L-1 vs. 21.0 g L-1), highlighting the reliability of the ANN model.
Collapse
Affiliation(s)
- Nageswar Sahu
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India.
| | - Biswanath Mahanty
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India.
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India.
| |
Collapse
|
3
|
Eldadamony NM, Ghoniem AA, Al-Askar AA, Attia AA, El-Hersh MS, Elattar KM, Alrdahi H, Saber WIA. Optimization of pullulan production by Aureobasidium pullulans using semi-solid-state fermentation and artificial neural networks: Characterization and antibacterial activity of pullulan impregnated with Ag-TiO 2 nanocomposite. Int J Biol Macromol 2024; 269:132109. [PMID: 38714281 DOI: 10.1016/j.ijbiomac.2024.132109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
This study presents a novel and efficient approach for pullulan production using artificial neural networks (ANNs) to optimize semi-solid-state fermentation (S-SSF) on faba bean biomass (FBB). This method achieved a record-breaking pullulan yield of 36.81 mg/g within 10.82 days, significantly exceeding previous results. Furthermore, the study goes beyond yield optimization by characterizing the purified pullulan, revealing its unique properties including thermal stability, amorphous structure, and antioxidant activity. Energy-dispersive X-ray spectroscopy and scanning electron microscopy confirmed its chemical composition and distinct morphology. This research introduces a groundbreaking combination of ANNs and comprehensive characterization, paving the way for sustainable and cost-effective pullulan production on FBB under S-SSF conditions. Additionally, the study demonstrates the successful integration of pullulan with Ag@TiO2 nanoparticles during synthesis using Fusarium oxysporum. This novel approach significantly enhances the stability and efficacy of the nanoparticles by modifying their surface properties, leading to remarkably improved antibacterial activity against various human pathogens. These findings showcase the low-cost production medium, and extensive potential of pullulan not only for its intrinsic properties but also for its ability to significantly improve the performance of nanomaterials. This breakthrough opens doors to diverse applications in various fields.
Collapse
Affiliation(s)
- Noha M Eldadamony
- Seed Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt.
| | - Abeer A Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Abdulaziz A Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Attia A Attia
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, Egypt
| | - Mohammed S El-Hersh
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt.
| | - Haifa Alrdahi
- School of Computer Science, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt.
| |
Collapse
|
4
|
Wang QQ, Lin J, Zhou QZ, Peng J, Zhang Q, Wang JH. Hyper-Production of Pullulan by a Novel Fungus of Aureobasidium melanogenum ZH27 through Batch Fermentation. Int J Mol Sci 2023; 25:319. [PMID: 38203490 PMCID: PMC10779298 DOI: 10.3390/ijms25010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Pullulan, which is a microbial exopolysaccharide, has found widespread applications in foods, biomedicines, and cosmetics. Despite its versatility, most wild-type strains tend to yield low levels of pullulan production, and their mutants present genetic instability, achieving a limited increase in pullulan production. Therefore, mining new wild strains with robust pullulan-producing abilities remains an urgent concern. In this study, we found a novel strain, namely, Aureobasidium melanogenum ZH27, that had a remarkable pullulan-producing capacity and optimized its cultivation conditions using the one-factor-at-a-time method. To elucidate the reasons that drove the hyper-production of pullulan, we scrutinized changes in cell morphology and gene expressions. The results reveal that strain ZH27 achieved 115.4 ± 1.82 g/L pullulan with a productivity of 0.87 g/L/h during batch fermentation within 132 h under the optimized condition (OC). This pullulan titer increased by 105% compared with the initial condition (IC). Intriguingly, under the OC, swollen cells featuring 1-2 large vacuoles predominated during a rapid pullulan accumulation, while these swollen cells with one large vacuole and several smaller ones were prevalent under the IC. Moreover, the expressions of genes associated with pullulan accumulation and by-product synthesis were almost all upregulated. These findings suggest that swollen cells and large vacuoles may play pivotal roles in the high level of pullulan production, and the accumulation of by-products also potentially contributes to pullulan synthesis. This study provides a novel and promising candidate for industrial pullulan production.
Collapse
Affiliation(s)
- Qin-Qing Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (J.L.); (Q.-Z.Z.); (J.P.); (Q.Z.)
- Guangdong Engineering Laboratory of Biomass High-Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jia Lin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (J.L.); (Q.-Z.Z.); (J.P.); (Q.Z.)
| | - Qian-Zhi Zhou
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (J.L.); (Q.-Z.Z.); (J.P.); (Q.Z.)
| | - Juan Peng
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (J.L.); (Q.-Z.Z.); (J.P.); (Q.Z.)
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (J.L.); (Q.-Z.Z.); (J.P.); (Q.Z.)
| | - Jiang-Hai Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (J.L.); (Q.-Z.Z.); (J.P.); (Q.Z.)
| |
Collapse
|
5
|
Yang J, Li X, Zhao S, Yuan W, Zhou Q, Zhang Y, Qiu J, Wang J, Zhu Q, Yang X, Jiang X, Tian C, Chen L. Light calcium carbonate improves pullulan biosynthesis by Aureobasidium pullulans under high concentration of sugar. Food Chem 2023; 415:135760. [PMID: 36854243 DOI: 10.1016/j.foodchem.2023.135760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
The effects of light calcium carbonate (CaCO3) on pullulan biosynthesis by Aureobasidium pullulans NCPS2016 were investigated. Light CaCO3 enhanced pullulan production by 12.4 % when added to the low concentration of fructose broth compared with K2HPO4. Pullulan production was further improved when increasing both the concentrations of light CaCO3 and fructose. Compared to K2HPO4, light CaCO3 improved the activities of UDP-glucose pyrophosphorylase, α-phosphoglucose mutase, UDP-glucosyltransferase, and glucosyltransferase relevant to pullulan biosynthesis, and the gene transcriptional levels of UDP-glucose pyrophosphorylase, α-phosphoglucose mutase, UDP-glucosyltransferase, and glucose kinase were enhanced. During 30-liter fermentation, 144.3 g/L of purified pullulan was produced from 200 g/L of fructose and 15 g/L of light CaCO3 within 168 h, with the yield and productivity of 0.72 g/g and 0.86 g/L/h respectively. This is the first report that light CaCO3 improves pullulan production significantly.
Collapse
Affiliation(s)
- Jinyu Yang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiwen Li
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shuangzhi Zhao
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Wei Yuan
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Qingxin Zhou
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Yanhao Zhang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Jiying Qiu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Junhua Wang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Qingjun Zhu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiaoyu Yang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiaoxiao Jiang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Chengsen Tian
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China.
| | - Leilei Chen
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China.
| |
Collapse
|
6
|
Exclusive Biosynthesis of Pullulan Using Taguchi’s Approach and Decision Tree Learning Algorithm by a Novel Endophytic Aureobasidium pullulans Strain. Polymers (Basel) 2023; 15:polym15061419. [PMID: 36987200 PMCID: PMC10058109 DOI: 10.3390/polym15061419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Pullulan is a biodegradable, renewable, and environmentally friendly hydrogel biopolymer, with potential uses in food, medicine, and cosmetics. New endophytic Aureobasidium pullulans (accession number; OP924554) was used for the biosynthesis of pullulan. Innovatively, the fermentation process was optimized using both Taguchi’s approach and the decision tree learning algorithm for the determination of important variables for pullulan biosynthesis. The relative importance of the seven tested variables that were obtained by Taguchi and the decision tree model was accurate and followed each other’s, confirming the accuracy of the experimental design. The decision tree model was more economical by reducing the quantity of medium sucrose content by 33% without a negative reduction in the biosynthesis of pullulan. The optimum nutritional conditions (g/L) were sucrose (60 or 40), K2HPO4 (6.0), NaCl (1.5), MgSO4 (0.3), and yeast extract (1.0) at pH 5.5, and short incubation time (48 h), yielding 7.23% pullulan. The spectroscopic characterization (FT-IR and 1H-NMR spectroscopy) confirmed the structure of the obtained pullulan. This is the first report on using Taguchi and the decision tree for pullulan production by a new endophyte. Further research is encouraged for additional studies on using artificial intelligence to maximize fermentation conditions.
Collapse
|
7
|
Li X, Zhao S, Chen L, Zhou Q, Qiu J, Xin X, Zhang Y, Yuan W, Tian C, Yang J, Yu X. High-level production of pullulan from high concentration of glucose by mutagenesis and adaptive laboratory evolution of Aureobasidium pullulans. Carbohydr Polym 2023; 302:120426. [PMID: 36604088 DOI: 10.1016/j.carbpol.2022.120426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
The cost of carbon sources and the low efficiency of the fermentation titer limit the industrial application of pullulan. In this study, a hypertonic-tolerant strain with efficient utilization of glucose was obtained using a double strategy. Initially, a strain for efficient synthesis of pullulan from glucose was generated by mutagenesis. Subsequently, the mutant was directionally evolved on the plate containing a high glucose concentration to enhance high osmotic resistance. The enzyme activities and the transcriptional levels involved in pullulan biosynthesis and high osmotic tolerance in mutants were increased. Nitrogen source and inorganic salts also significantly affected the production of pullulan by M233-20 from high concentration of glucose. The pullulan titer of 162.1 g/L was obtained using the response surface methodology in the flask. The strain M233-20 produced 162.3 g/L pullulan in a 30-L bioreactor with a yield of 0.82 g/g glucose. Hence, this work provides a potential industrial pullulan producer M233-20 and a strategy to develop excellent strain.
Collapse
Affiliation(s)
- Xiwen Li
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan 250100, China; Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Shuangzhi Zhao
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan 250100, China; Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Leilei Chen
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan 250100, China; Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Qingxin Zhou
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan 250100, China; Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Jiying Qiu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan 250100, China; Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xue Xin
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan 250100, China; Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Yanhao Zhang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan 250100, China; Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Wei Yuan
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan 250100, China; Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Chengsen Tian
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Jinyu Yang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan 250100, China; Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan 250100, China.
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
8
|
He C, Zhang X, Zhang Z, Wang C, Wang D, Wei G. Whole-crop biorefinery of corn biomass for pullulan production by Aureobasidium pullulans. BIORESOURCE TECHNOLOGY 2023; 370:128517. [PMID: 36565822 DOI: 10.1016/j.biortech.2022.128517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In the present study, corn starch, cob, and straw were biorefined and used as feedstocks for the production of pullulan. The titer and molecular weight (Mw) of pullulan significantly decreased when corn cob and straw hydrolysates were utilized by the parental strain Aureobasidium pullulans CCTCC M 2012259 (PS). Based on adaptive laboratory evolution of PS, an evolved strain A. pullulans EV6 with strong adaptability to the whole corn biomass hydrolysate and high capability of pullulan biosynthesis was screened. Batch pullulan fermentation results indicated that EV6 produced an increased titer of pullulan with a higher Mw than PS. The underlying reasons for these increases were revealed by assaying key enzymes activities and measuring intracellular uridine diphosphate glucose levels. Subsequently, whole-crop biorefinery of corn biomass was conducted, and the results confirmed that whole corn crop has immense potential for efficient pullulan production.
Collapse
Affiliation(s)
- Chaoyong He
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Xuehan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Zhen Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Dahui Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
9
|
Chen X, Wang Y, Zhang XT, Wu YN, Zhang XL, Zhang GC, Wang CL, Zou X, Wang DH, Wei GY. MAL31, a sugar transporter involved in pullulan biosynthesis in Aureobasidium pullulans. J Biotechnol 2022; 359:176-184. [DOI: 10.1016/j.jbiotec.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/23/2022] [Accepted: 10/08/2022] [Indexed: 10/31/2022]
|
10
|
Singh RS, Saini GK, Kennedy JF. Pullulan production in stirred tank reactor by a colour-variant strain of Aureobasidium pullulans FB-1. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
11
|
He C, Zhang Z, Zhang Y, Wang G, Wang C, Wang D, Wei G. Efficient pullulan production by Aureobasidium pullulans using cost-effective substrates. Int J Biol Macromol 2021; 186:544-553. [PMID: 34273338 DOI: 10.1016/j.ijbiomac.2021.07.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
In this study, cost-effective substrates such as cassava starch, corn steep liquor (CSL) and soybean meal hydrolysate (SMH) were used for pullulan production by Aureobasidium pullulans CCTCC M 2012259. The medium was optimized using response surface methodology (RSM) and artificial neural network (ANN) approaches, and analysis of variance indicated that the ANN model achieved higher prediction accuracy. The optimal medium predicted by ANN was used to produce high molecular weight pullulan in high yield. SMH substrates increased both biomass and pullulan titer, while CSL substrates maintained higher pullulan molecular weight. Results of kinetic parameters, key enzyme activities and intracellular uridine diphosphate glucose contents revealed the physiological mechanism of changes in pullulan titer and molecular weight using different substrates. Economic analysis of batch pullulan production using different substrates was performed, and the cost of nutrimental materials for CSL and SMH substrates was decreased by 46.1% and 49.9%, respectively, compared to the control using glucose and yeast extract as substrates, which could improve the competitiveness of pullulan against other polysaccharides in industrial applications.
Collapse
Affiliation(s)
- Chaoyong He
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Zhen Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Youdan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Guoliang Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Dahui Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China.
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
12
|
Chen X, Wang Y, He CY, Wang GL, Zhang GC, Wang CL, Wang DH, Zou X, Wei GY. Improved production of β-glucan by a T-DNA-based mutant of Aureobasidium pullulans. Appl Microbiol Biotechnol 2021; 105:6887-6898. [PMID: 34448899 DOI: 10.1007/s00253-021-11538-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 11/26/2022]
Abstract
To improve β-1,3-1,6-D-glucan (β-glucan) production by Aureobasidium pullulans, an Agrobacterium tumefaciens-mediated transformation method was developed to screen a mutant A. pullulans CGMCC 19650. Based on thermal asymmetric-interlaced PCR detection, DNA sequencing, BLAST analysis, and quantitative real-time PCR assay, the T-DNA was identified to be inserted in the coding region of mal31 gene, which encodes a sugar transporter involved in pullulan biosynthesis in the mutant. The maximal biomass and β-glucan production under batch fermentation were significantly increased by 47.6% and 78.6%, respectively, while pullulan production was decreased by 41.7% in the mutant, as compared to the parental strain A. pullulans CCTCC M 2012259. Analysis of the physiological mechanism of these changes revealed that mal31 gene disruption increased the transcriptional levels of pgm2, ugp, fks1, and kre6 genes; increased the amounts of key enzymes associated with UDPG and β-glucan biosynthesis; and improved intracellular UDPG contents and energy supply, all of which favored β-glucan production. However, the T-DNA insertion decreased the transcriptional levels of ags2 genes, and reduced the biosynthetic capability to form pullulan, resulting in the decrease in pullulan production. This study not only provides an effective approach for improved β-glucan production by A. pullulans, but also presents an accurate and useful gene for metabolic engineering of the producer for efficient polysaccharide production. KEY POINTS: • A mutant A. pullulans CGMCC 19650 was screened by using the ATMT method. • The mal31 gene encoding a sugar transporter was disrupted in the mutant. • β-Glucan produced by the mutant was significantly improved.
Collapse
Affiliation(s)
- Xing Chen
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Ying Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Chao-Yong He
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Guo-Liang Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Gao-Chuan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Chong-Long Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Da-Hui Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Southwest University, 2# TianSheng Road, Beibei, Chongqing, 400715, People's Republic of China.
| | - Gong-Yuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
13
|
Liu F, Zhang J, Zhang L, Diao M, Ling P, Wang F. Correlation between the synthesis of pullulan and melanin in Aureobasidium pullulans. Int J Biol Macromol 2021; 177:252-260. [PMID: 33609584 DOI: 10.1016/j.ijbiomac.2021.02.108] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 10/22/2022]
Abstract
The content of pullulan and melanin in 500 mutants of Aureobasidum pullulans obtained by ultraviolet mutagenesis were examined and statistically analyzed, and a strong positive correlation was found between them. The result was further confirmed by culturing wild type strain As3.3984 in different media. Then we constructed melanin-deletion mutant As-Δalb1 and pullulan-deletion mutant As-Δpul. As-Δalb1 was a melanin-free strain with the yield of pullulan decreased by 41.01%. The supplementation of melanin in the culture of As-Δalb1 increased the production of pullulan. As-Δpul synthesized neither pullulan nor melanin and recovered melanin synthesis by adding pullulan to the medium. The results suggested that high concentration- of pullulan induced morphological transformation and synthesis of melanin, and melanin promoted the synthesis of pullulan. The pullulan biosynthetic genes, upt, pgm, ugp, and pul, were down-regulated, while the negative regulatory gene of pullulan synthesis, creA, was up-regulated by melanin deficiency.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China; Shandong Freda Pharmaceutical Group Co., Ltd, Jinan 250101, Shandong, China
| | - Jinhua Zhang
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Linjun Zhang
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Mengqi Diao
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Peixue Ling
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China; Shandong Freda Pharmaceutical Group Co., Ltd, Jinan 250101, Shandong, China.
| | - Fengshan Wang
- Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shangdong, China.
| |
Collapse
|
14
|
Metabolic flux and transcriptome analyses provide insights into the mechanism underlying zinc sulfate improved β-1,3-D-glucan production by Aureobasidium pullulans. Int J Biol Macromol 2020; 164:140-148. [PMID: 32682036 DOI: 10.1016/j.ijbiomac.2020.07.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/12/2020] [Indexed: 11/20/2022]
Abstract
The effects of zinc sulfate at various concentrations on β-1,3-D-glucan (β-glucan) and pullulan production were investigated in flasks, and 0.1 g/L zinc sulfate was found to be the optimum concentration favoring increased β-glucan production. When batch culture of Aureobasidium pullulans CCTCC M 2012259 with 0.1 g/L zinc sulfate was carried out, the maximum dry biomass decreased by 16.9% while β-glucan production significantly increased by 120.5%, compared to results obtained from the control without zinc sulfate addition. To reveal the mechanism underlying zinc sulfate improved β-glucan production, both metabolic flux analysis and RNA-seq analysis were performed. The results indicated that zinc sulfate decreased carbon flux towards biomass formation and ATP supply, down-regulated genes associated with membrane part and cellular components organization, leading to a decrease in dry cell weight. However, zinc sulfate increased metabolic flux towards β-glucan biosynthesis, up-regulated genes related to glycan biosynthesis and nucleotide metabolism, resulting in improved β-glucan production. This study provides insights into the changes in the metabolism of A. pullulans in response to zinc sulfate, and can serve as a valuable reference of genetic information for improving the production of polysaccharides through metabolic engineering.
Collapse
|
15
|
Triton X-100 improves co-production of β-1,3-D-glucan and pullulan by Aureobasidium pullulans. Appl Microbiol Biotechnol 2020; 104:10685-10696. [PMID: 33170326 DOI: 10.1007/s00253-020-10992-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/21/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022]
Abstract
The effects of several surfactants on the biosynthesis of β-1,3-D-glucan (β-glucan) and pullulan by Aureobasidium pullulans CCTCC M 2012259 were investigated, and Triton X-100 was found to decrease biomass formation but increase β-glucan and pullulan production. The addition of 5 g/L Triton X-100 to the fermentation medium and bioconversion broth significantly increased β-glucan production by 76.6% and 69.9%, respectively, when compared to the control without surfactant addition. To reveal the physiological mechanism underlying the effect of Triton X-100 on polysaccharides production, the cell morphology and viability, membrane permeability, key enzyme activities, and intracellular levels of UDPG, NADH, and ATP were determined. The results indicated that Triton X-100 increased the activities of key enzymes involved in β-glucan and pullulan biosynthesis, improved intracellular UDPG and energy supply, and accelerated the transportation rate of precursors across the cell membrane, all of which contributed to the enhanced production of β-glucan and pullulan. Moreover, a two-stage culture strategy with combined processes of batch fermentation and bioconversion was applied, and co-production of β-glucan and pullulan in the presence of 5 g/L Triton X-100 additions was further improved. The present study not only provides insights into the effect of surfactant on β-glucan and pullulan production but also presents a feasible approach for efficient production of analogue exopolysaccharides. KEY POINTS: • Triton X-100 increased β-glucan and pullulan production under either batch fermentation or bioconversion. • Triton X-100 increased the permeability of cell membrane and accelerated the transportation rate of precursors across cell membrane. • Activities of key enzymes involved in β-glucan and pullulan biosynthesis were increased in the presence of Triton X-100. • Intracellular UDPG levels and energy supply were improved by Triton X-100 addition.
Collapse
|
16
|
Wang D, Zhu C, Zhang G, Wang C, Wei G. Enhanced β-glucan and pullulan production by Aureobasidium pullulans with zinc sulfate supplementation. Appl Microbiol Biotechnol 2019; 104:1751-1760. [PMID: 31867695 DOI: 10.1007/s00253-019-10326-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 01/20/2023]
Abstract
The effects of mineral salts on the production of exopolysaccharides, including β-glucan and pullulan, by Aureobasidium pullulans CCTCC M 2012259 were investigated. Zinc sulfate at certain concentrations decreased dry biomass but favored to the biosynthesis of both exopolysaccharides. When 100 mg/L zinc sulfate was added to the fermentation medium, production of β-glucan and pullulan increased by 141.7 and 10.2%, respectively, when compared with that noted in the control without zinc sulfate addition. To reveal the physiological mechanism underlying improved β-glucan and pullulan production, key enzymes activities, energy metabolism substances, intracellular uridine diphosphate glucose (UDPG) levels, and gene expression were determined. The results indicated that zinc sulfate up-regulated the transcriptional levels of pgm1, ugp, fks, and kre6 genes, increased activities of key enzymes involved in the biosynthesis of UDPG, β-glucan and pullulan, enhanced intracellular UDPG content, and improved energy supply, all of which contributed to the increment in β-glucan and pullulan production. The present study not only provides a feasible approach to improve the production of exopolysaccharides but also contributes to better understanding of the physiological characteristics of A. pullulans.
Collapse
Affiliation(s)
- D Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - C Zhu
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - G Zhang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - C Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - G Wei
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
17
|
Pullulan – Biopolymer with Potential for Use as Food Packaging. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2019. [DOI: 10.1515/ijfe-2019-0030] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractThe materials used in food packaging based on non-biodegradable synthetic polymers pose a serious threat of pollution to the environment. Hence, research is now focused on developing eco-friendly and biodegradable packaging obtained from natural polymers. Pullulan is a microbial exopolysaccharide, obtained on a commercial scale by the yeast-like fungus Aureobasidium pullulans. It is a water-soluble, non-toxic and non-mutagenic edible biopolymer with excellent film-forming abilities and adhesive properties. Furthermore, pullulan presents great potential to fabricate thin, transparent, odorless and tasteless edible films and coating used as packaging material. This review article presents an overview on the basic mechanical and barrier properties of a pullulan-based film. It also describes the modification methods applied in order to obtain multifunctional materials in terms of satisfactory physico-mechanical performance and antimicrobial activity for food packaging.
Collapse
|