1
|
Izquierdo Lafuente B, Verboom T, Coenraads S, Ummels R, Bitter W, Speer A. Vitamin B 12 uptake across the mycobacterial outer membrane is influenced by membrane permeability in Mycobacterium marinum. Microbiol Spectr 2024; 12:e0316823. [PMID: 38722177 PMCID: PMC11237697 DOI: 10.1128/spectrum.03168-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/12/2024] [Indexed: 06/06/2024] Open
Abstract
Vitamin B12 (B12) serves as a critical cofactor within mycobacterial metabolism. While some pathogenic strains can synthesize B12 de novo, others rely on host-acquired B12. In this investigation, we studied the transport of vitamin B12 in Mycobacterium marinum using B12-auxotrophic and B12-sensitive strains by deleting metH or metE, respectively. These two enzymes rely on B12 in different ways to function as methionine synthases. We used these strains to select mutants affecting B12 scavenging and confirmed their phenotypes during growth experiments in vitro. Our analysis of B12 uptake mechanisms revealed that membrane lipids and cell wall integrity play an essential role in cell envelope transport. Furthermore, we identified a potential transcription regulator that responds to B12. Our study demonstrates that M. marinum can take up exogenous B12 and that altering mycobacterial membrane integrity affects B12 uptake. Finally, during zebrafish infection using B12-auxotrophic and B12-sensitive strains, we found that B12 is available for virulent mycobacteria in vivo.IMPORTANCEOur study investigates how mycobacteria acquire essential vitamin B12. These microbes, including those causing tuberculosis, face challenges in nutrient uptake due to their strong outer layer. We focused on Mycobacterium marinum, similar to TB bacteria, to uncover its vitamin B12 absorption. We used modified strains unable to produce their own B12 and discovered that M. marinum can indeed absorb it from the environment, even during infections. Changes in the outer layer composition affect this process, and genes related to membrane integrity play key roles. These findings illuminate the interaction between mycobacteria and their environment, offering insights into combatting diseases like tuberculosis through innovative strategies. Our concise research underscores the pivotal role of vitamin B12 in microbial survival and its potential applications in disease control.
Collapse
Affiliation(s)
- Beatriz Izquierdo Lafuente
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Theo Verboom
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sita Coenraads
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Sao Emani C, Reiling N. The efflux pumps Rv1877 and Rv0191 play differential roles in the protection of Mycobacterium tuberculosis against chemical stress. Front Microbiol 2024; 15:1359188. [PMID: 38516013 PMCID: PMC10956863 DOI: 10.3389/fmicb.2024.1359188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Background It was previously shown that GlnA3sc enabled Streptomyces coelicolor to survive in excess polyamines. However, subsequent studies revealed that Rv1878, the corresponding Mycobacterium tuberculosis (M.tb) ortholog, was not essential for the detoxification of spermine (Spm), in M.tb. On the other hand, the multi-drug efflux pump Rv1877 was previously shown to enable export of a wide range of compounds, while Rv0191 was shown to be more specific to chloramphenicol. Rationale Therefore, we first wanted to determine if detoxification of Spm by efflux can be achieved by any efflux pump, or if that was dependent upon the function of the pump. Next, since Rv1878 was found not to be essential for the detoxification of Spm, we sought to follow-up on the investigation of the physiological role of Rv1878 along with Rv1877 and Rv0191. Approach To evaluate the specificity of efflux pumps in the mycobacterial tolerance to Spm, we generated unmarked ∆rv1877 and ∆rv0191 M.tb mutants and evaluated their susceptibility to Spm. To follow up on the investigation of any other physiological roles they may have, we characterized them along with the ∆rv1878 M.tb mutant. Results The ∆rv1877 mutant was sensitive to Spm stress, while the ∆rv0191 mutant was not. On the other hand, the ∆rv1878 mutant grew better than the wild-type during iron starvation yet was sensitive to cell wall stress. The proteins Rv1877 and Rv1878 seemed to play physiological roles during hypoxia and acidic stress. Lastly, the ∆rv0191 mutant was the only mutant that was sensitive to oxidative stress. Conclusion The multidrug MFS-type efflux pump Rv1877 is required for Spm detoxification, as opposed to Rv0191 which seems to play a more specific role. Moreover, Rv1878 seems to play a role in the regulation of iron homeostasis and the reconstitution of the cell wall of M.tb. On the other hand, the sensitivity of the ∆rv0191 mutant to oxidative stress, suggests that Rv0191 may be responsible for the transport of low molecular weight thiols.
Collapse
Affiliation(s)
- Carine Sao Emani
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| |
Collapse
|
3
|
Ghith A, Bell SG. The oxidation of steroid derivatives by the CYP125A6 and CYP125A7 enzymes from Mycobacterium marinum. J Steroid Biochem Mol Biol 2023; 235:106406. [PMID: 37793577 DOI: 10.1016/j.jsbmb.2023.106406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/24/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
The members of the bacterial cytochrome P450 (CYP) monooxygenase family CYP125, catalyze the oxidation of steroid derivatives including cholesterol and phytosterols, as the initial activating step in their catabolism. However, several bacterial species contain multiple genes encoding CYP125 enzymes and other CYP enzymes which catalyze cholesterol/cholest-4-en-3-one hydroxylation. An important question is why these bacterium have more than one enzyme with overlapping substrate ranges capable of catalyzing the terminal oxidation of the alkyl chain of these sterols. To further understand the role of these enzymes we investigated CYP125A6 and CYP125A7 from Mycobacterium marinum with various cholesterol analogues. These have modifications on the A and B rings of the steroid and we assessed the substrate binding and catalytic activity of these with each enzyme. CYP125A7 gave similar results to those reported for the CYP125A1 enzyme from M. tuberculosis. Differences in the substrate binding and catalytic activity with the cholesterol analogues were observed with CYP125A6. For example, while cholesteryl sulfate could bind to both enzymes it was only oxidized by CYP125A6 and not by CYP125A7. CYP125A6 generated higher levels of metabolites with the majority of C-3 and C-7 substituted cholesterol analogues such 7-ketocholesterol. However, 5α-cholestan-3β-ol was only oxidized by CYP125A7 enzyme. The cholest-4-en-3-one and 7-ketocholesterol-bound forms of the CYP125A6 and CYP125A7 enzymes were modelled using AlphaFold. The structural models highlighted differences in the binding modes of the steroid derivatives within the same enzyme. Significant changes in the binding mode of the steroids between these CYP125 enzymes and other bacterial cholesterol oxidizing enzymes, CYP142A3 and CYP124A1, were also seen. Despite this, all these models predicted the selectivity for terminal methyl hydroxylation, in agreement with the experimental data.
Collapse
Affiliation(s)
- Amna Ghith
- Department of Chemistry, University of Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA 5005, Australia.
| |
Collapse
|
4
|
Kumar N, He J, Rusling JF. Electrochemical transformations catalyzed by cytochrome P450s and peroxidases. Chem Soc Rev 2023; 52:5135-5171. [PMID: 37458261 DOI: 10.1039/d3cs00461a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIVO intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C-H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030, USA
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
5
|
Gilep A, Varaksa T, Bukhdruker S, Kavaleuski A, Ryzhykau Y, Smolskaya S, Sushko T, Tsumoto K, Grabovec I, Kapranov I, Okhrimenko I, Marin E, Shevtsov M, Mishin A, Kovalev K, Kuklin A, Gordeliy V, Kaluzhskiy L, Gnedenko O, Yablokov E, Ivanov A, Borshchevskiy V, Strushkevich N. Structural insights into 3Fe-4S ferredoxins diversity in M. tuberculosis highlighted by a first redox complex with P450. Front Mol Biosci 2023; 9:1100032. [PMID: 36699703 PMCID: PMC9868604 DOI: 10.3389/fmolb.2022.1100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Ferredoxins are small iron-sulfur proteins and key players in essential metabolic pathways. Among all types, 3Fe-4S ferredoxins are less studied mostly due to anaerobic requirements. Their complexes with cytochrome P450 redox partners have not been structurally characterized. In the present work, we solved the structures of both 3Fe-4S ferredoxins from M. tuberculosis-Fdx alone and the fusion FdxE-CYP143. Our SPR analysis demonstrated a high-affinity binding of FdxE to CYP143. According to SAXS data, the same complex is present in solution. The structure reveals extended multipoint interactions and the shape/charge complementarity of redox partners. Furthermore, FdxE binding induced conformational changes in CYP143 as evident from the solved CYP143 structure alone. The comparison of FdxE-CYP143 and modeled Fdx-CYP51 complexes further revealed the specificity of ferredoxins. Our results illuminate the diversity of electron transfer complexes for the production of different secondary metabolites.
Collapse
Affiliation(s)
- Andrei Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus,Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Tatsiana Varaksa
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anton Kavaleuski
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Yury Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia,Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Sviatlana Smolskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Tatsiana Sushko
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Irina Grabovec
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Ivan Kapranov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mikhail Shevtsov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kirill Kovalev
- European Molecular Biology Laboratory, Hamburg Unit C/O DESY, Hamburg, Germany
| | - Alexander Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia,Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Valentin Gordeliy
- Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Leonid Kaluzhskiy
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Oksana Gnedenko
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Evgeniy Yablokov
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Alexis Ivanov
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia,Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia,*Correspondence: Valentin Borshchevskiy, ; Natallia Strushkevich,
| | - Natallia Strushkevich
- Skolkovo Institute of Science and Technology, Moscow, Russia,*Correspondence: Valentin Borshchevskiy, ; Natallia Strushkevich,
| |
Collapse
|
6
|
Contrasting Health Effects of Bacteroidetes and Firmicutes Lies in Their Genomes: Analysis of P450s, Ferredoxins, and Secondary Metabolite Clusters. Int J Mol Sci 2022; 23:ijms23095057. [PMID: 35563448 PMCID: PMC9100364 DOI: 10.3390/ijms23095057] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Species belonging to the bacterial phyla Bacteroidetes and Firmicutes represent over 90% of the gastrointestinal microbiota. Changes in the ratio of these two bacterial groups were found to have contrasting health effects, including obesity and inflammatory diseases. Despite the availability of many bacterial genomes, comparative genomic studies on the gene pools of these two bacterial groups concerning cytochrome P450 monooxygenases (P450s), ferredoxins, and secondary metabolite biosynthetic gene clusters (smBGCs) are not reported. This study is aimed to address this research gap. The study revealed the presence of diverse sets of P450s, ferredoxins, and smBGCs in their genomes. Bacteroidetes species have the highest number of P450 families, ferredoxin cluster-types, and smBGCs compared to Firmicutes species. Only four P450 families, three ferredoxin cluster types, and five smBGCs are commonly shared between these two bacterial groups. Considering the above facts, we propose that the contrasting effects of these two bacterial groups on the host are partly due to the distinct nature of secondary metabolites produced by these organisms. Thus, the cause of the contrasting health effects of these two bacterial groups lies in their gene pools.
Collapse
|
7
|
Diversification of Ferredoxins across Living Organisms. Curr Issues Mol Biol 2021; 43:1374-1390. [PMID: 34698119 PMCID: PMC8928951 DOI: 10.3390/cimb43030098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Ferredoxins, iron-sulfur (Fe-S) cluster proteins, play a key role in oxidoreduction reactions. To date, evolutionary analysis of these proteins across the domains of life have been confined to observing the abundance of Fe-S cluster types (2Fe-2S, 3Fe-4S, 4Fe-4S, 7Fe-8S (3Fe-4s and 4Fe-4S) and 2[4Fe-4S]) and the diversity of ferredoxins within these cluster types was not studied. To address this research gap, here we propose a subtype classification and nomenclature for ferredoxins based on the characteristic spacing between the cysteine amino acids of the Fe-S binding motif as a subtype signature to assess the diversity of ferredoxins across the living organisms. To test this hypothesis, comparative analysis of ferredoxins between bacterial groups, Alphaproteobacteria and Firmicutes and ferredoxins collected from species of different domains of life that are reported in the literature has been carried out. Ferredoxins were found to be highly diverse within their types. Large numbers of alphaproteobacterial species ferredoxin subtypes were found in Firmicutes species and the same ferredoxin subtypes across the species of Bacteria, Archaea, and Eukarya, suggesting shared common ancestral origin of ferredoxins between Archaea and Bacteria and lateral gene transfer of ferredoxins from prokaryotes (Archaea/Bacteria) to eukaryotes. This study opened new vistas for further analysis of diversity of ferredoxins in living organisms.
Collapse
|
8
|
Vermeulen NP. Meet Our Associate Editor. Curr Drug Metab 2021. [DOI: 10.2174/138920022203210318122829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Mizzi R, Timms VJ, Price-Carter ML, Gautam M, Whittington R, Heuer C, Biggs PJ, Plain KM. Comparative Genomics of Mycobacterium avium Subspecies Paratuberculosis Sheep Strains. Front Vet Sci 2021; 8:637637. [PMID: 33659287 PMCID: PMC7917049 DOI: 10.3389/fvets.2021.637637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the aetiological agent of Johne's disease (JD), a chronic enteritis that causes major losses to the global livestock industry. Further, it has been associated with human Crohn's disease. Several strains of MAP have been identified, the two major groups being sheep strain MAP, which includes the Type I and Type III sub-lineages, and the cattle strain or Type II MAP lineage, of which bison strains are a sub-grouping. Major genotypic, phenotypic and pathogenic variations have been identified in prior comparisons, but the research has predominately focused on cattle strains of MAP. In countries where the sheep industries are more prevalent, however, such as Australia and New Zealand, ovine JD is a substantial burden. An information gap exists regarding the genomic differences between sheep strain sub-lineages and the relevance of Type I and Type III MAP in terms of epidemiology and/or pathogenicity. We therefore investigated sheep MAP isolates from Australia and New Zealand using whole genome sequencing. For additional context, sheep MAP genome datasets were downloaded from the Sequence Read Archive and GenBank. The final dataset contained 18 Type III and 16 Type I isolates and the K10 cattle strain MAP reference genome. Using a pan-genome approach, an updated global phylogeny for sheep MAP from de novo assemblies was produced. When rooted with the K10 cattle reference strain, two distinct clades representing the lineages were apparent. The Australian and New Zealand isolates formed a distinct sub-clade within the type I lineage, while the European type I isolates formed another less closely related group. Within the type III lineage, isolates appeared more genetically diverse and were from a greater number of continents. Querying of the pan-genome and verification using BLAST analysis revealed lineage-specific variations (n = 13) including genes responsible for metabolism and stress responses. The genetic differences identified may represent important epidemiological and virulence traits specific to sheep MAP. This knowledge will potentially contribute to improved vaccine development and control measures for these strains.
Collapse
Affiliation(s)
- Rachel Mizzi
- Farm Animal Health Group, Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Verlaine J Timms
- Centre for Infectious Diseases and Microbiology, Public Health, Westmead Hospital, Westmead, NSW, Australia
| | | | - Milan Gautam
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Richard Whittington
- Farm Animal Health Group, Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Cord Heuer
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J Biggs
- School of Veterinary Science, Massey University, Palmerston North, New Zealand.,School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Karren M Plain
- Farm Animal Health Group, Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| |
Collapse
|
10
|
Sushko T, Kavaleuski A, Grabovec I, Kavaleuskaya A, Vakhrameev D, Bukhdruker S, Marin E, Kuzikov A, Masamrekh R, Shumyantseva V, Tsumoto K, Borshchevskiy V, Gilep A, Strushkevich N. A new twist of rubredoxin function in M. tuberculosis. Bioorg Chem 2021; 109:104721. [PMID: 33618255 DOI: 10.1016/j.bioorg.2021.104721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 11/27/2022]
Abstract
Electron transfer mediated by metalloproteins drives many biological processes. Rubredoxins are a ubiquitous [1Fe-0S] class of electron carriers that play an important role in bacterial adaptation to changing environmental conditions. In Mycobacterium tuberculosis, oxidative and acidic stresses as well as iron starvation induce rubredoxins expression. However, their functions during M. tuberculosis infection are unknown. In the present work, we show that rubredoxin B (RubB) is able to efficiently shuttle electrons from cognate reductases, FprA and FdR to support catalytic activity of cytochrome P450s, CYP124, CYP125, and CYP142, which are important for bacterial viability and pathogenicity. We solved the crystal structure of RubB and characterized the interaction between RubB and CYPs using site-directed mutagenesis. Mutations that not only neutralize single charge but also change the specific residues on the surface of RubB did not dramatically decrease activity of studied CYPs. Together with isothermal calorimetry (ITC) experiments, the obtained results suggest that interactions are transient and not highly specific. The redox potential of RubB is -264 mV vs. Ag/AgCl and the measured extinction coefficients are 9931 M-1cm-1 and 8371 M-1cm-1 at 380 nm and 490 nm, respectively. Characteristic parameters of RubB along with the discovered function might be useful for biotechnological applications. Our findings suggest that a switch from ferredoxins to rubredoxins might be crucial for M. tuberculosis to support CYPs activity during the infection.
Collapse
Affiliation(s)
- Tatsiana Sushko
- The Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Anton Kavaleuski
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Irina Grabovec
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Anna Kavaleuskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Daniil Vakhrameev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; ESRF - The European Synchrotron, 38000 Grenoble, France
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia
| | - Alexey Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Rami Masamrekh
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Victoria Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Kouhei Tsumoto
- The Institute of Medical Science, the University of Tokyo, Tokyo, Japan; Department of Bioengineering, School of Engineering, the University of Tokyo, Tokyo, Japan
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Andrei Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus; Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
11
|
An overview of the factors playing a role in cytochrome P450 monooxygenase and ferredoxin interactions. Biophys Rev 2020; 12:1217-1222. [PMID: 32885385 DOI: 10.1007/s12551-020-00749-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/28/2020] [Indexed: 01/11/2023] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s) are heme-thiolate proteins that are ubiquitously present in organisms, including non-living entities such as viruses. With the exception of self-sufficient P450s, all other P450 enzymes need electrons to perform their enzymatic activity and these electrons are supplied by P450 redox proteins. Different types of P450 redox proteins can be found in organisms and are classified into different classes. Bacterial P450s (class I) receive electrons from ferredoxins which are iron-sulfur cluster proteins. The presence of more than one copy and different types of ferredoxins within a bacterial species poses fundamental questions about the selectivity of P450s and ferredoxins in relation to each other. Apart from transferring electrons, ferredoxins have also been found to modulate P450 functions. Achieving an understanding of the interaction between ferredoxins and P450s is required to harness their biotechnological potential for designing a universal electron transfer protein. A brief overview of factors playing a role in ferredoxin and P450 interactions is presented in this review article.
Collapse
|
12
|
A comparison of steroid and lipid binding cytochrome P450s from Mycobacterium marinum and Mycobacterium tuberculosis. J Inorg Biochem 2020; 209:111116. [PMID: 32473484 DOI: 10.1016/j.jinorgbio.2020.111116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
The steroid lipid binding cytochrome P450 (CYP) enzymes of Mycobacterium tuberculosis are essential for organism survival through metabolism of cholesterol and its derivatives. The counterparts to these enzymes from Mycobacterium marinum were studied to determine the degree of functional conservation between them. Spectroscopic analyses of substrate and inhibitor binding for the four M. marinum enzymes CYP125A6, CYP125A7, CYP142A3 and CYP124A1 were performed and compared to the equivalent enzymes of M. tuberculosis. The sequence of CYP125A7 from M. marinum was more similar to CYP125A1 from M. tuberculosis than CYP125A6 but both showed differences in the resting heme spin state and in the binding modes and affinities of certain azole inhibitors. CYP125A7 did not show a significant Type II inhibitor-like shift with any of the azoles tested. CYP142A3 bound a similar range of steroids and inhibitors to CYP142A1. However, there were some differences in the extent of the Type I shifts to the high-spin form with steroids and a higher affinity for the azole inhibitors compared to CYP142A1. The two CYP124 enzymes had similar substrate binding properties. M. marinum CYP124 was characterised by X-ray crystallography and displayed strong conservation of active site residues, except near the region where the carboxylate terminus of the phytanic acid substrate would be bound. As these enzymes in M. tuberculosis have been identified as candidates for inhibition the data here demonstrates that alternative strategies for inhibitor design may be required to target CYP family members from distinct pathogenic Mycobacterium species or other bacteria.
Collapse
|
13
|
Ortega Ugalde S, Wallraven K, Speer A, Bitter W, Grossmann TN, Commandeur JNM. Acetylene containing cyclo(L-Tyr-L-Tyr)-analogs as mechanism-based inhibitors of CYP121A1 from Mycobacterium tuberculosis. Biochem Pharmacol 2020; 177:113938. [PMID: 32224137 DOI: 10.1016/j.bcp.2020.113938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/24/2020] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is a globally significant infective disease that is caused by a single infectious agent, Mycobacterium tuberculosis (Mtb). Because of the rise in the number of multidrug-resistant (MDR) TB strains, identification of alternative drug targets for the development of drugs with different mechanism of actions is desired. CYP121A1, one of the twenty cytochrome P450 enzymes encoded in the Mtb genome, was previously shown to be essential for bacterial growth. This enzyme catalyzes the intramolecular C-C crosslinking reaction of the cyclopeptide cyclo(L-tyr-L-tyr) (cYY) yielding the metabolite mycocyclosin. In the present study, acetylene-substituted cYY-analogs were synthesized and evaluated as potential mechanism-based inhibitors of CYP121A1. The acetylene-substituted cYY-analogs were capable of binding to CYP121A1 with affinities comparable with cYY, and exhibited a Type I binding mode, indicative of a substrate-like binding, mandatory for metabolism. Only the cYY-analogs which contain an acetylene-substitution at one (2a) or both (3) para-positions of cYY showed mechanism-based inhibition of CYP121A1 activity. The values of KI and kinact were 236 µM and 0.045 min-1, respectively, for compound 2a, and 145 µM and 0.015 min-1, repectively, for compound 3 The inactivation could neither be reversed by dialysis nor be prevented by including glutathione. LC-MS analysis demonstrated that the inactivation results from covalent binding to the apoprotein, whereas the heme was unmodified. Interestingly, the mass increment of the CYP121A1 apoprotein was significantly smaller than was expected from the ketene formed by oxidation of the acetylene-group, indicative for a secondary cleavage reaction in the active site of CYP121A1. Although the two acetylene-containing cYY-analogs showed significant mechanism-based inhibition, growth inhibition of the Mtb strains was only observed at millimolar concentrations. This low efficacy may be due to insufficient irreversible inactivation of CYP121A1 and/or insufficient cellular uptake. Although the identified mechanism-based inhibitors have no perspective for Mtb-treatment, this study is the first proof-of-principle that mechanism-based inhibition of CYP121A1 is feasible and may provide the basis for new strategies in the design and development of compounds against this promising therapeutic target.
Collapse
Affiliation(s)
- Sandra Ortega Ugalde
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Kerstin Wallraven
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Jan N M Commandeur
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Helfrich EJN, Lin GM, Voigt CA, Clardy J. Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering. Beilstein J Org Chem 2019; 15:2889-2906. [PMID: 31839835 PMCID: PMC6902898 DOI: 10.3762/bjoc.15.283] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022] Open
Abstract
Terpenoids are the largest and structurally most diverse class of natural products. They possess potent and specific biological activity in multiple assays and against diseases, including cancer and malaria as notable examples. Although the number of characterized terpenoid molecules is huge, our knowledge of how they are biosynthesized is limited, particularly when compared to the well-studied thiotemplate assembly lines. Bacteria have only recently been recognized as having the genetic potential to biosynthesize a large number of complex terpenoids, but our current ability to associate genetic potential with molecular structure is severely restricted. The canonical terpene biosynthetic pathway uses a single enzyme to form a cyclized hydrocarbon backbone followed by modifications with a suite of tailoring enzymes that can generate dozens of different products from a single backbone. This functional promiscuity of terpene biosynthetic pathways renders terpene biosynthesis susceptible to rational pathway engineering using the latest developments in the field of synthetic biology. These engineered pathways will not only facilitate the rational creation of both known and novel terpenoids, their development will deepen our understanding of a significant branch of biosynthesis. The biosynthetic insights gained will likely empower a greater degree of engineering proficiency for non-natural terpene biosynthetic pathways and pave the way towards the biotechnological production of high value terpenoids.
Collapse
Affiliation(s)
- Eric J N Helfrich
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, United States
| | - Geng-Min Lin
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, United States
| | - Christopher A Voigt
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, United States
| | - Jon Clardy
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, United States
| |
Collapse
|
15
|
Ortega Ugalde S, Ma D, Cali JJ, Commandeur JNM. Evaluation of Luminogenic Substrates as Probe Substrates for Bacterial Cytochrome P450 Enzymes: Application to Mycobacterium tuberculosis. SLAS DISCOVERY 2019; 24:745-754. [PMID: 31208248 PMCID: PMC6651611 DOI: 10.1177/2472555219853220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several cytochrome P450 enzymes (CYPs) encoded in the genome of Mycobacterium tuberculosis (Mtb) are considered potential new drug targets due to the essential roles they play in bacterial viability and in the establishment of chronic intracellular infection. Identification of inhibitors of Mtb CYPs at present is conducted by ultraviolet-visible (UV-vis) optical titration experiments or by metabolism studies using endogenous substrates, such as cholesterol and lanosterol. The first technique requires high enzyme concentrations and volumes, while analysis of steroid hydroxylation is dependent on low-throughput analytical methods. Luciferin-based luminogenic substrates have proven to be very sensitive substrates for the high-throughput profiling of inhibitors of human CYPs. In the present study, 17 pro-luciferins were evaluated as substrates for Mtb CYP121A1, CYP124A1, CYP125A1, CYP130A1, and CYP142A1. Luciferin-BE was identified as an excellent probe substrate for CYP130A1, resulting in a high luminescence yield after addition of luciferase and adenosine triphosphate (ATP). Its applicability for high-throughput screening was supported by a high Z'-factor and high signal-to-background ratio. Using this substrate, the inhibitory properties of a selection of known inhibitors could be characterized using significantly less protein concentration when compared to UV-vis optical titration experiments. Although several luminogenic substrates were also identified for CYP121A1, CYP124A1, CYP125A1, and CYP142A1, their relatively low yield of luminescence and low signal-to-background ratios make them less suitable for high-throughput screening since high enzyme concentrations will be needed. Further structural optimization of luminogenic substrates will be necessary to obtain more sensitive probe substrates for these Mtb CYPs.
Collapse
Affiliation(s)
- Sandra Ortega Ugalde
- 1 AIMMS-Division of Molecular Toxicology, Faculty of Science, Vrije Universiteit, Amsterdam, North-Holland, The Netherlands
| | | | | | - Jan N M Commandeur
- 1 AIMMS-Division of Molecular Toxicology, Faculty of Science, Vrije Universiteit, Amsterdam, North-Holland, The Netherlands
| |
Collapse
|
16
|
Child SA, Flint KL, Bruning JB, Bell SG. The characterisation of two members of the cytochrome P450 CYP150 family: CYP150A5 and CYP150A6 from Mycobacterium marinum. Biochim Biophys Acta Gen Subj 2019; 1863:925-934. [PMID: 30826435 DOI: 10.1016/j.bbagen.2019.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Actinobacteria, including the Mycobacteria, have a large component of cytochrome P450 family monooxygenases. This includes Mycobacterium tuberculosis, M. ulcerans and M. marinum, and M. vanbaalenii. These enzymes can abstract CH bonds and have important roles in natural product biosynthesis. METHODS Two members of the bacterial CYP150 family, CYP150A5 and CYP150A6 from M. marinum, were produced, purified and characterised. The potential substrate ranges of both enzymes were analysed and the monooxygenase activity of CYP150A5 was reconstituted using a physiological electron transfer partner system. CYP150A6 was structurally characterised by X-ray crystallography. RESULTS CYP150A5 was shown to bind various norisoprenoids and terpenoids. It could regioselectively hydroxylate β-ionol. The X-ray crystal structure of substrate-free CYP150A6 was solved to 1.5 Å. This displayed an open conformation with short F and G helices, an unresolved F-G loop region and exposed active site pocket. The active site residues could be identified and important variations were found among the CYP150A enzymes. Haem-binding azole inhibitors were identified for both enzymes. CONCLUSIONS The structure of CYP150A6 will facilitate the identification of physiological substrates and the design of better inhibitors for members of this P450 family. Based on the observed differences in substrate binding preference and sequence variations among the active site residues, their roles are predicted to be different. GENERAL SIGNIFICANCE Multiple CYP150 family members were found in many bacteria and are prevalent in the Mycobacteria including several human pathogens. Inhibition and structural data are reported here for these enzymes for the first time.
Collapse
Affiliation(s)
- Stella A Child
- Department of Chemistry, University of Adelaide, SA 5005, Australia
| | - Kate L Flint
- Department of Chemistry, University of Adelaide, SA 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA 5005, Australia.
| |
Collapse
|
17
|
Ortega Ugalde S, Boot M, Commandeur JNM, Jennings P, Bitter W, Vos JC. Function, essentiality, and expression of cytochrome P450 enzymes and their cognate redox partners in Mycobacterium tuberculosis: are they drug targets? Appl Microbiol Biotechnol 2019; 103:3597-3614. [PMID: 30810776 PMCID: PMC6469627 DOI: 10.1007/s00253-019-09697-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 11/26/2022]
Abstract
This review covers the current knowledge of the cytochrome P450 enzymes (CYPs) of the human pathogen Mycobacterium tuberculosis (Mtb) and their endogenous redox partners, focusing on their biological function, expression, regulation, involvement in antibiotic resistance, and suitability for exploitation as antitubercular targets. The Mtb genome encodes twenty CYPs and nine associated redox partners required for CYP catalytic activity. Transposon insertion mutagenesis studies have established the (conditional) essentiality of several of these enzymes for in vitro growth and host infection. Biochemical characterization of a handful of Mtb CYPs has revealed that they have specific physiological functions in bacterial virulence and persistence in the host. Analysis of the transcriptional response of Mtb CYPs and redox partners to external insults and to first-line antibiotics used to treat tuberculosis showed a diverse expression landscape, suggesting for some enzymes a potential role in drug resistance. Combining the knowledge about the physiological roles and expression profiles indicates that, at least five Mtb CYPs, CYP121A1, CYP125A1, CYP139A1, CYP142A1, and CYP143A1, as well as two ferredoxins, FdxA and FdxC, can be considered promising novel therapeutic targets.
Collapse
Affiliation(s)
- Sandra Ortega Ugalde
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Maikel Boot
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Paul Jennings
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section of Molecular Microbiology, AIMMS, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - J Chris Vos
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|